Volatile organic compounds in a typical petrochemical is northwest China based on high-resolution PTR-MS mea sources and chemical effects

Science of the Total Environment 671, 883-896

DOI: 10.1016/j.scitotenv.2019.03.283

Citation Report

#	Article	IF	CITATIONS
1	Volatile organic compound measurements point to fog-induced biomass burning feedback to air quality in the megacity of Delhi. Science of the Total Environment, 2019, 689, 295-304.	8.0	27
2	Source Apportionment of Volatile Organic Compounds (VOCs) by Positive Matrix Factorization (PMF) supported by Model Simulation and Source Markers - Using Petrochemical Emissions as a Showcase. Environmental Pollution, 2019, 254, 112848.	7.5	28
3	Hazardous volatile organic compounds in ambient air of China. Chemosphere, 2020, 246, 125731.	8.2	60
4	Decoding the social volatilome by tracking rapid context-dependent odour change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190259.	4.0	6
5	Proteome-wide effects of naphthalene-derived secondary organic aerosol in BEAS-2B cells are caused by short-lived unsaturated carbonyls. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25386-25395.	7.1	30
6	Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols. Science of the Total Environment, 2020, 737, 139830.	8.0	23
7	Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environmental Pollution, 2020, 265, 115023.	7.5	35
8	VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan. Atmospheric Environment, 2020, 240, 117741.	4.1	32
9	Atmospheric benzene measurements in the main metropolitan and industrial areas of Spain from 2014 to 2017. Atmospheric Research, 2020, 238, 104896.	4.1	10
10	Investigation of health risk assessment and odor pollution of volatile organic compounds from industrial activities in the Yangtze River Delta region, China. Ecotoxicology and Environmental Safety, 2021, 208, 111474.	6.0	47
11	Long-term observations of oxygenated volatile organic compounds (OVOCs) in an urban atmosphere in southern China, 2014–2019. Environmental Pollution, 2021, 270, 116301.	7.5	35
12	Variations in Levels and Sources of Atmospheric VOCs during the Continuous Haze and Non-Haze Episodes in the Urban Area of Beijing: A Case Study in Spring of 2019. Atmosphere, 2021, 12, 171.	2.3	9
13	Ambient volatile organic compounds at Wudang Mountain in Central China: Characteristics, sources and implications to ozone formation. Atmospheric Research, 2021, 250, 105359.	4.1	22
14	Spatial and Temporal Distributions and Sources of Anthropogenic NMVOCs in the Atmosphere of China: A Review. Advances in Atmospheric Sciences, 2021, 38, 1085-1100.	4.3	15
15	Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong. Environmental Pollution, 2021, 274, 116589.	7.5	46
16	Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment. Atmospheric Pollution Research, 2021, 12, 101053.	3.8	30
17	Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway. Journal of Colloid and Interface Science, 2021, 591, 396-408.	9.4	51

ATION RE

18	Characteristics of volatile organic compounds (VOCs) based on multisite observations in Hebei province in the warm season in 2019. Atmospheric Environment, 2021, 256, 118435.	4.1	9	
----	--	-----	---	--

#	Article	IF	CITATIONS
19	Characteristics and sources of non-methane VOCs and their roles in SOA formation during autumn in a central Chinese city. Science of the Total Environment, 2021, 782, 146802.	8.0	25
20	Spatial distribution and source apportionment of peroxyacetyl nitrate (PAN) in a coastal region in southern China. Atmospheric Environment, 2021, 260, 118553.	4.1	7
21	Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere, 2021, 281, 130653.	8.2	17
22	Stationary monitoring and source apportionment of VOCs in a chemical industrial park by combining rapid direct-inlet MSs with a GC-FID/MS. Science of the Total Environment, 2021, 795, 148639.	8.0	21
23	Measurement and minutely-resolved source apportionment of ambient VOCs in a corridor city during 2019 China International Import Expo episode. Science of the Total Environment, 2021, 798, 149375.	8.0	9
24	Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 799, 149491.	8.0	24
25	A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation. Science of the Total Environment, 2022, 806, 150247.	8.0	16
26	Evaluation of the VOC pollution pattern and emission characteristics during the Beijing resurgence of COVID-19 in summer 2020 based on the measurement of PTR-ToF-MS. Environmental Research Letters, 2022, 17, 024002.	5.2	5
27	Characterization, source apportionment, and assessment of volatile organic compounds in a typical urban area of southern Xinjiang, China. Air Quality, Atmosphere and Health, 0, , 1.	3.3	0
28	Multisize particulate matter and volatile organic compounds in arid and semiarid areas of Northwest China. Environmental Pollution, 2022, 300, 118875.	7.5	4
29	Primary organic gas emissions in vehicle cold start events: Rates, compositions and temperature effects. Journal of Hazardous Materials, 2022, 435, 128979.	12.4	14
30	A Novel So3•-ÂMediated Photoelectrocatalytic System for the Efficient Treatment of Sulfurous and Nitrogenous Oxides. SSRN Electronic Journal, 0, , .	0.4	0
31	Chemical reactivity of volatile organic compounds and their effects on ozone formation in a petrochemical industrial area of Lanzhou, Western China. Science of the Total Environment, 2022, 839, 155901.	8.0	13
32	Evolution of source attributed organic aerosols and gases in a megacity of central China. Atmospheric Chemistry and Physics, 2022, 22, 6937-6951.	4.9	6
33	Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. Science of the Total Environment, 2022, 838, 156344.	8.0	8
34	VOC characteristics and their source apportionment in a coastal industrial area in the Yangtze River Delta, China. Journal of Environmental Sciences, 2023, 127, 483-494.	6.1	11
35	Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. Environment International, 2022, 165, 107330.	10.0	24
36	Characteristics and sources of volatile organic compounds (VOCs) in Xinxiang, China, during the 2021 summer ozone pollution control. Science of the Total Environment, 2022, 842, 156746.	8.0	14

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Composition, seasonal variation and sources attribution of volatile organic compounds in urban air in southwestern China. Urban Climate, 2022, 45, 101241.	5.7	2
38	Characteristics, Effects and Sources of Ambient Volatile Organic Compounds in Kaifeng, China. SSRN Electronic Journal, 0, , .	0.4	0
39	Variations and sources of volatile organic compoundsÂ(VOCs) in urban region: insights from measurements on a tall tower. Atmospheric Chemistry and Physics, 2022, 22, 10567-10587.	4.9	17
40	Characteristics and sources analysis of ambient volatile organic compounds in a typical industrial park: Implications for ozone formation in 2022 Asian Games. Science of the Total Environment, 2022, 848, 157746.	8.0	7
41	Enhancement of toluene photocatalytic degradation using GO/S/TiO2. Journal of the Taiwan Institute of Chemical Engineers, 2022, 139, 104529.	5.3	5
43	Measurement report: Intra- and interannual variability and source apportionment of volatile organic compounds during 2018–2020 in Zhengzhou, central China. Atmospheric Chemistry and Physics, 2022, 22, 14859-14878.	4.9	5
45	Characteristics of summertime ambient volatile organic compounds in Beijing: Composition, source apportionment, and chemical reactivity. Atmospheric Pollution Research, 2023, 14, 101725.	3.8	1
46	A novel SO3•- mediated photoelectrocatalytic system based on MoS2/Fe2O3 and CuNW@CF for the efficient treatment of sulfurous and nitrogenous oxides. Applied Catalysis B: Environmental, 2023, 330, 122579.	20.2	2
47	Divergent summertime surface O3 pollution formation mechanisms in two typical Chinese cities in the Beijing-Tianjin-Hebei region and Fenwei Plain. Science of the Total Environment, 2023, 870, 161868.	8.0	4
48	A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou. Chemosphere, 2023, 334, 139001.	8.2	2
49	Seasonal variation characteristics of atmospheric peroxyacetyl nitrate (PAN) and its source apportionment in a megacity in southern China. Science of the Total Environment, 2023, 892, 164662.	8.0	3
50	VOC species controlling O3 formation in ambient air and their sources in Kaifeng, China. Environmental Science and Pollution Research, 2023, 30, 75439-75453.	5.3	0
51	Development of an enhanced method for atmospheric carbonyls and characterizing their roles in photochemistry in subtropical Hong Kong. Science of the Total Environment, 2023, 896, 165135.	8.0	1
52	High-entropy (CoCrFeMnNi)3O4 catalysts for propane catalytic destruction: Effect of the precipitation agent. Fuel, 2023, 353, 129171.	6.4	3
53	Abundant oxygenated volatile organic compounds and their contribution to photochemical pollution in subtropical Hong Kong. Environmental Pollution, 2023, 335, 122287.	7.5	2
54	Historical emission and reduction of VOCs from the petroleum refining industry and their potential for secondary pollution formation in Guangdong, China. Science of the Total Environment, 2023, 904, 166416.	8.0	0
55	Tibetan Plateau is vulnerable to aromatic-related photochemical pollution and health threats: A case study in Lhasa. Science of the Total Environment, 2023, 904, 166494.	8.0	0
56	Source apportionment of volatile organic compounds during paddy-residue burning season in north-west India reveals large pool of photochemically formed air toxics. Environmental Pollution, 2023, 338, 122656.	7.5	0

ARTICLE IF CITATIONS # Emission characteristics, environmental impact, and health risk assessment of volatile organic 57 8.0 2 compounds (VOCs) during manicure processes. Science of the Total Environment, 2024, 906, 167464. Origin and transformation of volatile organic compounds at a regional background site in Hong Kong: Varied photochemical processes from different source regions. Science of the Total 8.0 Environment, 2024, 908, 168316. Different VOC species derived from fugitive emissions at various altitudes around petrochemical 60 1.4 0 plant. Atmospheric Environment: X, 2023, , 100232. Characterization of VOC source profiles, chemical reactivity, and cancer risk associated with petrochemical industry processes in Southeast China. Atmospheric Environment: X, 2024, 21, 100236. Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management. Science of the Total Environment, 2024, 919, 170836. 62 8.0 0 Elucidating contributions of volatile organic compounds to ozone formation using random forest during COVID-19 pandemic: A case study in China. Environmental Pollution, 2024, 346, 123532. Revealing the Influencing Factors of an Oxygenated Volatile Organic Compounds (OVOCs) Source Apportionment Model: A Case Study of a Dense Urban Agglomeration in the Winter. Journal of 64 3.3 0 Geophysical Research D: Atmospheres, 2024, 129, .

CITATION REPORT