Triazine Functionalized Porous Covalent Organic Frame <i>E</i>–<i>Z</i> Isomerization of Olefins

Journal of the American Chemical Society 141, 6152-6156 DOI: 10.1021/jacs.9b01891

Citation Report

#	Article	IF	CITATIONS
2	Hot Ï€â€Electron Tunneling of Metal–Insulator–COF Nanostructures for Efficient Hydrogen Production. Angewandte Chemie - International Edition, 2019, 58, 18290-18294.	13.8	138
3	Iridium complex immobilization on covalent organic framework for effective C—H borylation. APL Materials, 2019, 7, .	5.1	24
4	Controlled Fabrication of Silica@Covalent Triazine Polymer Core–Shell Spheres as a Reversed-Phase/Hydrophilic Interaction Mixed-Mode Chromatographic Stationary Phase. ACS Applied Materials & Interfaces, 2019, 11, 46149-46156.	8.0	40
5	Hot Ï€â€Electron Tunneling of Metal–Insulator–COF Nanostructures for Efficient Hydrogen Production. Angewandte Chemie, 2019, 131, 18458-18462.	2.0	31
6	Design of D–A ₁ –A ₂ Covalent Triazine Frameworks via Copolymerization for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2019, 9, 9438-9445.	11.2	172
7	A multifunctional triazine-based nanoporous polymer as a versatile organocatalyst for CO ₂ utilization and C–C bond formation. Chemical Communications, 2019, 55, 11607-11610.	4.1	24
8	Sn(OH)x-assisted synthesis of mesoporous Mn-porphyrinic frameworks and their carbon derivatives for electrocatalysis. Dalton Transactions, 2019, 48, 14678-14686.	3.3	3
9	Control Assembly of Pillar[6]arene-Modified Ag Nanoparticles on Covalent Organic Framework Surface for Enhanced Sensing Performance toward Paraquat. ACS Sustainable Chemistry and Engineering, 2019, 7, 20051-20059.	6.7	54
10	Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 2019, 10, 11023-11029.	7.4	69
11	Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous and Mesoporous Materials, 2020, 291, 109700.	4.4	39
12	Covalent Organic Frameworks: A Sustainable Photocatalyst toward Visibleâ€Lightâ€Accelerated C3 Arylation and Alkylation of Quinoxalinâ€2(1 <i>H</i>)â€ones. Chemistry - A European Journal, 2020, 26, 369-373.	3.3	82
13	Selective Synthesis of <i>Z</i> innamyl Ethers and Cinnamyl Alcohols through Visible Lightâ€Promoted Photocatalytic <i>E</i> to <i>Z</i> Isomerization. Chemistry - an Asian Journal, 2020, 15, 555-559.	3.3	25
14	Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis. Chemical Science, 2020, 11, 1494-1502.	7.4	116
15	Design, Synthesis and Characterization of Nickelâ€Functionalized Covalent Organic Framework NiCl@RIOâ€12 for Heterogeneous Suzuki–Miyaura Catalysis. Chemistry - A European Journal, 2020, 26, 2051-2059.	3.3	18
16	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	10.0	110
17	Covalent organic frameworks bearing pillar[6]arene-reduced Au nanoparticles for the catalytic reduction of nitroaromatics. Nanotechnology, 2020, 31, 135705.	2.6	11
18	Recent Advances in Covalent Organic Frameworks for Catalysis. Chemistry - an Asian Journal, 2020, 15, 338-351.	3.3	103
19	Diastereoselective sp3â€C–H Functionalization of Arylmethyl Ketones and Transformation of <i>E</i> ―to <i>Z</i> â€Products Through Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 424-428.	2.4	16

#	Article	IF	CITATIONS
20	Structural Dynamism-Actuated Reversible CO ₂ Adsorption Switch and Postmetalation-Induced Visible Light C _α –H Photocyanation with Rare Size Selectivity in N-Functionalized 3D Covalent Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 48642-48653.	8.0	35
21	Efficient nitrate and oxygen electroreduction over pyrolysis-free mesoporous covalent Co-salophen coordination frameworks on carbon nanotubes. Electrochimica Acta, 2020, 363, 137280.	5.2	15
22	Ultrafine Pd nanoparticles loaded benzothiazole-linked covalent organic framework for efficient photocatalytic C–C cross-coupling reactions. RSC Advances, 2020, 10, 29402-29407.	3.6	24
23	Covalent organic frameworks as an efficient adsorbent for controlling the formation of disinfection by-products (DBPs) in chlorinated drinking water. Science of the Total Environment, 2020, 746, 141138.	8.0	10
24	Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 180-192.	5.3	155
25	An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. Journal of the American Chemical Society, 2020, 142, 14007-14022.	13.7	129
26	Micro-scale spatial location engineering of COF–TiO ₂ heterojunctions for visible light driven photocatalytic alcohol oxidation. Journal of Materials Chemistry A, 2020, 8, 18745-18754.	10.3	58
27	Covalent organic frameworks: Polymer chemistry and functional design. Progress in Polymer Science, 2020, 108, 101288.	24.7	78
28	Reticular Synthesis of tbo Topology Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16346-16356.	13.7	120
29	Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16723-16731.	13.7	333
30	Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, 2020, 49, 4135-4165.	38.1	649
31	Recent Progress in Metalâ€Free Covalent Organic Frameworks as Heterogeneous Catalysts. Small, 2020, 16, e2001070.	10.0	229
32	Visible-Light-Responsive Anthraquinone Functionalized Covalent Organic Frameworks for Metal-Free Selective Oxidation of Sulfides: Effects of Morphology and Structure. ACS Catalysis, 2020, 10, 6664-6675.	11.2	120
33	Covalent organic frameworks for photocatalytic applications. Applied Catalysis B: Environmental, 2020, 276, 119174.	20.2	277
34	Grapheneâ€Like Covalent Organic Framework with a Wide Band Gap Synthesized On Surface via Stepwise Reactions. Angewandte Chemie, 2020, 132, 16092-16096.	2.0	1
35	Graphene‣ike Covalent Organic Framework with a Wide Band Gap Synthesized On Surface via Stepwise Reactions. Angewandte Chemie - International Edition, 2020, 59, 15958-15962.	13.8	10
36	All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. Journal of the American Chemical Society, 2020, 142, 6548-6553.	13.7	31
37	Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41, 1288-1297.	14.0	54

#	Article	IF	CITATIONS
38	Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. Journal of the American Chemical Society, 2020, 142, 6856-6860.	13.7	136
39	Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 6957-6983.	10.3	190
40	Triazine- and Keto-Functionalized Porous Covalent Organic Framework as a Promising Anode Material for Na-Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 15870-15878.	3.1	22
41	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	3.5	47
42	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	11.2	200
43	Fabrication of nanoscale covalent porous organic polymer: An efficacious catalyst for Knoevenagel condensation. Microporous and Mesoporous Materials, 2020, 299, 110112.	4.4	19
44	Triptycene-Based and Schiff-Base-Linked Porous Networks: Efficient Gas Uptake, High CO ₂ /N ₂ Selectivity, and Excellent Antiproliferative Activity. ACS Omega, 2020, 5, 4250-4260.	3.5	14
45	Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Applied Catalysis B: Environmental, 2020, 269, 118799.	20.2	117
46	Indicator Displacement Assay Inside Dye-Functionalized Covalent Organic Frameworks for Ultrasensitive Monitoring of Sialic Acid, an Ovarian Cancer Biomarker. ACS Applied Materials & Interfaces, 2020, 12, 12990-12997.	8.0	48
47	Ultrasensitive and highly selective electrochemical sensing of sodium picrate by Dihydroxylatopillar[6]arene-Modified gold nanoparticles and cationic Pillar[6]arene functionalized covalent organic framework. Electrochimica Acta, 2020, 335, 135706.	5.2	21
48	Cobalt-Catalyzed <i>Z</i> to <i>E</i> Isomerization of Alkenes: An Approach to (<i>E</i>)-β-Substituted Styrenes. Organic Letters, 2020, 22, 1193-1198.	4.6	18
49	Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nature Communications, 2020, 11, 436.	12.8	383
50	Sunlightâ€Driven Synthesis of 1,2,4â€Thiadiazoles via Oxidative Construction of a Nitrogenâ€Sulfur Bond Catalyzed by a Reusable Covalent Organic Framework. ChemPhotoChem, 2020, 4, 445-450.	3.0	19
51	The luminescent and photophysical properties of covalent organic frameworks. Chemical Society Reviews, 2020, 49, 839-864.	38.1	234
52	Covalent Organic Framework as a Heterogeneous Ligand for the Regioselective Oxidative Heck Reaction. Organic Letters, 2020, 22, 1480-1484.	4.6	20
53	COFs-based Porous Materials for Photocatalytic Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 673-684.	3.8	31
54	Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS Applied Materials & amp; Interfaces, 2020, 12, 20354-20365.	8.0	80
55	Unveiling the Local Structure of Palladium Loaded into Imineâ€Linked Layered Covalent Organic Frameworks for Crossâ€Coupling Catalysis, Angewandte Chemie, 2020, 132, 13113-13120	2.0	6

#	Article	IF	CITATIONS
56	Unveiling the Local Structure of Palladium Loaded into Imineâ€Linked Layered Covalent Organic Frameworks for Crossâ€Coupling Catalysis. Angewandte Chemie - International Edition, 2020, 59, 13013-13020.	13.8	49
57	Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Research, 2021, 14, 381-386.	10.4	16
58	Covalent organic framework-based materials for energy applications. Energy and Environmental Science, 2021, 14, 688-728.	30.8	209
59	Covalent Organic Frameworks in Catalytic Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 144-193.	4.3	49
60	Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. Journal of Organic Chemistry, 2021, 86, 1540-1548.	3.2	3
61	Crystalline C—C and Câ•C Bond-Linked Chiral Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 369-381.	13.7	117
62	Twoâ€Dimensional Covalentâ€Organic Frameworks for Photocatalysis: The Critical Roles of Building Block and Linkage. Solar Rrl, 2021, 5, 2000458.	5.8	40
63	Singleâ€Pore versus Dualâ€Pore Bipyridineâ€Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Catalytic Activity for Selective CH Functionalization. Small, 2021, 17, e2003970.	10.0	25
64	Pristine, metal ion and metal cluster modified conjugated triazine frameworks as electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 10146-10159.	10.3	23
65	An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catalysis Science and Technology, 2021, 11, 4272-4279.	4.1	32
66	Iridium-catalyzed <i>Z</i> -retentive asymmetric allylic substitution reactions. Science, 2021, 371, 380-386.	12.6	125
67	Triazines, tetrazines, and fused ring polyaza systems. Progress in Heterocyclic Chemistry, 2021, 32, 467-499.	0.5	2
68	Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chemical Society Reviews, 2021, 50, 120-242.	38.1	472
69	Dual-catalyst engineered porous organic framework for visible-light triggered, metal-free and aerobic sp3 C H activation in highly synergistic and recyclable fashion. Journal of Catalysis, 2021, 394, 40-49.	6.2	16
70	N-Heterocyclic Carbene Functionalized Covalent Organic Framework for Transesterification of Glycerol with Dialkyl Carbonates. Catalysts, 2021, 11, 423.	3.5	8
71	Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC - Trends in Analytical Chemistry, 2021, 136, 116182.	11.4	47
72	Covalent Triazine Frameworks as Emerging Heterogeneous Photocatalysts. Chemistry of Materials, 2021, 33, 1909-1926.	6.7	116
73	Covalent Organic Frameworks: Synthesis, Properties and Applications—An Overview. Polymers, 2021, 13, 970.	4.5	50

#	Article	IF	CITATIONS
74	Photocatalytic Oxygenation of Heterostilbenes—Batch versus Microflow Reactor. Catalysts, 2021, 11, 395.	3.5	4
75	Visible-light degradation of azo dyes by imine-linked covalent organic frameworks. Green Energy and Environment, 2023, 8, 194-199.	8.7	14
76	Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalysts for Visible Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide. ACS Applied Materials & Interfaces, 2021, 13, 14122-14131.	8.0	66
77	Construction of Flexible Amineâ€linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angewandte Chemie - International Edition, 2021, 60, 12396-12405.	13.8	77
78	Recent developments in the photocatalytic applications of covalent organic frameworks: A review. Journal of Cleaner Production, 2021, 291, 125822.	9.3	124
79	Construction of Flexible Amineâ€linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angewandte Chemie, 2021, 133, 12504-12513.	2.0	14
80	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	3.3	22
81	Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. Journal of the American Chemical Society, 2021, 143, 7897-7902.	13.7	58
82	Guiding Uniformly Distributed Li–Ion Flux by Lithiophilic Covalent Organic Framework Interlayers for High-Performance Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 22586-22596.	8.0	48
83	Single, dual and multi-emission carbon dots based optosensing for food safety. Trends in Food Science and Technology, 2021, 111, 388-404.	15.1	43
84	A New Molecular Recognition Concept: Multiple Hydrogen Bonds and Their Optically Triggered Proton Transfer in Confined Metal–Organic Frameworks for Superior Sensing Element. ACS Applied Materials & Interfaces, 2021, 13, 22457-22465.	8.0	19
85	Unveiling Charge Dynamics in Acetylene-Bridged Donorâ~'ï€â€"Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catalysis, 2021, 11, 7429-7441.	11.2	75
86	Solid-solid reaction synthesis of covalent organic framework as a stable and highly active photo-catalyst for degradation of sulfathiazole in industrial wastewater. Chemical Engineering Journal, 2021, 414, 128619.	12.7	20
87	Nal/PPh ₃ -Mediated Photochemical Reduction and Amination of Nitroarenes. Organic Letters, 2021, 23, 5349-5353.	4.6	40
88	Coupling Covalent Organic Frameworks and Carbon Nanotube Membranes to Design Easily Reusable Photocatalysts for Dye Degradation. Industrial & Engineering Chemistry Research, 2021, 60, 8687-8695.	3.7	14
89	Controllable Synthesis and Performance Modulation of 2D Covalent–Organic Frameworks. Small, 2021, 17, e2100918.	10.0	27
90	Recent Progress in External‣timulusâ€Responsive 2D Covalent Organic Frameworks. Advanced Materials, 2022, 34, e2101175.	21.0	148
91	Mechanochemical Construction 2D/2D Covalent Organic Nanosheets Heterojunctions Based on Substoichiometric Covalent Organic Frameworks. ACS Applied Materials & amp; Interfaces, 2021, 13, 42035-42043.	8.0	28

#	Article	IF	CITATIONS
92	Construction of Core–Shell MOF@COF Hybrids with Controllable Morphology Adjustment of COF Shell as a Novel Platform for Photocatalytic Cascade Reactions. Advanced Science, 2021, 8, e2101884.	11.2	79
93	Deuterated Covalent Organic Frameworks with Significantly Enhanced Luminescence. Angewandte Chemie, 2021, 133, 21420-21425.	2.0	0
94	Phosphazene-Based Covalent Organic Polymer Decorated with NiCo ₂ O ₄ Nanocuboids as a Trifunctional Electrocatalyst: A Unique Replacement for the Conventional Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 9341-9352.	5.1	15
95	Deuterated Covalent Organic Frameworks with Significantly Enhanced Luminescence. Angewandte Chemie - International Edition, 2021, 60, 21250-21255.	13.8	30
96	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	11.2	24
97	Advances in the <i>E → Z</i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	47.7	184
98	Highly Perfluorinated Covalent Triazine Frameworks Derived from a Lowâ€Temperature Ionothermal Approach Towards Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 25688-25694.	13.8	36
99	Structural engineering in pre-functionalized, imine-based covalent organic framework via anchoring active Ru(II)-complex for visible-light triggered and aerobic cross-coupling of α-amino esters with indoles. Applied Catalysis B: Environmental, 2021, 292, 120149.	20.2	30
100	Highly Perfluorinated Covalent Triazine Frameworks Derived fromÂa Lowâ€Temperature IonothermalÂApproach Towards EnhancedÂCO2 Electroreduction. Angewandte Chemie, 2021, 133, 25892.	2.0	2
101	A Solventâ€Polarityâ€Induced Interface Selfâ€Assembly Strategy towards Mesoporous Triazineâ€Based Carbon Materials. Angewandte Chemie - International Edition, 2021, 60, 24299-24305.	13.8	35
102	A Solvent Polarity Induced Interface Selfâ€assembly Strategy towards Mesoporous Triazineâ€based Carbon Materials. Angewandte Chemie, 0, , .	2.0	2
103	Structure-Property relationship in β-keto-enamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 419, 129984.	12.7	56
104	Synthesis and tailored properties of covalent organic framework thin films and heterostructures. Materials Today, 2021, 51, 427-448.	14.2	24
105	Simultaneous electrochemical detection of hydroquinone and catechol using MWCNT-COOH/CTF-1 composite modified electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126917.	4.7	24
106	Benzothiazole-Based Covalent Organic Frameworks with Different Symmetrical Combinations for Photocatalytic CO ₂ Conversion. Chemistry of Materials, 2021, 33, 8705-8711.	6.7	38
107	Covalent organic frameworks: Design, synthesis, and performance for photocatalytic applications. Nano Today, 2021, 40, 101247.	11.9	57
108	Porous graphene oxide functionalized by covalent organic framework for the application in adsorption and electrochemical: The effect of C-F bonds to structure. Microchemical Journal, 2021, 170, 106710.	4.5	10
109	Metal-free Fenton-like photocatalysts based on covalent organic frameworks. Applied Catalysis B: Environmental, 2021, 298, 120548.	20.2	36

#	ARTICLE	IF	Citations
110	dynamics simulations. Journal of Hazardous Materials, 2022, 421, 126796.	12.4	19
111	COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. Journal of Materials Chemistry A, 2021, 9, 24148-24174.	10.3	37
112	Presenting porous–organic–polymers as next-generation invigorating materials for nanoreactors. Chemical Communications, 2021, 57, 8550-8567.	4.1	37
113	Rational design of bifunctional conjugated microporous polymers. Nanoscale Advances, 2021, 3, 4891-4906.	4.6	23
114	Macroscopic covalent organic framework architectures for water remediation. Environmental Science: Water Research and Technology, 2021, 7, 1895-1927.	2.4	18
115	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	19.1	129
116	Supramolecular Engineering and Self-Assembly Strategies in Photoredox Catalysis. ACS Catalysis, 2021, 11, 710-733.	11.2	40
117	Iminyl-Radical-Mediated C–C Cleavage/Amination and Alkene Iminoamination Enabled by Visible-Light-Induced Cerium Catalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 101-105.	6.7	20
118	Simultaneous sensitive detection and rapid adsorption of UO ₂ ²⁺ based on a post-modified sp ² carbon-conjugated covalent organic framework. Environmental Science: Nano, 2020, 7, 842-850.	4.3	47
119	A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chemistry, 2020, 22, 4295-4303.	9.0	49
120	Energy-Transfer-Mediated Photocatalysis by a Bioinspired Organic Perylenephotosensitizer HiBRCP. Journal of Organic Chemistry, 2021, 86, 15284-15297.	3.2	6
121	Recent Advances and Challenges in Photoreforming of Biomassâ€Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem, 2021, 14, 4903-4922.	6.8	35
122	Fabrication of electron–acceptor staggered AB Covalent triazine-based frameworks for enhanced visible-light-driven H2 evolution. Journal of Colloid and Interface Science, 2022, 608, 1449-1456.	9.4	10
123	Semi-Hydrogenation of Alkynes by a Tandem Photoredox System Free of Noble Metal. CCS Chemistry, 2022, 4, 2597-2603.	7.8	9
124	Twoâ€Dimensional Fluorinated Covalent Organic Frameworks with Tunable Hydrophobicity for Ultrafast Oil–Water Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
125	Twoâ€Dimensional Fluorinated Covalent Organic Frameworks with Tunable Hydrophobicity for Ultrafast Oil–Water Separation. Angewandte Chemie, 2022, 134, .	2.0	8
126	Facile fabrication of melamine sponge@covalent organic framework composite for enhanced degradation of tetracycline under visible light. Chemical Engineering Journal, 2022, 430, 132817.	12.7	46
127	Self-assembly hybridization of COFs and g-C3N4: Decipher the charge transfer channel for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2022, 608, 1051-1063.	9.4	32

#	Article	IF	CITATIONS
128	Graphitic Azaâ€Fused π onjugated Networks: Construction, Engineering, and Task‧pecific Applications. Advanced Materials, 2022, 34, e2107947.	21.0	17
129	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie, 2022, 134, e202113926.	2.0	5
130	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202113926.	13.8	54
131	Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment. , 2022, , 127-159.		0
132	Semi-enclosed Cu nanoparticles with porous nitrogen-doped carbon shells for efficient and tolerant nitrate electroreduction in neutral condition. Electrochimica Acta, 2022, 404, 139585.	5.2	10
133	Light-Induced Organic Transformations by Covalent Organic Frameworks as Reticular Platforms for Selective Photosynthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 15694-15721.	6.7	18
134	Olefin-linked covalent organic framework nanotubes based on triazine for selective oxidation of sulfides with O2 powered by blue light. Applied Catalysis B: Environmental, 2022, 305, 121027.	20.2	40
135	Organogel-assisted porous organic polymer embedding Cu NPs for selectivity control in the semi hydrogenation of alkynes. Nanoscale, 2022, 14, 1505-1519.	5.6	14
136	High Photocatalytic Oxygen Evolution via Strong Builtâ€In Electric Field Induced by High Crystallinity of Perylene Imide Supramolecule. Advanced Materials, 2022, 34, e2102354.	21.0	67
137	Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption. Rare Metals, 2022, 41, 1323-1331.	7.1	15
138	Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines. Chinese Chemical Letters, 2022, 33, 4559-4562.	9.0	24
139	Rational self-assembly of triazine- and urea-functionalized periodic mesoporous organosilicas for efficient CO2 adsorption and conversion into cyclic carbonates. Fuel, 2022, 315, 123230.	6.4	21
140	Porous organic polymers for light-driven organic transformations. Chemical Society Reviews, 2022, 51, 2444-2490.	38.1	145
141	Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen Generation. Chemistry of Materials, 2022, 34, 1956-1964.	6.7	35
142	Large-Area 2D Covalent Organic Framework Membranes with Tunable Single-Digit Nanopores for Predictable Mass Transport. ACS Nano, 2022, 16, 2407-2418.	14.6	65
143	Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS Applied Materials & amp; Interfaces, 2022, 14, 9408-9417.	8.0	28
144	Covalent Organic Frameworks (COFs) as Catalysts: An Overview. , 2022, , 267-283.		1
146	Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for oxidative coupling of amines in aqueous solution. Catalysis Science and Technology, 2022, 12, 2837-2845.	4.1	16

#	Article	IF	CITATIONS
147	Covalent Organic Frameworks for Photocatalytic Organic Transformation. Chemical Research in Chinese Universities, 2022, 38, 275-289.	2.6	20
148	Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33, 3549-3555.	9.0	39
149	Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry - A European Journal, 2022, , .	3.3	12
150	Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. Colloids and Interfaces, 2022, 6, 20.	2.1	3
151	Interfacial synthesis of large-area ultrathin polyimine nanofilms as molecular separation membrane. IScience, 2022, 25, 104027.	4.1	8
152	Diformylphloroglucinol derived imine based covalent organic frameworks (PHTA) as efficient organocatalyst for conversion of isocyanates to urea derivatives. Molecular Catalysis, 2022, 522, 112213.	2.0	2
153	Ultra-Fast Synthesis of Single-Crystalline Three-Dimensional Covalent Organic Frameworks and Their Applications in Polarized Optics. Chemistry of Materials, 2022, 34, 2886-2895.	6.7	12
154	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
155	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie, 2022, 134, .	2.0	2
156	A cobalt covalent organic framework: a dual-functional atomic-level catalyst for visible-light-driven C–H annulation of amides with alkynes. Journal of Materials Chemistry A, 2022, 10, 11514-11523.	10.3	17
157	Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. Science of the Total Environment, 2022, 835, 155423.	8.0	11
158	Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2022, 144, 7822-7833.	13.7	102
159	Recent advances in the design, synthesis and catalytic applications of triazine-based covalent organic polymers. Materials Chemistry Frontiers, 2022, 6, 1574-1605.	5.9	19
160	Enhanced Photo-Reduction of Chromium(Vi) from Aqueous Solution by Nanosheet Hybrids of Covalent Organic Framework and Graphene-Phase Carbon Nitride. SSRN Electronic Journal, 0, , .	0.4	0
161	Insights into the Crucial Role of Electron and Spin Structures in Heteroatom-Doped Covalent Triazine Frameworks for Removing Organic Micropollutants. Environmental Science & Technology, 2022, 56, 6699-6709.	10.0	43
162	2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108.	3.9	17
163	Separation of anilines by a covalent triazine-triphenyl polymer as a stationary phase for their normal-phase and reverse-phase determination by high-performance liquid chromatography (HPLC). Analytical Letters, 0, , 1-12.	1.8	0
164	One-Step mechanochemical preparation of magnetic covalent organic framework for the degradation of organic pollutants by heterogeneous and homogeneous Fenton-like synergistic reaction. Separation and Purification Technology, 2022, 294, 121145.	7.9	8

#	Article	IF	CITATIONS
165	Enhanced photo-reduction of chromium(VI) from aqueous solution by nanosheet hybrids of covalent organic framework and graphene-phase carbon nitride. Separation and Purification Technology, 2022, 294, 121204.	7.9	13
166	Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification of a sulfur mustard simulant. Journal of Materials Chemistry A, 2022, 10, 13325-13332.	10.3	18
167	Amorphous lanthanide complexes for organic luminescent materials. Coordination Chemistry Reviews, 2022, 467, 214607.	18.8	10
168	Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(<scp>vi</scp>) in water. Dalton Transactions, 2022, 51, 10351-10356.	3.3	3
169	Integrating benzofuran and heteroradialene into donor-acceptor covalent organic frameworks for photocatalytic construction of multi-substituted olefins. Applied Catalysis B: Environmental, 2022, 316, 121630.	20.2	20
170	Selective Detection of Nucleotides in Infant Formula Using an N-Rich Covalent Triazine Porous Polymer. Nanomaterials, 2022, 12, 2213.	4.1	3
171	Covalent organic frameworks: Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem Catalysis, 2022, 2, 2157-2228.	6.1	39
172	Enhanced visible-light harvesting of triazine-based covalent organic frameworks by incorporating Feâ¢-tannic acid complexes for high-efficiency photocatalysis. Microporous and Mesoporous Materials, 2022, 341, 112107.	4.4	7
173	Regulating Excitonic Effects in Covalent Organic Frameworks to Promote Free Charge Carrier Generation. ACS Catalysis, 2022, 12, 9494-9502.	11.2	64
174	Catalysts and mechanisms for the selective heterogeneous hydrogenation of carbon-carbon triple bonds. Cell Reports Physical Science, 2022, 3, 101017.	5.6	10
175	Synthesis of N, O-rich active site porous polymers and their efficient recovery of Gd(III) from solution. Journal of Rare Earths, 2023, 41, 1419-1428.	4.8	1
176	The Structure-Property Relationship of Covalent Organic Frameworks Containing Different Electron Acceptors on the Photocatalytic Reduction of U(Vi). SSRN Electronic Journal, 0, , .	0.4	0
177	Vis-to-NIR electrochromism and bright-to-dark electrofluorochromism in a triazine and thiophene-based three-dimensional covalent polymer. Molecular Systems Design and Engineering, 2022, 7, 1658-1669.	3.4	14
178	Donor–acceptor covalent organic framework promotes visible light-induced oxidative coupling of amines to imines in air. Catalysis Science and Technology, 2022, 12, 6865-6874.	4.1	5
179	A covalent organic framework-catalyzed visible-light-induced three-component cascade synthesis of trifluoroalkyl and trifluoroalkenyl quinoxalin-2(1 <i>H</i>)-one derivatives. New Journal of Chemistry, 2022, 46, 20412-20418.	2.8	13
180	A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. New Journal of Chemistry, 2022, 46, 17153-17160.	2.8	4
181	Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO2 to Epoxides. Molecules, 2022, 27, 6204.	3.8	6
182	Engineering Covalent Organic Frameworks as Heterogeneous Photocatalysts for Organic Transformations. Angewandte Chemie - International Edition, 2022, 61, .	13.8	55

ARTICLE IF CITATIONS Engineering Covalent Organic Frameworks as Heterogeneous Photocatalysts for Organic 183 2.0 2 Transformations. Angewandte Chemie, 2022, 134, . The Photoactive Hydrazone-Linked Covalent Organic Frameworks for Photocyclization Approach to 184 2.6 Phenanthridine Derivatives. Catalysis Letters, 0, , . 185 Photoredox Catalysis by Covalent Organic Frameworks., 0,,. 1 Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular 186 structure to advanced applications. EnergyChem, 2022, 4, 100094. Photoactive Covalent Organic Frameworks for Catalyzing Organic Reactions. ChemPlusChem, 2022, 187 2.8 8 87,. Harnessing Ketoâ€Enol Tautomerism to Modulate <i>β</i>â€Ketoenamineâ€based Covalent Organic Frameworks for Visibleâ€Lightâ€Driven CO₂ Reduction. ChemCatChem, 2022, 14, . 188 3.7 Synthesis of melamine-based crystalline porous polymers and its silver-doped composites with one-pot 189 approach for catalytic reduction of 4-nitrophenol. Microporous and Mesoporous Materials, 2022, 4.4 4 346, 112297. Industry-compatible covalent organic frameworks for green chemical engineering. Science China 8.2 10 Chemistry, 2022, 65, 2144-2162. Recent advances in metal/covalent organic framework-based materials for photoelectrochemical 191 11.4 40 sensing applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116793. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and 18.8 performance. Coordination Chemistry Reviews, 2023, 475, 214889. Metal-Free Covalent Organic Framework for Facile Production of Solar Fuel via CO₂ 193 3.7 5 Reduction. Industrial & amp; Engineering Chemistry Research, 2022, 61, 17044-17056. Tuning of Microenvironment in Covalent Organic Framework <i>via</i> Fluorination Strategy 194 3.3 promotes Selective CO₂ Capture. Chemistry - an Asian Journal, 2023, 18, . Covalent organic framework assisted interlocked graphene oxide based thin-film composite membrane 195 for effective water remediation. Environmental Science: Water Research and Technology, 2022, 9, 2.4 4 249-264. Benzotrithiopheneâ€based Covalent Organic Framework Photocatalysts with Controlled Conjugation of Building Blocks for Charge Stabilization. Angewandte Chemie, 2023, 135, . Isomeric Oligo(Phenylenevinylene)â€Based Covalent Organic Frameworks with Different Orientation of 197 2.0 2 Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie, 2023, 135, . Benzotrithiopheneâ€based Covalent Organic Framework Photocatalysts with Controlled Conjugation 28 of Building Blocks for Charge Stabilization. Angewandte Chemie - International Edition, 2023, 62, . Isomeric Oligo(Phenylenevinylene)â€Based Covalent Organic Frameworks with Different Orientation of 199 Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie - International Edition, 2023, 13.8 28 62,. 200 Photocatalysis of Covalent Organic Frameworks., 0, , .

#	Δρτιςις	IE	CITATIONS
11	Immobilization of LI(VI) onto covalent organic frameworks with the different periodic structure by	11	CHAHONS
201	photocatalytic reduction. Applied Catalysis B: Environmental, 2023, 326, 122398.	20.2	28
202	Sustainability of Visible Light-Driven Organic Transformations - A Review. Current Organic Chemistry, 2022, 27, .	1.6	0
203	Role of Intralayer Hydrogen Bonding in the Fast Crystallization of the Hydrazone-Linked Nanoporous Covalent Organic Framework for Catalytic Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2023, 6, 1714-1723.	5.0	5
204	Design, synthesis, and application of covalent organic frameworks as catalysts. New Journal of Chemistry, 2023, 47, 6765-6788.	2.8	4
205	Covalent organic frameworks for photochemical organic synthesis. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100798.	5.9	0
206	SnS2-covalent organic framework Z-scheme van der Waals heterojunction for enhanced photocatalytic reduction of uranium (VI) in rare earth tailings wastewater. Chemical Engineering Journal, 2023, 460, 141756.	12.7	18
207	Porous Polymer Materials for CO2 Capture and Electrocatalytic Reduction. Materials, 2023, 16, 1630.	2.9	6
208	Visible-light photoredox catalysis with organic polymers. Chemical Physics Reviews, 2023, 4, .	5.7	3
209	Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Research, 2023, 16, 6753-6770.	10.4	18
210	A Tailored COF for Visible-Light Photosynthesis of 2,3-Dihydrobenzofurans. Journal of the American Chemical Society, 2023, 145, 5074-5082.	13.7	30
211	Novel Environmentally Friendly Covalent Organic Framework/Polylactic Acid Composite Material with High Chemical Stability for Sand-Control Material. Polymers, 2023, 15, 1659.	4.5	1
212	Review and Perspectives of β-Keto-enamine-Based Covalent Organic Framework for Photocatalytic Hydrogen Evolution. Energy & Fuels, 2023, 37, 6323-6347.	5.1	14
213	Metal-Free Highly Stable and Crystalline Covalent Organic Nanosheet for Visible-Light-Driven Selective Solar Fuel Production in Aqueous Medium. ACS Catalysis, 2023, 13, 5926-5937.	11.2	13
214	Interpenetrating 3D Covalent Organic Framework for Selective Stilbene Photoisomerization and Photocyclization. Journal of the American Chemical Society, 2023, 145, 8860-8870.	13.7	15
215	Aggregation-Induced Emission of a Two-Dimensional Covalent Organic Framework for Molecular Recognition in Quantitative Metrics. ACS Applied Polymer Materials, 2023, 5, 3762-3767.	4.4	3
216	Construction of a Novel TiO2â€Covalentâ€Organic―Framework Heterojunction for Highly Selective Photoâ€oxidation Coupling of Amines under Visible Light Irradiation. ChemCatChem, 0, , .	3.7	0
217	Wellâ€Designed Highly Conjugated Covalent Organic Frameworks as Light Responsive Oxidase Mimic for Effective Detection of Uric Acid. Small Structures, 2023, 4, .	12.0	6
218	Covalent Organic Framework: An Emerging Catalyst for Renewable Ammonia Production. ChemCatChem, 2023, 15, .	3.7	4

ARTICLE IF CITATIONS Evaluation of Covalent Organic Frameworks for the low-cost, rapid detection of Shiga 219 5.4 1 Toxin-producing Escherichia coli in ready-to-eat salads. Analytica Chimica Acta, 2023, 1267, 341357. Pyridiniumâ€Functionalized Ionic Porous Organic Polymer for Rapid Scavenging of Oxoanions from Water. Macromolecular Rapid Communications, 2023, 44, . Nanoscale Saturn Systems Based on C_{60/70} Bucky Ball and a Newly Designed [4]Cyclopara-1,2-diphenylethylene Hoop: A Strategy for Fullerene Encapsulation Release and Selective 221 4.0 0 Recognition for C₇₀. Inorganic Chemistry, 2023, 62, 8993-9004. NIR light-activated upconversion POP nanofiber composite; an effective carrier for targeted photodynamic therapy and drug delivery. Journal of Photochemistry and Photobiology A: Chemistry, 3.9 2023, 443, 114907 Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in 223 3.8 1 Porphyrin-Based Covalent Organic Frameworks. Molecules, 2023, 28, 4680. Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and 224 14.2 synthesis with structure-activity relationship. Materials Today, 2023, 67, 229-255. Isobutene isomerization via metal-organic coordination polymer catalyst. Journal of Organometallic 225 1.8 0 Chemistry, 2023, 997, 122786. Constructing a 3D Covalent Organic Framework from 2D hcb Nets through Inclined Interpenetration. 13.7 Journal of the American Chemical Society, 2023, 145, 13537-13541. Peroxymonosulfateâ€Assisted Phenol Degradation via a Magnetic Covalentâ€Triazineâ€Frameworkâ€Based 227 3.7 1 Photocatalyst. ChemCatChem, 2023, 15, . The fragmented 3D-covalent organic framework in cellulose acetate membrane for efficient phenol 12.7 removal. Chemical Engineering Journal, 2023, 466, 143234. Organic Covalent Interactionâ€based Frameworks as Emerging Catalysts for Environment and Energy 229 3.3 5 Applications: Current Scenario and Opportunities. Chemistry - an Asian Journal, 2023, 18, . Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization. ACS Applied Materials & amp; Interfaces, 2023, 15, 8.0 35092-35106. Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and 231 12.8 33 sunlight. Nature Communications, 2023, 14, . A π-conjugated covalent organic framework enables interlocked nickel/photoredox catalysis for 7.4 light-harvesting cross-coupling reactions. Chemical Science, 2023, 14, 8624-8634. Electronâ€deficient covalent organic frameworks anchored on melamine sponges for visibleâ€lightâ€driven 233 7 3.6 <scp>H₂O₂</scp> evolution. AICHE Journal, 2023, 69, . Boosted capture ability of Rhodamine B by a core-shell composite equipped with spherical porous 234 carbon and copper-based metal-organic framework. Journal of Solid State Chemistry, 2023, 327, 124267. Layered 3D Covalent Organic Framework Films Based on Carbon–Carbon Bonds. Journal of the 235 13.7 2 American Chemical Society, 2023, 145, 18668-18675. Proximity-Enabled Photochemical Câ€"H Functionalization using a Covalent Organic Framework-Confined Fe₂^{IV}â€"μâ€"ŏxo Species in Water. Journal of the American Chemical Society, 2023, 145, 18855-18864.

#	Article	IF	CITATIONS
237	Ru(N^N) ₃ -docked cationic covalent organic frameworks for enhanced sulfide and amine photooxidation. Dalton Transactions, 2023, 52, 14100-14109.	3.3	0
238	Recent Progress of Covalent Organic Frameworksâ€Based Materials in Photocatalytic Applications: A Review. Small, 2023, 19, .	10.0	11
239	Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. Chemosphere, 2023, 342, 140145.	8.2	2
240	Selective Detection of Vitamins A and C based on Covalent Organic Framework Modified Electrodes ^{â~} . Acta Chimica Sinica, 2023, 81, 920.	1.4	1
241	CO ₂ promoted photoredox/Ni-catalyzed semi-reduction of alkynes with H ₂ O. Green Chemistry, 2023, 25, 7978-7982.	9.0	0
242	Covalent Immobilization of Quaternary Ammonium Salts on Covalent Organic Framework: Sustainable Intensification Strategy for the Synthesis of Cyclic Carbonates from CO ₂ . ACS Sustainable Chemistry and Engineering, 2023, 11, 14422-14434.	6.7	0
243	Cobaloximeâ€Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angewandte Chemie, 2023, 135, .	2.0	0
244	Cobaloximeâ€Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
245	Microenvironment effect of covalent organic frameworks on chemical catalysis. EnergyChem, 2023, 5, 100107.	19.1	1
246	Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004.	38.1	8
247	Synthesizing Interpenetrated Triazineâ€based Covalent Organic Frameworks from CO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
248	Selective photosynthesis of Zâ€olefins through crystalline metal–organic cageâ€initiated expeditious cascade reactions. , 0, , .		0
249	Synthesizing Interpenetrated Triazineâ€based Covalent Organic Frameworks from CO ₂ . Angewandte Chemie, 2023, 135, .	2.0	0
251	N-enriched covalent organic polymer derived nanoscale zero-valent iron for effective oxidative degradation of tetracycline. Journal of Environmental Chemical Engineering, 2023, 11, 111388.	6.7	0
252	Excited-State Dynamics Simulations of a Light-Driven Molecular Motor in Solution. Journal of Physical Chemistry A, 2023, 127, 9520-9529.	2.5	3
253	Engineering Photocatalytic Porous Organic Materials for Directing Redox versus Energy Transfer Processes. Solar Rrl, 0, , .	5.8	0
254	Twoâ€Dimensional βâ€Ketoenamine‣inked Covalent Organic Frameworks for Visible Light Photocatalysis. ChemCatChem, 2023, 15, .	3.7	1
255	Improved resistive switching performance through donor–acceptor structure construction in memristors based on covalent organic framework films. Journal of Materials Chemistry C, 2023, 11, 16672-16678.	5.5	0

#	Article	IF	CITATIONS
256	C2-phenyl-substituted benzimidazolium-based covalent organic framework as efficient catalyst for CO2 conversion without solvents, metals, and cocatalysts. Science China Chemistry, 2024, 67, 551-557.	8.2	0
257	Well-constructed a water stable Cu-BTC@TpPa-1 binary composite with excellent capture ability toward malachite green. Environmental Science and Pollution Research, 2023, 30, 124306-124315.	5.3	0
258	Investigating the Role of Amide to Thioamide Substitution of a Covalent Organic Polymer for the Selective Chemodetection of H ₂ S at Room Temperature. ACS Applied Polymer Materials, 2023, 5, 10065-10072.	4.4	1
259	Development of Porous Organic Polymers as Metalâ€Free Photocatalysts for the Aromatization of <i>N</i> â€Heterocycles. ChemCatChem, 0, , .	3.7	0
260	Donor–Acceptor β-Ketoenamine-Based Photocatalysts with a Tuning Band Structure for Selective Oxidation of a Biomass Derivative. ACS Sustainable Chemistry and Engineering, 2024, 12, 1951-1959.	6.7	0
261	Photocatalytic Degradation of Malachite Green by Titanium Dioxide/Covalent Organic Framework Composite: Characterization, Performance and Mechanism. ChemistryOpen, 0, , .	1.9	0
262	Covalent-organic framework film: From synthesis and structure to energy, catalysis and sensor applications. Journal of Physics: Conference Series, 2024, 2671, 012007.	0.4	0
263	Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. Journal of Organic Chemistry, 2024, 89, 1657-1668.	3.2	0
264	Twoâ€dimensional βâ€ketoenamine linked azo covalent organic frameworks as heterogeneous catalysts for photoâ€induced <scp>RCMP</scp> . Journal of Polymer Science, 2024, 62, 1842-1852.	3.8	1
265	Unlocking Synthesis of Polyhedral Oligomeric Silsesquioxane-Based Three-Dimensional Polycubane Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 146, 3373-3382.	13.7	0
266	Enhancing Photosynthesis Efficiency of Hydrogen Peroxide by Modulating Side Chains to Facilitate Water Oxidation at Lowâ€Energy Barrier Sites. Advanced Materials, 2024, 36, .	21.0	0
267	Recent Advances and Applications of Modified-Semiconductor Photocatalyst in Pollutant Degradation. Advances in Material Research and Technology, 2024, , 171-219.	0.6	0
268	Red-Light-Based Effective Photocatalysis of a Photosensitive Covalent Organic Framework Triggered Singlet Oxygen. ACS Catalysis, 2024, 14, 2631-2641.	11.2	0
269	Research Progress on Covalent Organic Frameworks for Photocatalytic Applications. Material Sciences, 2024, 14, 142-151.	0.0	0
270	Rational fabrication of Z-scheme heterojunction ZnFe2O4-seed@TpTt-COF for the visible-light-driven photocatalytic degradation of bisphenol A in food waste leachate boosted by primitive humic acid. Chemical Engineering Journal, 2024, 487, 150684.	12.7	0