A review of experimental approaches to fracture tought

Materials and Design 173, 107762

DOI: 10.1016/j.matdes.2019.107762

Citation Report

#	Article	IF	Citations
1	Phase Evolution and Microstructure Analysis of CoCrFeNiMo High-Entropy Alloy for Electro-Spark-Deposited Coatings for Geothermal Environment. Coatings, 2019, 9, 406.	1.2	24
2	Effect of Strengthening Methods on the Defect Evolution under Irradiations Investigated with Rate Theory Simulations. Metals, 2019, 9, 735.	1.0	5
3	Compositionally Graded Hydrophobic UV-Cured Coatings for the Prevention of Glass Stress Corrosion. Coatings, 2019, 9, 424.	1.2	4
4	Strain energy density approach for brittle fracture from nano to macroscale and breakdown of continuum theory. Theoretical and Applied Fracture Mechanics, 2019, 103, 102300.	2.1	17
5	Evaluation of Fracture Toughness Measurements Using Chevron-Notched Silicon and Tungsten Microcantilevers. Jom, 2019, 71, 3378-3389.	0.9	13
6	Effects of Second Phases on Microstructure, Microhardness, and Corrosion Behavior of Mg-3Sn-(1Ca) Alloys. Materials, 2019, 12, 2515.	1.3	10
7	Investigation of Micro-Hardness, Wear Resistance, and Defects of 316L Stainless Steel and TiC Composite Coating Fabricated by Laser Engineered Net Shaping. Coatings, 2019, 9, 498.	1.2	5
8	Micro-mechanical properties of single high aspect ratio crystals. CrystEngComm, 2019, 21, 5738-5748.	1.3	1
9	Fracture behavior and deformation mechanisms in nanolaminated crystalline/amorphous micro-cantilevers. Acta Materialia, 2019, 180, 73-83.	3.8	34
10	Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films. Journal of Materials Research, 2019, 34, 3483-3494.	1.2	5
11	Strain rate dependence of work of fracture tests on bone and similar tissues: Reflections on testing methods and mineral content effects. Bone, 2019, 128, 115038.	1.4	7
12	Fracture energy based approach for cemented carbides grain debonding. International Journal of Mechanical Sciences, 2019, 161-162, 105038.	3.6	1
14	Au–Sn solders applied in transient liquid phase bonding: Microstructure and mechanical behavior. Materialia, 2019, 8, 100503.	1.3	7
15	A New Explanation for the Effect of Dynamic Strain Aging on Negative Strain Rate Sensitivity in Fe–30Mn–9Al–1C Steel. Materials, 2019, 12, 3426.	1.3	8
16	Investigation on Fatigue Threshold Testing Methods in a Near Lamellar TiAl Alloy. Materials, 2019, 12, 3487.	1.3	0
17	Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting. Materials and Design, 2020, 186, 108311.	3.3	38
18	Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen. Materials and Design, 2020, 186, 108300.	3.3	34
19	Evolution of the mechanical properties of Ti-based intermetallic thin films doped with different metals to be used as biomedical devices. Applied Surface Science, 2020, 505, 144617.	3.1	22

#	ARTICLE	IF	CITATIONS
20	A Materials Perspective on the Design of Damage-Resilient Bone Implants Through Additive/Advanced Manufacturing. Jom, 2020, 72, 1195-1210.	0.9	13
21	Influence of interfacial structure on the fracture behavior of friction stir spot welded dissimilar joints. Materials Science & Science & Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138743.	2.6	23
22	Quantitative multi-scale characterization of single basalt fibres: Insights into strength loss mechanisms after thermal conditioning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 139963.	2.6	12
23	Electromechanical Assessment and Induced Temperature Measurement of Carbon Fiber Tows under Tensile Condition. Materials, 2020, 13, 4234.	1.3	2
24	Phase transformation - induced strengthening of an additively manufactured multi- principal element CrMnFeCoNi alloy. Materials and Design, 2020, 195, 108999.	3.3	13
25	Application of nanoindentation technology in rocks: a review. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, $1.$	1.3	48
26	The Effects of Micro-Segregation on Isothermal Transformed Nano Bainitic Microstructure and Mechanical Properties in Laser Cladded Coatings. Materials, 2020, 13, 3017.	1.3	2
27	Evolution of the Structural and Magnetic Properties of Bulk Fe61Co10B20W1Y8â^'XPtx Alloys through the Partial Substitution of Pt for Y. Materials, 2020, 13, 4962.	1.3	1
28	Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs.ÂDFT. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139967.	2.6	27
29	Cu Precipitation Behaviors and Microscopic Mechanical Characteristics of a Novel Ultra-Low Carbon Steel. Materials, 2020, 13, 3571.	1.3	3
30	The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys. Materials, 2020, 13, 3416.	1.3	3
31	Study on Damage of 4H-SiC Single Crystal through Indentation and Scratch Testing in Micro–Nano Scales. Applied Sciences (Switzerland), 2020, 10, 5944.	1.3	13
32	Mechanistic study of superlattice-enabled high toughness and hardness in MoN/TaN coatings. Communications Materials, 2020, 1 , .	2.9	27
33	Effect of the Adaptive Response on the Wear Behavior of PVD and CVD Coated Cutting Tools during Machining with Built Up Edge Formation. Nanomaterials, 2020, 10, 2489.	1.9	3
34	Biomimetic Self-Healing Cementitious Construction Materials for Smart Buildings. Biomimetics, 2020, 5, 47.	1.5	32
35	Study of Natural and Artificial Aging on AlSi9Cu3 Alloy at Different Ratios of Returnable Material in the Batch. Materials, 2020, 13, 4538.	1.3	3
36	High temperature strengthening via nanoscale precipitation in wrought CoCrNi-based medium-entropy alloys. Materials Science & Drogerties, Microstructure and Processing, 2020, 798, 140213.	2.6	45
37	Mode II Interfacial Fracture Toughness of Multi-Walled Carbon Nanotubes Reinforced Nanocomposite Film on Aluminum Substrate. Nanomaterials, 2020, 10, 904.	1.9	4

#	Article	IF	Citations
38	Micro scale fracture strength of grains and grain boundaries in polycrystalline La-doped \hat{l}^2 -Si3N4 ceramics. Journal of the European Ceramic Society, 2020, 40, 4783-4791.	2.8	9
39	Novel micro-scale specimens for mode-dependent fracture testing of brittle materials: A case study on GaAs single crystals. Materials and Design, 2020, 193, 108765.	3.3	18
40	Fracture properties of thin film TiN at elevated temperatures. Materials and Design, 2020, 194, 108885.	3.3	36
41	Temperature Dependence of the Fracture Toughness JC of Random Fibrous Material. Applied Sciences (Switzerland), 2020, 10, 941.	1.3	0
42	Diffusion Bonding of 1420 Al–Li Alloy Assisted by Pure Aluminum Foil as Interlayer. Materials, 2020, 13, 1103.	1.3	9
43	Experimental conditions affecting the measured fracture toughness at the microscale: Notch geometry and crack extension measurement. Materials and Design, 2020, 191, 108582.	3.3	30
44	Deposition of Boron-Doped Thin CVD Diamond Films from Methane-Triethyl Borate-Hydrogen Gas Mixture. Processes, 2020, 8, 666.	1.3	12
45	A review on mixed mode fracture of metals. Engineering Fracture Mechanics, 2020, 235, 107126.	2.0	43
46	Influences of Cooling Conditions on the Liquation Cracking in Laser Metal Deposition of a Directionally Solidified Superalloy. Metals, 2020, 10, 466.	1.0	2
47	Simple fracture model for an electrode and interfacial crack in a dielectric elastomer under tensile loading. Theoretical and Applied Fracture Mechanics, 2020, 108, 102626.	2.1	11
48	New ultra-high temperature nanoindentation system for operating at up to 1100°C. Materials and Design, 2020, 192, 108727.	3.3	29
49	Alloy design and properties optimization of multi-component alloy based on solidification characteristics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140576.	2.6	15
50	Fracture of Cr2O3 single crystals on the microscale. Materialia, 2021, 15, 100961.	1.3	1
51	Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modelling. Materials and Design, 2021, 198, 109365.	3.3	10
52	Effect of stable stacking fault energy and crystal orientation on fracture behaviour of thin metallic single crystals. Philosophical Magazine, 2021, 101, 929-963.	0.7	1
53	Nanoindentation and Mechanical Properties of Materials at Submicro- and Nanoscale Levels: Recent Results and Achievements. Physics of the Solid State, 2021, 63, 1-41.	0.2	26
54	Applicability of focused Ion beam (FIB) milling with gallium, neon, and xenon to the fracture toughness characterization of gold thin films. Journal of Materials Research, 2021, 36, 2505-2514.	1.2	13
55	In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloy. Journal of Materials Research, 2021, 36, 2465-2478.	1.2	13

#	Article	IF	CITATIONS
56	The fracture toughness of martensite islands in dual-phase DP800 steel. Journal of Materials Research, 2021, 36, 2495-2504.	1.2	8
57	High temperature fracture toughness of single-layer CrAlN and CrAlSiN hard coatings. Surface and Coatings Technology, 2021, 409, 126909.	2.2	12
58	Energy Release Rate Formulations for Non-conventional Fracture Test Geometries. Jom, 2021, 73, 1597-1606.	0.9	5
59	The MoN–TaN system: Role of vacancies in phase stability and mechanical properties. Materials and Design, 2021, 202, 109568.	3.3	8
60	Enhanced fracture toughness in ceramic superlattice thin films: On the role of coherency stresses and misfit dislocations. Materials and Design, 2021, 202, 109517.	3.3	13
61	Crack severity and size dependent effects on the effectiveness and operability of micro/nanogyroscopes. International Journal of Solids and Structures, 2021, 216, 94-107.	1.3	4
62	Plastic deformation mechanism of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys. Materials Science & Description of CoCrxNi medium entropy alloys & Description of CoCrxNi medium entropy alloys & Description of CoCrx	2.6	12
63	Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study. Acta Biomaterialia, 2021, 126, 339-349.	4.1	10
64	Polymer-Infiltrated Nanoparticle Films Using Capillarity-Based Techniques: Toward Multifunctional Coatings and Membranes. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 411-437.	3.3	17
65	Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon. Materials and Design, 2021, 205, 109711.	3.3	24
66	High throughput optimization of hard and tough TiN/Ni nanocomposite coatings by reactive magnetron sputter deposition. Surface and Coatings Technology, 2021, 418, 127226.	2.2	10
67	A Review of the Mechanical and Thermal Properties of Microscale and Nanoscale Materials in Terms of Straintronics. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 709-722.	0.1	1
68	Cyclic Deformation of Microcantilevers Using In-Situ Micromanipulation. Experimental Mechanics, 2021, 61, 1431-1442.	1.1	4
69	Stress intensity factors for micro- and macroscale bimaterial cantilevers and bend specimens. Thin Solid Films, 2021, 732, 138750.	0.8	5
70	Deformation Behavior and Microstructural Evolution of T-Shape Upsetting Test in Ultrafine-Grained Pure Copper. Materials, 2021, 14, 4869.	1.3	0
71	Measuring the fracture toughness of single WC grains of cemented carbides by means of microcantilever bending and micropillar splitting. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105529.	1.7	2
72	Dealloying-Derived Nanoporous Cu6Sn5 Alloy as Stable Anode Materials for Lithium-Ion Batteries. Materials, 2021, 14, 4348.	1.3	5
73	The oxidation behavior of iron-chromium alloys: The defining role of substrate chemistry on kinetics, microstructure and mechanical properties of the oxide scale. Journal of Alloys and Compounds, 2021, 871, 159583.	2.8	18

#	ARTICLE	IF	Citations
74	Micromechanical tensile test investigation to identify elastic and toughness properties of thin nitride compound layers. Surface and Coatings Technology, 2021, 421, 127303.	2.2	4
75	Constitutive and fracture behavior of ultra-strong supercrystalline nanocomposites. Applied Physics Reviews, 2021, 8, 031414.	5 . 5	7
76	Rare Earth Elements Enhanced the Oxidation Resistance of Mo-Si-Based Alloys for High Temperature Application: A Review. Coatings, 2021, 11, 1144.	1.2	21
77	Microstructure and mechanical properties of arc evaporated Ti(Al,Si)N coatings. Surface and Coatings Technology, 2021, 421, 127461.	2.2	15
78	Mechanical properties of \hat{l} ±-quartz using nanoindentation tests and molecular dynamics simulations. International Journal of Rock Mechanics and Minings Sciences, 2021, 147, 104878.	2.6	15
79	Instrumented indentation study of materials edge chipping. Ceramics International, 2021, 47, 29638-29645.	2.3	10
80	Toughening mechanisms in V-Si-N coatings. Materials and Design, 2021, 209, 109961.	3.3	10
81	Micro-cantilever testing of diamond - silicon carbide interfaces in silicon carbide bonded diamond materials produced by reactive silicon infiltration. Open Ceramics, 2021, 8, 100176.	1.0	1
82	Remarkable toughness of a nanostructured medium-entropy nitride compound. Nanoscale, 2021, 13, 15074-15084.	2.8	10
83	Microstructure, Texture and Mechanical Properties of Mg-6Sn Alloy Processed by Differential Speed Rolling. Materials, 2021, 14, 83.	1.3	7
84	Unique atomic structure of metals at the moment of fracture induced by laser shock. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142199.	2.6	1
85	Influence of secondary damage on flight cycles and inspection interval for an aircraft wing panel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	1
86	Fracture Toughness of the Stomatopod Dactyl Club is Enhanced by Plastic Dissipation: A Fracture Micromechanics Study. SSRN Electronic Journal, 0, , .	0.4	0
87	<i>In situ</i> fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloy. Journal of Materials Research, 0, , $1-14$.	1.2	1
88	In-situ SEM micromechanical experiments on Dual Damascene Copper test structures for investigation of interfacial properties of copper interconnects., 2021,,.		1
89	Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case. Nanomaterials, 2021, 11, 3116.	1.9	4
90	Interfacial adhesion strength of III-N heterostructures. Materials and Design, 2022, 213, 110319.	3.3	1
91	A graph-based workflow for extracting grain-scale toughness from meso-scale experiments. Materials and Design, 2022, 213, 110272.	3.3	3

#	Article	IF	CITATIONS
92	Investigations on fatigue properties of red sandstone under positive and negative pure bending loads. Construction and Building Materials, 2022, 321, 126379.	3.2	4
93	Resistance-curve envelopes for dental lithium disilicate glass-ceramics. Journal of the European Ceramic Society, 2022, 42, 2516-2522.	2.8	6
94	Thermodynamic stability and creation of large half-metallic gap in BaZrO3 via non-magnetic elements doping. Journal of Physics and Chemistry of Solids, 2022, 164, 110616.	1.9	6
95	Probing the Damage Recovery Mechanism in Irradiated Stainless Steels Using In-Situ Microcantilever Bending Test. Frontiers in Materials, 2022, 9, .	1.2	0
96	Mechanical properties of BaCe0.65Zr0.2Y0.15O3- – Ce0.85Gd0.15O2- dual-phase proton-conducting material with emphasis on micro-pillar splitting. Journal of the European Ceramic Society, 2022, 42, 3948-3956.	2.8	1
97	Interfacial adhesion assessment of SiN/GaAs film/substrate system using microcantilever bending technique. Journal Physics D: Applied Physics, 2022, 55, 245104.	1.3	1
98	Comparison of fracture properties of different amorphous carbon coatings using the scratch test and indentation failure method. Surface and Coatings Technology, 2022, 435, 128247.	2.2	11
99	Strategies for damage tolerance enhancement in metal/ceramic thin films: Lessons learned from Ti/TiN. Acta Materialia, 2022, 228, 117777.	3.8	22
100	Heavy-element-alloying for toughness enhancement of hard nitrides on the example Ti-W-N. Acta Materialia, 2022, 231, 117897.	3.8	8
101	Fracture toughness of radiation-damaged zircon studied by nanoindentation pillar-splitting. Applied Physics Letters, 2021, 119, .	1.5	3
102	Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation. Metals, 2022, 12, 762.	1.0	0
103	Non-conventional Small-Scale Mechanical Testing of Materials. Journal of the Indian Institute of Science, 2022, 102, 139-171.	0.9	3
104	Long-term structural stability and excellent mechanical properties of CoCrNi system medium entropy alloys. Journal of Alloys and Compounds, 2022, 914, 165206.	2.8	3
105	Small-Scale Mechanical Testing. Annual Review of Materials Research, 2022, 52, 473-523.	4.3	8
106	Size effects and failure regimes in notched micro-cantilever beam fracture. Acta Materialia, 2022, 234, 118041.	3.8	5
107	A Physical Mechanism-Based Model of CoCrFeMnNi High Entropy Alloy Considering Adiabatic Heat Effect for Hot Bulk Forming Processes. Metals, 2022, 12, 1011.	1.0	4
108	Effects of Nano TiC on the Microhardness and Friction Properties of Laser Powder Bed Fusing Printed M2 High Speed Steel. Coatings, 2022, 12, 825.	1.2	3
109	Texture features and strengthening mechanisms in welding nugget zone of SSFSWed thick-plate Al–Li alloy joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143459.	2,6	4

#	Article	IF	CITATIONS
110	100Âyears after Griffith: From brittle bulk fracture to failure in 2D materials. MRS Bulletin, 2022, 47, 792-799.	1.7	5
111	Fracture in small-scale structures and confined volumes. MRS Bulletin, 2022, 47, 832-838.	1.7	3
112	Strength of diamond - silicon carbide interfaces in silicon carbide bonded diamond materials containing graphitic interlayers. Open Ceramics, 2022, 11, 100296.	1.0	2
113	Correlation between strength and hardness for substructures of lath martensite in low- and medium-carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 144007.	2.6	9
114	Crack length estimations for small-scale fracture experiments via image processing techniques. Journal of Materials Research, 2022, 37, 2848-2861.	1.2	4
115	Toward damage-tolerant bulk metallic glasses: Fracture behavior and brittle–ductile transition. MRS Bulletin, 2022, 47, 816-823.	1.7	3
116	Fracture Toughness Characterization of Thin Films Based on Finite Element Assisted Nanoindentation Technique. , 2022, , .		0
117	Mechanical performance of doped W–Cu nanocomposites. Materials Science & Diperimental Properties, Microstructure and Processing, 2022, 857, 144102.	2.6	3
118	Tuning the mechanical properties of Mo-W alloyed Ni-based multilayered films upon post-annealing at 600°C via modulation of individual layer thickness. Vacuum, 2023, 207, 111641.	1.6	1
119	A review of selected small specimen test techniques for identifying deformation and failure properties of metallic materials. Journal of Materials Science, 2023, 58, 63-100.	1.7	4
120	Oxideâ€Based Solidâ€State Batteries: A Perspective on Composite Cathode Architecture. Advanced Energy Materials, 2023, 13, .	10.2	34
121	Microscale fracture toughness degradation of notched solder microcantilevers under varied accelerated aging process. Journal of Materials Research and Technology, 2023, 22, 1449-1461.	2.6	2
122	Initial damage analysis in bone cement-stem debonding procession of cemented hip arthropsty. Materials and Design, 2023, 225, 111486.	3.3	1
123	Comparison of shale fracture toughness obtained from scratch test and nanoindentation test. International Journal of Rock Mechanics and Minings Sciences, 2023, 162, 105282.	2.6	7
124	Room Temperature Viscous Flow of Amorphous Silica Induced by Electron Beam Irradiation. Advanced Science, 2023, 10, .	5.6	8
125	Thermodynamics evaluation of half-metallic ferromagnetism in N-doped XTiO3 (X = Ca, Sr, and Ba) systems: DFT calculations. Materials Today Communications, 2023, 34, 105321.	0.9	1
126	Brittle–ductile transition and toughening of silica glass via Ni nanoparticle incorporation at a small volume fraction. Journal of Alloys and Compounds, 2023, 940, 168874.	2.8	1
127	The effect of high strain rate impact in Yttria stabilized zirconia. Materials and Design, 2023, 229, 111908.	3.3	3

#	Article	IF	CITATIONS
128	Small-scale fracture mechanical investigations on grain boundary doped ultrafine-grained tungsten. Acta Materialia, 2023, 250, 118878.	3.8	4
129	Cr-containing diamond-like carbon coatings deposited on 316 stainless steel substrates: Characterization and interfacial fracture toughness measurements. Surface and Coatings Technology, 2023, 462, 129462.	2.2	1
130	Micromechanical Adhesion Experiments and Simulation on Cu-Damascene Processed Test Devices. IEEE Transactions on Device and Materials Reliability, 2023, 23, 80-88.	1.5	1
131	Mechanical Robustness of Patterned Structures and Failure Mechanisms. , 2023, , 157-189.		0
132	Dislocation toughening in singleâ€erystal KNbO ₃ . Journal of the American Ceramic Society, 2023, 106, 4371-4381.	1.9	3
133	Toughness Amplification via Controlled Nanostructure in Lightweight Nanoâ€Bouligand Materials. Small, 2023, 19, .	5.2	1
150	Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics. Nature Energy, 2023, 8, 1319-1327.	19.8	2