Interface decoration of exfoliated MXene ultra-thin nar suppressions of thermoplastic polyurethane elastomer

Journal of Hazardous Materials 374, 110-119 DOI: 10.1016/j.jhazmat.2019.04.026

Citation Report

#	Article	IF	CITATIONS
1	Functionalization with MXene (Ti ₃ C ₂) Enhances the Wettability and Shear Strength of Carbon Fiber-Epoxy Composites. ACS Applied Nano Materials, 2019, 2, 5553-5562.	2.4	60
2	Simultaneous fire safety enhancement and mechanical reinforcement of poly(lactic acid) biocomposites with hexaphenyl (nitrilotris(ethane-2,1-diyl))tris(phosphoramidate). Journal of Hazardous Materials, 2019, 380, 120856.	6.5	43
3	Synergistic effect between phosphorus tailings and aluminum hypophosphite in flameâ€retardant thermoplastic polyurethane composites. Polymers for Advanced Technologies, 2019, 30, 2480-2487.	1.6	25
4	Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety. Composites Part B: Engineering, 2019, 179, 107541.	5.9	51
5	Highly Effective Flame-Retardant Rigid Polyurethane Foams: Fabrication and Applications in Inhibition of Coal Combustion. Polymers, 2019, 11, 1776.	2.0	36
6	Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Composites Part B: Engineering, 2019, 179, 107545.	5.9	82
7	Influence of Eddy-Generation Mechanism on the Characteristic of On-Source Fire Whirl. Applied Sciences (Switzerland), 2019, 9, 3989.	1.3	11
8	Solar heat shielding performance of potassium titanate whisker coated polypropylene fabric based on a bionic method. Composites Part B: Engineering, 2019, 177, 107408.	5.9	14
9	A stable, ultrasensitive and flexible substrate integrated from 1D Ag/α-Fe2O3/SiO2 fibers for practical surface-enhanced Raman scattering detection. Composites Part B: Engineering, 2019, 177, 107376.	5.9	12
10	Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105650.	3.8	59
11	Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 40512-40523.	4.0	230
12	Large-scale production of simultaneously exfoliated and Functionalized Mxenes as promising flame retardant for polyurethane. Composites Part B: Engineering, 2019, 179, 107486.	5.9	103
13	Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties. Polymers, 2019, 11, 976.	2.0	93
14	Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene Oxide/Poly(Lactic acid) nanocomposites. Carbon, 2019, 150, 8-20.	5.4	91
15	Flame retardant poly (lactic acid) biocomposites based on azoâ€boron coupled 4,4′â€sulfonyldiphenol and its combination with calcium lignosulfonate—Crystalline and mechanical properties. Polymers for Advanced Technologies, 2019, 30, 2207-2220.	1.6	13
16	A novel phosphorus-containing MoS2 hybrid: Towards improving the fire safety of epoxy resin. Journal of Colloid and Interface Science, 2019, 550, 210-219.	5.0	37
17	Synergistic Effects of Two-Dimensional MXene and Ammonium Polyphosphate on Enhancing the Fire Safety of Polyvinyl Alcohol Composite Aerogels. Polymers, 2019, 11, 1964.	2.0	46
18	Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. Journal of Hazardous Materials, 2020, 384, 121358.	6.5	160

#	Article	IF	CITATIONS
19	MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. Journal of Hazardous Materials, 2020, 381, 120952.	6.5	174
20	Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnology Journal, 2020, 18, 1041-1055.	4.1	65
21	Mxene functionalized polymer composites: Synthesis and applications. European Polymer Journal, 2020, 122, 109367.	2.6	107
22	A compact directional microstrip antenna with wide bandwidth, high gain, and high frontâ€ŧoâ€back ratio. Microwave and Optical Technology Letters, 2020, 62, 308-314.	0.9	5
23	Centered kernel alignment inspired fuzzy support vector machine. Fuzzy Sets and Systems, 2020, 394, 110-123.	1.6	16
24	Insight into Hyper-Branched Aluminum Phosphonate in Combination with Multiple Phosphorus Synergies for Fire-Safe Epoxy Resin Composites. Polymers, 2020, 12, 64.	2.0	9
25	Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane. Journal of Hazardous Materials, 2020, 387, 121971.	6.5	106
26	Controlled self-template synthesis of manganese-based cuprous oxide nanoplates towards improved fire safety properties of epoxy composites. Journal of Hazardous Materials, 2020, 387, 122006.	6.5	14
27	Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Composites Part B: Engineering, 2020, 181, 107588.	5.9	106
28	One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure. Composites Part B: Engineering, 2020, 183, 107695.	5.9	112
29	Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating. Chemical Engineering Journal, 2020, 391, 123621.	6.6	118
30	Design of Poly(cyclotriphosphazene)-Functionalized Zirconium Phosphate Nanoplatelets To Simultaneously Enhance the Dynamic Mechanical and Flame Retardancy Properties of Polyamide 6. ACS Omega, 2020, 5, 13867-13877.	1.6	7
31	Co-Effect Flame Retardation of Co ₃ O ₄ -Loaded Titania Nanotubes and α-Zirconium Phosphate in the Epoxy Matrix. ACS Omega, 2020, 5, 28475-28482.	1.6	7
32	Fabrication of two-dimensional Ti3C2Tx MXenes by ball milling pretreatment and mild etchant and their microstructure. Ceramics International, 2020, 46, 28949-28954.	2.3	16
33	Polymeric Ti ₃ C ₂ T <i>_x</i> MXene Composites for Room Temperature Ammonia Sensing. ACS Applied Nano Materials, 2020, 3, 12071-12079.	2.4	89
34	Facile preparation of uniform polydopamine particles and its application as an environmentally friendly flame retardant for biodegradable polylactic acid. Journal of Fire Sciences, 2020, 38, 485-503.	0.9	6
35	Iron-phosphorus-nitrogen functionalized reduced graphene oxide for epoxy resin with reduced fire hazards and improved impact toughness. Composites Part B: Engineering, 2020, 199, 108283.	5.9	56
36	Mechanotribological Aspects of MXeneâ€Reinforced Nanocomposites. Advanced Materials, 2020, 32, e2003154.	11.1	160

#	Article	IF	CITATIONS
37	Mechanical, Thermal, and Rheological Properties of Ti ₃ C ₂ T _x MXene/ Thermoplastic Polyurethane Nanocomposites. Macromolecular Materials and Engineering, 2020, 305, 2000343.	1.7	44
38	Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Composites Part B: Engineering, 2020, 203, 108486.	5.9	145
39	Thermoplastic polyurethane – Ti3C2(Tx) MXene nanocomposite: The influence of functional groups upon the matrix–reinforcement interaction. Applied Surface Science, 2020, 528, 146526.	3.1	24
40	Enhanced Antistatic and Self-Heatable Wearable Coating with Self-Tiered Structure Caused by Amphiphilic MXene in Waterborne Polymer. Langmuir, 2020, 36, 6580-6588.	1.6	22
41	Facile Synthesis of Phosphorus and Cobalt Co-Doped Graphitic Carbon Nitride for Fire and Smoke Suppressions of Polylactide Composite. Polymers, 2020, 12, 1106.	2.0	25
42	Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chemical Engineering Journal, 2020, 397, 125336.	6.6	207
43	Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chemical Engineering Journal, 2020, 398, 125661.	6.6	165
44	Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chinese Journal of Chemical Engineering, 2020, 28, 1981-1993.	1.7	41
45	Dispersibility and Photochemical Stability of Delaminated MXene Flakes in Water. Small, 2020, 16, e2002433.	5.2	55
46	Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chemical Engineering Journal, 2020, 399, 125829.	6.6	226
47	Functionalized graphene paper with the function of fuse and its flame-triggered self-cutting performance for fire-alarm sensor application. Materials Chemistry and Physics, 2020, 252, 123292.	2.0	24
48	Nacre-biomimetic graphene oxide paper intercalated by phytic acid and its ultrafast fire-alarm application. Journal of Colloid and Interface Science, 2020, 578, 412-421.	5.0	53
49	Insight into suppression performance and mechanisms of ultrafine powders on wood dust deflagration under equivalent concentration. Journal of Hazardous Materials, 2020, 394, 122584.	6.5	35
50	Fire-safe unsaturated polyester resin nanocomposites based on MAX and MXene: a comparative investigation of their properties and mechanism of fire retardancy. Dalton Transactions, 2020, 49, 5803-5814.	1.6	55
51	Synergistic effect of flame retardants and graphitic carbon nitride on flame retardancy of polylactide composites. Polymers for Advanced Technologies, 2020, 31, 1661-1670.	1.6	23
52	Integrated effect of NH2-functionalized/triazine based covalent organic framework black phosphorus on reducing fire hazards of epoxy nanocomposites. Chemical Engineering Journal, 2020, 401, 126058.	6.6	55
53	Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers, 2020, 12, 347.	2.0	38
54	Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry, 2020, 22, 2129-2161.	4.6	249

#	Article	IF	CITATIONS
55	Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Composites Part B: Engineering, 2020, 188, 107875.	5.9	111
56	Numerical Study of the Comparison of Symmetrical and Asymmetrical Eddy-Generation Scheme on the Fire Whirl Formulation and Evolution. Applied Sciences (Switzerland), 2020, 10, 318.	1.3	6
57	Mesoporous silica via self-assembly of nano zinc amino-tris-(methylenephosphonate) exhibiting reduced fire hazards and improved impact toughness in epoxy resin. Journal of Hazardous Materials, 2020, 392, 122343.	6.5	58
58	Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polymers for Advanced Technologies, 2020, 31, 1194-1207.	1.6	18
59	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
60	Nacre-Inspired Tunable Electromagnetic Interference Shielding Sandwich Films with Superior Mechanical and Fire-Resistant Protective Performance. ACS Applied Materials & Interfaces, 2020, 12, 6371-6382.	4.0	97
61	Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Composites Part B: Engineering, 2020, 192, 107990.	5.9	61
62	Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks. Composites Part B: Engineering, 2020, 191, 107978.	5.9	36
63	Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology, 2020, 31, 315715.	1.3	31
64	Dry synthesis of mesoporous nanosheet assembly constructed by cyclomatrix polyphosphazene frameworks and its application in flame retardant polypropylene. Chemical Engineering Journal, 2020, 395, 125076.	6.6	59
65	Flame retardant effect of 1-aminoethyl-3-methylimidazolium hexafluorophosphate in thermoplastic polyurethane elastomer. Journal of Thermal Analysis and Calorimetry, 2021, 145, 173-184.	2.0	17
66	A novel understanding of combustion behavior of coals by cone calorimeter. Journal of Thermal Analysis and Calorimetry, 2021, 143, 139-150.	2.0	4
67	Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability. Journal of Hazardous Materials, 2021, 401, 123342.	6.5	151
68	MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, 80-115.	5.3	123
69	Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change. Journal of Hazardous Materials, 2021, 404, 124106.	6.5	72
70	Surface treatment of two dimensional MXene for poly(vinylidene fluoride) nanocomposites with tunable dielectric permittivity. Composites Communications, 2021, 23, 100562.	3.3	33
71	Carbonization mechanism of polypropylene catalyzed by Co compounds combined with phosphorus-doped graphene to improve its fire safety performance. Materials Today Communications, 2021, 26, 101792.	0.9	5
72	Recyclable and removable functionalization based on Diels-Alder reaction of black phosphorous nanosheets and its dehydration carbonization in fire safety improvement of polymer composites. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106157.	3.8	15

#	Article	IF	CITATIONS
73	Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. Journal of Hazardous Materials, 2021, 403, 123645.	6.5	86
74	Construction of Charring-Functional Polyheptanazine towards Improvements in Flame Retardants of Polyurethane. Molecules, 2021, 26, 340.	1.7	4
75	A novel multifunctional flame retardant MXene/nanosilica hybrid for poly(vinyl alcohol) with simultaneously improved mechanical properties. New Journal of Chemistry, 2021, 45, 4292-4302.	1.4	23
76	Polymer nanocomposites from the flame retardancy viewpoint: A comprehensive classification of nanoparticle performance using the flame retardancy index. , 2021, , 61-146.		5
77	Effect of twoâ€dimensional zeolitic imidazolate <scp>frameworks‣</scp> on flame retardant property of thermoplastic polyurethane elastomers. Polymers for Advanced Technologies, 2021, 32, 2072-2081.	1.6	10
78	Surface modification of bamboo fibers by diammonium phosphate and their applications in flame retardant thermoplastic polyurethane. Journal of Applied Polymer Science, 2021, 138, 50606.	1.3	6
79	An efficient water-assisted liquid exfoliation of layered MXene (Ti3C2Tx) by rationally matching Hansen solubility parameter and surface tension. Journal of Molecular Liquids, 2021, 324, 115116.	2.3	9
80	Copper metalâ€organic framework toward flameâ€retardant enhancement of thermoplastic polyurethane elastomer composites based on ammonium polyphosphate. Polymers for Advanced Technologies, 2021, 32, 2829-2842.	1.6	25
81	Flame behaviour, fire hazard and fire testing approach for lightweight composite claddings – a review. Journal of Structural Fire Engineering, 2021, 12, 257-292.	0.4	11
82	Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates. Chemical Engineering Journal, 2021, 409, 128223.	6.6	109
83	Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites. Chinese Journal of Polymer Science (English Edition), 2021, 39, 935-956.	2.0	31
84	Multifunctional MXene/Chitosan-Coated Cotton Fabric for Intelligent Fire Protection. ACS Applied Materials & amp; Interfaces, 2021, 13, 23020-23029.	4.0	102
85	DOPO-Decorated Two-Dimensional MXene Nanosheets for Flame-Retardant, Ultraviolet-Protective, and Reinforced Polylactide Composites. ACS Applied Materials & Interfaces, 2021, 13, 21876-21887.	4.0	78
86	Fabrication and Mechanism Study of Cerium-Based P, N-Containing Complexes for Reducing Fire Hazards of Polycarbonate with Superior Thermostability and Toughness. ACS Applied Materials & Interfaces, 2021, 13, 30061-30075.	4.0	36
87	Study of structure morphology and layer thickness of Ti3C2 MXene with Small-Angle Neutron Scattering (SANS). Composites Part C: Open Access, 2021, 5, 100155.	1.5	17
88	MXene as emerging nanofillers for high-performance polymer composites: A review. Composites Part B: Engineering, 2021, 217, 108867.	5.9	161
89	MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. Journal of Alloys and Compounds, 2021, 868, 159159.	2.8	62
90	Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. Journal of Alloys and Compounds, 2021, 870, 159442	2.8	59

#	Article	IF	CITATIONS
91	Dynamically-generated TiO2 active site on MXene Ti3C2: Boosting reactive desulfurization. Chemical Engineering Journal, 2021, 416, 129022.	6.6	73
92	Applications of GO/OAâ€POSS Layerâ€byâ€Layer selfâ€assembly nanocoating on flame retardancy and smoke suppression of flexible polyurethane foam. Polymers for Advanced Technologies, 2021, 32, 4516-4530.	1.6	10
93	Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chemical Engineering Journal, 2021, 417, 129314.	6.6	80
94	Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. Polymer, 2021, 229, 124027.	1.8	38
95	Surface modification of multi-scale cuprous oxide with tunable catalytic activity towards toxic fumes and smoke suppression of rigid polyurethane foam. Applied Surface Science, 2021, 556, 149792.	3.1	21
96	Investigation on the Effects of MXene and β-Nucleating Agent on the Crystallization Behavior of Isotactic Polypropylene. Polymers, 2021, 13, 2931.	2.0	2
97	Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites. Composites Science and Technology, 2021, 214, 108997.	3.8	37
98	A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. Chemical Engineering Journal, 2022, 430, 132605.	6.6	71
99	Magnesium hydroxide/graphene oxide chip in flakes structure and its fire-retardant reinforcement of polypropylene. Journal of Polymer Research, 2021, 28, 1.	1.2	7
100	A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430, 132712.	6.6	64
101	Emerging MXene–Polymer Hybrid Nanocomposites for High-Performance Ammonia Sensing and Monitoring. Nanomaterials, 2021, 11, 2496.	1.9	55
102	The effect of strawberry-like nickel-decorated flame retardant for enhancing the fire safety and smoke suppression of epoxy resin. Polymer Degradation and Stability, 2021, 193, 109740.	2.7	16
103	Interface engineering of graphene oxide containing phosphorus/nitrogen towards fire safety enhancement for thermoplastic polyurethane. Composites Communications, 2021, 27, 100821.	3.3	26
104	Surface-modified ammonium polyphosphate for flame-retardant and reinforced polyurethane composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127092.	2.3	28
105	BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Composites Part B: Engineering, 2021, 223, 109130.	5.9	70
106	Dodecylamine/Ti3C2-pectin form-stable phase change composites with enhanced light-to-thermal conversion and mechanical properties. Renewable Energy, 2021, 176, 663-674.	4.3	30
107	Cooling performance of a bioinspired micro-crystal-bars coated composite fabric with solar reflectance. Composites Communications, 2021, 27, 100814.	3.3	10
108	Facile preparation of phosphorus containing hyperbranched polysiloxane grafted graphene oxide hybrid toward simultaneously enhanced flame retardancy and smoke suppression of thermoplastic polyurethane nanocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106614.	3.8	43

#	Article	IF	CITATIONS
109	Highly efficient MXene/Nano-Cu smoke suppressant towards reducing fire hazards of thermoplastic polyurethane. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106600.	3.8	60
110	Research progress on construction and energy storage performance of MXene heterostructures. Journal of Energy Chemistry, 2021, 62, 220-242.	7.1	45
111	Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chemical Engineering Journal, 2021, 424, 130338.	6.6	130
112	Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chemical Engineering Journal, 2021, 426, 131234.	6.6	63
113	MXene based core-shell flame retardant towards reducing fire hazards of thermoplastic polyurethane. Composites Part B: Engineering, 2021, 226, 109363.	5.9	86
114	Novel C3N4/PANI@PA for enhancement of fire protection and smoke suppression in intumescent fire retardant epoxy coatings. Progress in Organic Coatings, 2021, 161, 106496.	1.9	13
115	Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. Journal of Colloid and Interface Science, 2022, 607, 1300-1312.	5.0	97
116	Lightweight, amphipathic and fire-resistant prGO/MXene spherical beads for rapid elimination of hazardous chemicals. Journal of Hazardous Materials, 2022, 423, 127069.	6.5	34
117	Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chemical Engineering Journal, 2022, 428, 131173.	6.6	106
118	A Soy Protein-Based Composite Film with a Hierarchical Structure Inspired by Nacre. Journal of Renewable Materials, 2022, 10, 639-652.	1.1	6
119	Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. Journal of Colloid and Interface Science, 2022, 606, 223-235.	5.0	67
120	Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615.	6.6	149
121	Preparation of soybean root-like CNTs/bimetallic oxides hybrid to enhance fire safety and mechanical performance of thermoplastic polyurethane. Chemical Engineering Journal, 2022, 428, 132338.	6.6	9
122	Designing advanced 0D-2D hierarchical structure for Epoxy resin to accomplish exceeding thermal management and safety. Chemical Engineering Journal, 2022, 427, 132046.	6.6	48
123	Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. Journal of Materials Science and Technology, 2022, 101, 107-117.	5.6	96
124	Construction of hierarchical Ti3C2TX@PHbP-PHC architecture with enhanced free-radical quenching capability: Effective reinforcement and fire safety performance in bismaleimide resin. Chemical Engineering Journal, 2022, 427, 131634.	6.6	40
125	Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chemical Engineering Journal, 2020, 397, 125439.	6.6	61
126	Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin. Composites Part B: Engineering, 2020, 186, 107828.	5.9	70

	CITATION REPORT		
Article		IF	Citations
Flame retardant polymeric nanocomposites through the combination of nanomaterials conventional flame retardants. Progress in Materials Science, 2020, 114, 100687.	s and	16.0	415
Compatible cyclophosphazene-functionalized graphene hybrids to improve flame retain nanocomposites. Reactive and Functional Polymers, 2020, 155, 104697.	dancy for epoxy	2.0	24
Delamination and Engineered Interlayers of Ti ₃ C ₂ MXenes u Vapor toward Flame-Retardant Epoxy Nanocomposites. ACS Applied Materials & 48196-48207.	ising Phosphorous nterfaces, 2021, 13,	4.0	33
Preparation and characterization of lignin-containing self-healing polyurethane elastor hydrogen and disulfide bonds. Industrial Crops and Products, 2021, 174, 114178.	ners with	2.5	36
Rosinâ€Based Si/P ontaining Flame Retardant Toward Enhanced Fire Safety Polyure Advanced Engineering Materials, 2022, 24, 2101044.	ethane Foam.	1.6	5
Constructing hierarchical structure based on LDH anchored boron-doped g-C3N4 asse MnO2 nanosheets towards reducing toxicants generation and fire hazard of epoxy res Part B: Engineering, 2022, 229, 109453.	mbled with in. Composites	5.9	91
Leaf vein-inspired engineering of MXene@SrSn(OH)6 nanorods towards super-tough e nanocomposites with outstanding fire safety. Composites Part B: Engineering, 2022, 2	elastomer 228, 109425.	5.9	33
Designing hierarchical ternary structure based on NiAl LDH anchored phosphorus-dope dotted with Fe3O4 nanoparticles towards improving the fire safety of thermoplastic p Applied Surface Science, 2022, 577, 151648.	ed g-C3N4 olyurethane.	3.1	38
A self-assemble strategy toward conductive 2D MXene reinforced ZrO2 composites w performance. Journal of the European Ceramic Society, 2022, 42, 1102-1112.	th sensing	2.8	5
Flammability and thermal analysis of thermoplastic polyurethane/DOPO derivative/sep composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 8225-8234.	iolite	2.0	6
From structural ceramics to 2D materials with multi-applications: A review on the deve MAX phases to MXenes. Journal of Advanced Ceramics, 2021, 10, 1194-1242.	lopment from	8.9	122
Fabrication of hollow carbon spheres modified by molybdenum compounds towards to reduction and flame retardancy of thermoplastic polyurethane. Polymers for Advanced 2022, 33, 723-737.	oxicity I Technologies,	1.6	5

138	Fabrication of hollow carbon spheres modified by molybdenum compounds towards toxicity reduction and flame retardancy of thermoplastic polyurethane. Polymers for Advanced Technologies, 2022, 33, 723-737.	1.6	5
139	Recent advancements in flame retardancy of MXene polymer nanoarchitectures. Safety in Extreme Environments, 2021, 3, 253-273.	1.8	16
140	Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chemical Engineering Journal, 2022, 431, 133907.	6.6	29
141	Layer-by-layer self-assembled nanocoatings of Mxene and P, N-co-doped cellulose nanocrystals onto cotton fabrics for significantly reducing fire hazards and shielding electromagnetic interference. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106751.	3.8	34
142	A synergetic strategy of well dispersing hydrophilic Ti3C2Tx MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances. Composites Science and Technology, 2022, 219, 109248.	3.8	24
143	Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chemical Engineering Journal, 2022, 431, 134108.	6.6	34
144	Integration of black phosphorene and MXene to improve fire safety and mechanical properties of waterborne polyurethane. Applied Surface Science, 2022, 581, 152386.	3.1	22

#

#	Article	IF	CITATIONS
145	Functionalizing mesoporous silica with a nano metal–organic phosphonate towards mechanicalâ€robust, thermalâ€resistant, and fireâ€safety epoxy resin. Polymers for Advanced Technologies, 2022, 33, 1496-1511.	1.6	5
146	Flame Retardancy, Thermal and Mechanical Properties of Novel Intumescent Flame Retardant/MXene/Poly(Vinyl Alcohol) Nanocomposites. Nanomaterials, 2022, 12, 477.	1.9	14
147	Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Materials Today Physics, 2022, 22, 100607.	2.9	52
148	Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chemical Engineering Journal, 2022, 439, 134516.	6.6	81
149	Cleaner production to a multifunctional polyurethane sponge with high fire safety and low toxicity release. Journal of Cleaner Production, 2022, 333, 130172.	4.6	8
150	Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonization of Ti3C2Tx-MXene wrapped polystyrene spheres. Carbon, 2022, 190, 319-328.	5.4	49
151	rGO/MXene sandwich-structured film at spunlace non-woven fabric substrate: Application to EMI shielding and electrical heating. Journal of Colloid and Interface Science, 2022, 614, 194-204.	5.0	44
152	Fire retardancy in nanocomposites by using nanomaterial additives. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105466.	2.6	19
153	Grafting alkynyl groups on the surface of nanoâ€aramid fibers towards flame retardant thermoplastic polyurethane. Polymers for Advanced Technologies, 2022, 33, 1831-1845.	1.6	5
154	Bridged Ti ₃ C ₂ T _{<i>X</i>} MXene Film with Superior Oxidation Resistance and Structural Stability for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2022, 5, 2898-2908.	2.5	34
155	Metal-organic Framework ZIF-67 Functionalized MXene for Enhancing the Fire Safety of Thermoplastic Polyurethanes. Nanomaterials, 2022, 12, 1142.	1.9	19
156	Review—Towards 5th Generation AI and IoT Driven Sustainable Intelligent Sensors Based on 2D MXenes and Borophene. , 2022, 1, 013601.		238
157	A review on cone calorimeter for assessment of flame-retarded polymer composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10209-10234.	2.0	41
158	Combustion Inhibition Ability of Piperazine Phosphoramide Derivatives and Titanium Carbide on Epoxy Resin. Combustion Science and Technology, 0, , 1-20.	1.2	0
159	A Review of Environmentally Friendly Approaches in Fire Extinguishing: From Chemical Sciences to Innovations in Electrical Engineering. Polymers, 2022, 14, 1224.	2.0	4
160	Thermal Stability and Flammability Studies of MXene–Organic Hybrid Polystyrene Nanocomposites. Polymers, 2022, 14, 1213.	2.0	17
161	MXene-based films via scalable fabrication with improved mechanical and antioxidant properties for electromagnetic interference shielding. Composites Communications, 2022, 31, 101112.	3.3	14
162	A MXene-based multiple catalyst for highly efficient photocatalytic removal of nitrate. Environmental Science and Pollution Research, 2022, 29, 58149-58160.	2.7	5

#	Article	IF	CITATIONS
163	Fire-retarded nanocomposite aerogels for multifunctional applications: A review. Composites Part B: Engineering, 2022, 237, 109866.	5.9	28
164	Novel exploration of the flame retardant potential of bimetallic MXene in epoxy composites. Composites Part B: Engineering, 2022, 237, 109862.	5.9	47
165	A novel carbon fiber/MXene coalition prepared by a bidirectional diazotization strategy: Properties and applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128649.	2.3	7
166	MOF-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of FPUF. Chemosphere, 2022, 297, 134134.	4.2	19
167	Facile strategy to synthesize MXene@LDH nanohybrids for boosting the flame retardancy and smoke suppression properties of epoxy. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106912.	3.8	80
168	Assembling MXene with bio-phytic acid: Improving the fire safety and comprehensive properties of epoxy resin. Polymer Testing, 2022, 110, 107564.	2.3	33
169	Constructing a novel synergistic flame retardant by hybridization of zeolitic imidazolate frameworkâ€67 and graphene oxide for thermoplastic polyurethane. Polymers for Advanced Technologies, 2022, 33, 2374-2385.	1.6	11
170	Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers. International Journal of Biological Macromolecules, 2022, 209, 1339-1351.	3.6	20
171	Superhydrophobic Ti3C2Tx MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment. Chemical Engineering Journal, 2022, 446, 136945.	6.6	34
173	Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection. Chemical Engineering Journal, 2022, 446, 136899.	6.6	31
174	Zn-doped carbon microspheres as synergist in intumescent flame-retardant thermoplastic polyurethane composites: Mechanism of char residues layer regulation. Composites Communications, 2022, 32, 101173.	3.3	11
175	Poly(dimethyl siloxane)-grafted black phosphorus nanosheets as filler to enhance moisture-resistance and flame-retardancy of thermoplastic polyurethane. Materials Chemistry and Physics, 2022, 286, 126189.	2.0	11
176	Phosphorus/nitrogen compound and zinc hydroxystannateâ€modified graphene oxide for efficient flame retardancy and smoke suppression of epoxy resin. Journal of Applied Polymer Science, 0, , .	1.3	0
177	Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: A review. Synthetic Metals, 2022, 287, 117095.	2.1	15
178	Morphology-Controlled Synthesis of Polyphosphazene-Based Micro- and Nano-Materials and Their Application as Flame Retardants. Polymers, 2022, 14, 2072.	2.0	4
179	Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends. Polymers, 2022, 14, 2175.	2.0	10
180	A shape programmable MXene-based supermolecular nanocomposite film. Composites Part A: Applied Science and Manufacturing, 2022, 159, 106997.	3.8	9
181	Recent advances in Two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chemical Engineering Journal, 2022, 446, 137239.	6.6	59

#	Article	IF	Citations
182	Flame Retardant Polyurethane Nanocomposites. ACS Symposium Series, 0, , 221-238.	0.5	0
183	Two-Dimensional Nanomaterials as Smart Flame Retardants for Polyurethane. ACS Symposium Series, 0, , 189-219.	0.5	13
184	MXene-Based Composites and Their Applications. Engineering Materials, 2022, , 53-86.	0.3	4
185	Selective laser sintering of PEG treated inorganic fullerene-like tungsten disulfide nanoparticles/polyamide 12 nanocomposites and fire safety behavior. Chemical Engineering Journal, 2022, 450, 137644.	6.6	3
186	Emergence of MXene–Polymer Hybrid Nanocomposites as Highâ€Performance Nextâ€Generation Chemiresistors for Efficient Air Quality Monitoring. Advanced Functional Materials, 2022, 32, .	7.8	77
187	Functionalizing MXenes with molybdenum trioxide towards reducing fire hazards of thermoplastic polyurethane. New Journal of Chemistry, 2022, 46, 14112-14121.	1.4	5
188	A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites. Chemical Engineering Journal, 2023, 451, 137823.	6.6	55
189	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	14.8	91
190	Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107070.	3.8	41
191	Smart fire alarm systems for rapid early fire warning: Advances and challenges. Chemical Engineering Journal, 2022, 450, 137927.	6.6	34
192	Organic-inorganic hybrid engineering MXene derivatives for fire resistant epoxy resins with superior smoke suppression. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107109.	3.8	35
193	Octopus sucker-inspired hierarchical structure MXene@carbon nanotubes enhancing the mechanical properties and fire safety of thermoplastic polyurethane composites through the interfacial engineering. Chemical Engineering Journal, 2022, 450, 138184.	6.6	22
194	Green biobased Pâ€N coating: Towards wasteâ€minimization flame retardant flexible polyurethane foam. Polymers for Advanced Technologies, 2022, 33, 3591-3604.	1.6	4
195	Facile Preparation of Novel Carbon Microspheres for Improvement in Flame Retardancy, Smoke Suppression and Toxicity Reduction of Thermoplastic Polyurethane Elastomer. Fire Technology, 0, , .	1.5	0
196	Influence of surfaces and interfaces on MXene and MXene hybrid polymeric nanoarchitectures, properties, and applications. Journal of Materials Science, 2022, 57, 14579-14619.	1.7	24
197	Co-MOF@MXene hybrids flame retardants for enhancing the fire safety of thermoplastic polyurethanes. Polymer Degradation and Stability, 2022, 204, 110119.	2.7	27
198	Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers, 2022, 14, 3433.	2.0	28
199	Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis. Nano-Micro Letters, 2022, 14, .	14.4	26

#	Article	IF	CITATIONS
200	Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal particles. Composites Part B: Engineering, 2022, 244, 110147.	5.9	23
201	Ternary MXenes-based nanostructure enabled fire-safe and mechanic-robust EP composites with markedly impeded toxicants releases. Composites Part A: Applied Science and Manufacturing, 2022, 162, 107137.	3.8	13
202	Efficient flame-retardant and multifunctional polyimide/MXene composite aerogel for intelligent fire protection. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107210.	3.8	22
203	Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107187.	3.8	26
204	Cetyltrimethylammonium bromide decorated <scp>MXene</scp> /polyimide nanocomposites with enhanced dielectric properties, thermostability, and moisture resistance. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
205	Research Progress on Two-Dimensional Layered MXene/Elastomer Nanocomposites. Polymers, 2022, 14, 4094.	2.0	8
206	Nanohybrid of Co3O4 Nanoparticles and Polyphosphazene-Decorated Ultra-Thin Boron Nitride Nanosheets for Simultaneous Enhancement in Fire Safety and Smoke Suppression of Thermoplastic Polyurethane. Polymers, 2022, 14, 4341.	2.0	3
207	MXene Based Nanocomposites for Recent Solar Energy Technologies. Nanomaterials, 2022, 12, 3666.	1.9	3
208	Fabrication of durable coatings for cotton fabrics with flame retardant, antibacterial, Fluorine-free Superhydrophobic and self-cleaning properties. Cellulose, 2023, 30, 591-610.	2.4	9
209	Emergence of MXene and MXene–Polymer Hybrid Membranes as Future―Environmental Remediation Strategies. Advanced Science, 2022, 9, .	5.6	70
210	Organic quaternary phosphonium salts intercalated MXene towards controllable amphiphilicity and dispersions. Inorganic Chemistry Communication, 2022, 146, 110166.	1.8	2
211	Self-assembled double core-shell structured zeolitic imidazole framework-8 as an effective flame retardant and smoke suppression agent for thermoplastic polyurethane. Applied Surface Science, 2023, 610, 155540.	3.1	15
212	Recent progress and multifunctional applications of fire-retardant epoxy resins. Materials Today Communications, 2022, 33, 104702.	0.9	6
213	Design of Hierarchically Tailored Hybrids Based on Nickle Nanocrystal-Decorated Manganese Dioxides for Enhanced Fire Safety of Epoxy Resin. International Journal of Molecular Sciences, 2022, 23, 13711.	1.8	1
214	Study on the thermal and mechanical properties of twoâ€dimensional <scp>dâ€Ti₃C₂T_x</scp> filled polyamide 66 nanocomposite. Polymers for Advanced Technologies, 2023, 34, 769-778.	1.6	1
215	A review on the synthesis of MXenes and their lubrication performance and mechanisms. Tribology International, 2023, 179, 108170.	3.0	13
216	Interface engineering of Ti3C2 nanosheets for fabricating thermoplastic polyurethane composites with excellent flame-retardant and smoke suppressive properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130733.	2.3	7
217	Recent advancements in electromagnetic interference shielding of polymer and mxene nanocomposites. Polymer-Plastics Technology and Materials, 2023, 62, 19-53.	0.6	28

#	Article	IF	CITATIONS
218	Jadeite original stone inspired PBA core-shell architecture endowed fire-safe and mechanic-robust EP composites with low toxicity. Ceramics International, 2023, 49, 10839-10851.	2.3	8
219	Component ratio effects of melamine cyanurate and aluminum diethylphosphinate in flame retardant TPU. Journal of Polymer Research, 2023, 30, .	1.2	5
220	2D MXenes for Fire Retardancy and Fireâ€Warning Applications: Promises and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	70
221	Hierarchically ordered porous g-C3N4 framework supported Ni nanoparticles for fire safety and thermal stealth application. Materials and Design, 2022, 224, 111422.	3.3	2
222	Electrophoretic deposition of Ti3C2Tx MXene nanosheets onto high modulus carbon fiber enhances their composites interfacial properties. Materials Today Communications, 2023, 34, 105429.	0.9	3
223	Design of novel double-layer coated ammonium polyphosphate and its application in flame retardant thermoplastic polyurethanes. Chemical Engineering Journal, 2023, 459, 141448.	6.6	22
224	Emerging MXene/cellulose composites: Design strategies and diverse applications. Chemical Engineering Journal, 2023, 458, 141402.	6.6	36
225	Recently emerging advancements in thermal conductivity and flame retardancy of MXene polymeric nanoarchitectures. Polymer-Plastics Technology and Materials, 2023, 62, 510-546.	0.6	16
226	Killing three birds with one stone: A novel regulate strategy for improving the fire safety of thermoplastic polyurethane. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107491.	3.8	11
227	Selective laser sintering of functionalized carbon nanotubes and inorganic fullerene-like tungsten disulfide reinforced polyamide 12 nanocomposites with excellent fire safety and mechanical properties. Journal of Cleaner Production, 2023, 401, 136630.	4.6	3
228	Functionalizing MXene with hypophosphite for highly fire safe thermoplastic polyurethane composites. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107486.	3.8	6
229	3D hydrangea-like Ti3C2Tx MXene@FeNi layered double hydroxide derived to efficiently inhibit the fire hazard of thermoplastic polyurethane. Applied Materials Today, 2023, 32, 101803.	2.3	2
230	Preparation and properties of multifunctional polyurethane synthetic leather nanocomposites. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107534.	3.8	8
231	Tackling smoke toxicity and fire hazards of thermoplastic polyurethane by mechanochemical combination of Cuâ,,O nanoparticles and zirconium phosphate nanosheets. Polymer Degradation and Stability, 2023, 212, 110350.	2.7	8
232	Construction of MXene/MOFs nano-coatings on PU sponge with enhanced interfacial interaction and fire resistance towards efficient removal of liquid hazardous chemicals. Journal of Cleaner Production, 2023, 403, 136887.	4.6	13
233	Advancements in MXene-polymer composites for high-performance supercapacitor applications. Journal of Energy Storage, 2023, 63, 106942.	3.9	16
234	MXene: fundamentals to applications in electrochemical energy storage. , 2023, 18, .		15
235	Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials. Progress in Solid State Chemistry, 2023, 70, 100392.	3.9	5

#	Article	IF	CITATIONS
236	Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules, 2023, 28, 1842.	1.7	14
237	Flame-Retardant and Form-Stable Delignified Wood-Based Phase Change Composites with Superior Energy Storage Density and Reversible Thermochromic Properties for Visual Thermoregulation. ACS Sustainable Chemistry and Engineering, 2023, 11, 3932-3943.	3.2	9
238	Fabrication of Rigid Isocyanate-Based Polyimide Foam Achieved Excellent Use Safety via Synergy between Expandable Graphite and Phosphorus-Containing Polyol. Polymers, 2023, 15, 1381.	2.0	2
239	Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss. Polymers, 2023, 15, 1406.	2.0	2
240	Synergetic Effect of α-ZrP Nanosheets and Nitrogen-Based Flame Retardants on Thermoplastic Polyurethane. ACS Applied Materials & Interfaces, 2023, 15, 17054-17069.	4.0	20
241	Boosting flame retardancy of thermoplastic polyurethane: Synergistic effect of nickel phosphide nanoparticles and molybdenum disulfide nanosheets. Journal of Vinyl and Additive Technology, 2023, 29, 522-533.	1.8	4
242	Fire-safe epoxy composite realized by MXenes based nanostructure with vertically arrayed MOFs derived from interfacial assembly strategy. Chemical Engineering Journal, 2023, 465, 143039.	6.6	10
264	MXenesâ€Based Highâ€Performance Polymer Composites as Next-Generation Flame Retardants. ACS Symposium Series, 0, , 125-146.	0.5	0
275	Multifunctional nacre-like materials. Materials Horizons, 2023, 10, 5371-5390.	6.4	2
281	Plant-derived Fire Retardants. , 2023, , 4-71.		0
292	Flame retardant properties of polymer/graphene nanocomposites. , 2024, , 159-200.		0
293	Flame-retardant properties of MXene-based polymer nanocomposites. , 2024, , 287-320.		0