Deep Learning for Audio Signal Processing

IEEE Journal on Selected Topics in Signal Processing 13, 206-219 DOI: 10.1109/jstsp.2019.2908700

Citation Report

#	Article	IF	CITATIONS
1	Nanoinformatics, and the big challenges for the science of small things. Nanoscale, 2019, 11, 19190-19201.	2.8	59
2	STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for Al. IEEE Access, 2019, 7, 179464-179476.	2.6	191
3	Deep Convolutional Neural Network-Based Approaches for Face Recognition. Applied Sciences (Switzerland), 2019, 9, 4397.	1.3	87
4	Artificial Neural Networks for Impact Position Detection in Haptic Surfaces. , 2019, , .		3
5	Machine learning in acoustics: Theory and applications. Journal of the Acoustical Society of America, 2019, 146, 3590-3628.	0.5	306
6	Detection of avian influenza-infected chickens based on a chicken sound convolutional neural network. Computers and Electronics in Agriculture, 2020, 178, 105688.	3.7	33
7	Categorizing Malware via A Word2Vec-based Temporal Convolutional Network Scheme. Journal of Cloud Computing: Advances, Systems and Applications, 2020, 9, .	2.1	13
8	Review of the State of the Art of Deep Learning for Plant Diseases: A Broad Analysis and Discussion. Plants, 2020, 9, 1302.	1.6	97
9	Environment Sound Event Classification With a Two-Stream Convolutional Neural Network. IEEE Access, 2020, 8, 125714-125721.	2.6	31
10	Some Techniques on Digital Signal Processing in the Visual Programming Environment Max. , 2020, , .		1
11	Collaborative framework for automatic classification of respiratory sounds. IET Signal Processing, 2020, 14, 223-228.	0.9	14
12	Semi-Supervised Source Localization with Deep Generative Modeling. , 2020, , .		16
13	User Experience Sensor for Man–Machine Interaction Modeled as an Analogy to the Tower of Hanoi. Sensors, 2020, 20, 4074.	2.1	1
14	Audio Tagging by Cross Filtering Noisy Labels. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 2073-2083.	4.0	11
15	Al-edge based voice responsive smart headphone for user context-awarenes. , 2020, , .		0
16	A Comparative Study of Time and Frequency Domain Approaches to Deep Learning based Speech Enhancement. , 2020, , .		13
17	nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks. IEEE Access, 2020, 8, 161981-162003.	2.6	38
18	Dependable Computing - EDCC 2020 Workshops. Communications in Computer and Information Science, 2020, , .	0.4	1

#	Article	IF	Citations
19	A Study on Determining Time-Of-Flight Difference of Overlapping Ultrasonic Signal: Wave-Transform Network. Sensors, 2020, 20, 5140.	2.1	6
20	Deep Learning Assisted Time-Frequency Processing for Speech Enhancement on Drones. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 871-881.	3.4	18
21	Robust Source Counting and DOA Estimation Using Spatial Pseudo-Spectrum and Convolutional Neural Network. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 2626-2637.	4.0	39
22	Analyzing the adoption and diffusion of voice-enabled smart-home systems: empirical evidence from Thailand. Universal Access in the Information Society, 2021, 20, 797-815.	2.1	21
23	A Real-Time Modulation Recognition System Based on Software-Defined Radio and Multi-Skip Residual Neural Network. IEEE Access, 2020, 8, 221235-221245.	2.6	8
24	Temporal Auditory Coding Features for Causal Speech Enhancement. Electronics (Switzerland), 2020, 9, 1698.	1.8	3
25	How Initialization is Related to Deep Neural Networks Generalization Capability: Experimental Study. , 2020, , .		2
26	An Optimized Brain-Based Algorithm for Classifying Parkinson's Disease. Applied Sciences (Switzerland), 2020, 10, 1827.	1.3	32
27	Detection of Speech Impairments Using Cepstrum, Auditory Spectrogram and Wavelet Time Scattering Domain Features. IEEE Access, 2020, 8, 96162-96172.	2.6	37
28	A \$t\$-Distribution Based Operator for Enhancing Out of Distribution Robustness of Neural Network Classifiers. IEEE Signal Processing Letters, 2020, 27, 1070-1074.	2.1	2
29	A Comprehensive Review of Polyphonic Sound Event Detection. IEEE Access, 2020, 8, 103339-103373.	2.6	31
30	Classification of heart sound signals using a novel deep WaveNet model. Computer Methods and Programs in Biomedicine, 2020, 196, 105604.	2.6	96
31	How to Teach DNNs to Pay Attention to the Visual Modality in Speech Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 1052-1064.	4.0	19
32	Unsupervised Deep Spectrum Sensing: A Variational Auto-Encoder Based Approach. IEEE Transactions on Vehicular Technology, 2020, 69, 5307-5319.	3.9	39
33	Deep Learning of Attitude in Childrenâ \in $^{\mathrm{Ms}}$ s Emotional Speech. , 2020, , .		1
34	LeanConvNets: Low-Cost Yet Effective Convolutional Neural Networks. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 894-904.	7.3	7
35	Acoustic signal analysis of instrument–tissue interaction for minimally invasive interventions. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 771-779.	1.7	11
36	Development of an Non-Speech Audio Event Detection System. , 2020, , .		4

	CHATON	REPORT	
#	Article	IF	Citations
37	Automatic acoustic identification of respiratory diseases. Evolving Systems, 2021, 12, 69-77.	2.4	8
38	Multi-channel spectrograms for speech processing applications using deep learning methods. Pattern Analysis and Applications, 2021, 24, 423-431.	3.1	46
39	Deep learning in systems medicine. Briefings in Bioinformatics, 2021, 22, 1543-1559.	3.2	22
40	STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning. Lecture Notes in Computer Science, 2021, , 55-66.	1.0	0
41	Speech Processing for Language Learning: A Practical Approach to Computer-Assisted Pronunciation Teaching. Electronics (Switzerland), 2021, 10, 235.	1.8	22
42	Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 2315-2328.	5.6	59
44	Deep Generative Models for Musical Audio Synthesis. , 2021, , 639-678.		5
45	Automated Cockpit Voice Recorder Sound Classification Using MFCC Features and Deep Convolutional Neural Network. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 125-141.	0.5	0
46	One-shot learning for acoustic identification of bird species in non-stationary environments. , 2021, , .		5
47	CTIS-Net: A Neural Network Architecture for Compressed Learning Based on Computed Tomography Imaging Spectrometers. IEEE Transactions on Computational Imaging, 2021, 7, 572-583.	2.6	10
48	Improving deep speech denoising by Noisy2Noisy signal mapping. Applied Acoustics, 2021, 172, 107631.	1.7	28
49	Smart Cellulose Composites: Advanced Applications and Properties Prediction Using Machine Learning. , 2021, , 527-538.		2
50	An Analytical Evaluation of a Deep Learning Model to Detect Network Intrusion. Lecture Notes in Computer Science, 2021, , 129-140.	1.0	2
51	Deep Learning in Image Signal Processing for Minimal Method by Using Kernel DBN. Lecture Notes in Networks and Systems, 2021, , 41-50.	0.5	0
52	Semi-Supervised Source Localization in Reverberant Environments With Deep Generative Modeling. IEEE Access, 2021, 9, 84956-84970.	2.6	22
53	An AloT System for Bat Species Classification. , 2021, , .		15
54	Deep Feature Space: A Geometrical Perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 6823-6838.	9.7	37
55	A Deep Learning Based Method for Parkinson's Disease Detection Using Dynamic Features of Speech. IEEE Access, 2021, 9, 10239-10252.	2.6	58

#	Article	IF	CITATIONS
56	DENet: a deep architecture for audio surveillance applications. Neural Computing and Applications, 2021, 33, 11273-11284.	3.2	7
57	Real-time acoustic sensing and artificial intelligence for error prevention in orthopedic surgery. Scientific Reports, 2021, 11, 3993.	1.6	17
58	An Integrated TAM/ISS Model Based PLS-SEM Approach for Evaluating the Continuous Usage of Voice Enabled IoT Systems. Wireless Personal Communications, 2021, 119, 1065.	1.8	13
59	Audio Signal Mapping into Spectrogram-Based Images for Deep Learning Applications. , 2021, , .		4
60	Application of Deep Learning on Millimeter-Wave Radar Signals: A Review. Sensors, 2021, 21, 1951.	2.1	44
61	Deep Convolutional Neural Network Compression via Coupled Tensor Decomposition. IEEE Journal on Selected Topics in Signal Processing, 2021, 15, 603-616.	7.3	9
62	Speech emotion recognition via learning analogies. Pattern Recognition Letters, 2021, 144, 21-26.	2.6	18
63	An Educational Guide through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing. Signals, 2021, 2, 245-285.	1.2	7
64	Separation of Multiple Stationary Sound Sources using convolutional neural network. , 2021, , .		1
65	Performance Evaluation of Convolutional Neural Networks (CNNs) And VGG on Real Time Face Recognition System. Advances in Science, Technology and Engineering Systems, 2021, 6, 956-964.	0.4	1
66	Cryptographic Key Derivation from Biometric Inferences for Remote Authentication. , 2021, , .		4
67	Cascaded All-Pass Filters with Randomized Center Frequencies and Phase Polarity for Acoustic and Speech Measurement and Data Augmentation. , 2021, , .		4
68	Contrastive Domain Adaptation. , 2021, , .		31
69	A Review on Machine Learning for Audio Applications. , 2021, 23, 62-70.		0
70	Acoustic-Based UAV Detection Using Late Fusion of Deep Neural Networks. Drones, 2021, 5, 54.	2.7	18
71	Interpreting Clottal Flow Dynamics for Detecting Covid-19 From Voice. , 2021, , .		12
72	Detection of Audio-Video Synchronization Errors Via Event Detection. , 2021, , .		4
73	Achieving efficient inverse design of low-dimensional heterostructures based on a vigorous scalable multi-task learning network. Optics Express, 2021, 29, 19727.	1.7	7

#	Article	IF	CITATIONS
74	A Comparison of Convolutional Neural Networks for Glottal Closure Instant Detection from Raw Speech. , 2021, , .		5
75	Timestamp-aligning and keyword-biasing end-to-end ASR front-end for a KWS system. Eurasip Journal on Audio, Speech, and Music Processing, 2021, 2021, .	1.3	3
76	Underwater target recognition using convolutional recurrent neural networks with 3-D Mel-spectrogram and data augmentation. Applied Acoustics, 2021, 178, 107989.	1.7	68
77	Few-shot Learning with Data Enhancement and Transfer Learning for Underwater Target Recognition. , 2021, , .		3
78	Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise. Journal of the Acoustical Society of America, 2021, 150, 193-201.	0.5	11
79	Text-independent Speaker Recognition using Deep Neural Networks. , 2021, , .		4
80	Performance vs. hardware requirements in state-of-the-art automatic speech recognition. Eurasip Journal on Audio, Speech, and Music Processing, 2021, 2021, .	1.3	14
81	Assessment of a non-invasive acoustic sensor for detecting cattle urination events. Biosystems Engineering, 2021, 207, 177-187.	1.9	8
82	A Modulation Front-End for Music Audio Tagging. , 2021, , .		1
83	Acoustic classification of individual cat vocalizations in evolving environments. , 2021, , .		4
84	Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Scientific Reports, 2021, 11, 15343.	1.6	75
85	4D Printing of Electroactive Materials. Advanced Intelligent Systems, 2021, 3, 2100019.	3.3	20
86	Language-agnostic speech anger identification. , 2021, , .		2
87	HumBug – An Acoustic Mosquito Monitoring Tool for use on budget smartphones. Methods in Ecology and Evolution, 2021, 12, 1848-1859.	2.2	16
89	Efficient land desertification detection using a deep learningâ€driven generative adversarial network approach: A case study. Concurrency Computation Practice and Experience, 2022, 34, e6604.	1.4	3
90	One-shot learning for acoustic diagnosis of industrial machines. Expert Systems With Applications, 2021, 178, 114984.	4.4	18
91	Speech signal enhancement in cocktail party scenarios by deep learning based virtual sensing of head-mounted microphones. Hearing Research, 2021, 408, 108294.	0.9	9
92	Automatic pixel-level crack segmentation in images using fully convolutional neural network based on residual blocks and pixel local weights. Engineering Applications of Artificial Intelligence, 2021, 104 104391	4.3	32

#	Article	IF	CITATIONS
93	Harmonic Classification with Enhancing Music Using Deep Learning Techniques. Complexity, 2021, 2021, 1-10.	0.9	0
94	Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information Fusion, 2022, 77, 29-52.	11.7	280
95	Few Shots Learning: Caricature to Image Recognition Using Improved Relation Network. Communications in Computer and Information Science, 2021, , 162-173.	0.4	0
96	FifthNet: Structured Compact Neural Networks for Automatic Chord Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2021, 29, 2671-2682.	4.0	6
97	Deep Dense and Convolutional Autoencoders for Machine Acoustic Anomaly Detection. IFIP Advances in Information and Communication Technology, 2021, , 337-348.	0.5	4
99	Aircraft Fingerprinting Using Deep Learning. , 2021, , .		8
100	On Comparison of XGBoost andÂConvolutional Neural Networks forÂGlottal Closure Instant Detection. Lecture Notes in Computer Science, 2021, , 448-456.	1.0	0
101	User Driven FPGA-Based Design Automated Framework of Deep Neural Networks for Low-Power Low-Cost Edge Computing. IEEE Access, 2021, 9, 89162-89180.	2.6	12
103	Semi-supervised audio-driven TV-news speaker diarization using deep neural embeddings. Journal of the Acoustical Society of America, 2020, 148, 3751-3761.	0.5	9
104	Development of a multilingual digital signage system using a directional volumetric display and language identification. OSA Continuum, 2020, 3, 3187.	1.8	4
105	Naturalness Enhancement with Linguistic Information in End-to-End TTS Using Unsupervised Parallel Encoding. , 0, , .		4
106	An Evaluation of VGG16 Binary Classifier Deep Neural Network for Noise and Blur Corrupted Images. Sakarya University Journal of Computer and Information Sciences, 0, , .	0.6	2
107	Time Signature Detection: A Survey. Sensors, 2021, 21, 6494.	2.1	4
108	Multivariate Air Pollution Levels Forecasting. , 2021, , .		6
109	Subjective and Objective Evaluation of Procedurally-Generated Audio for Soft-Body Interactions. , 2021, , .		0
110	Designing a large recording script for open-domain English speech synthesis*. Phonetics and Speech Sciences, 2021, 13, 65-70.	0.0	1
111	Harnessing the power of artificial intelligence to transform hearing healthcare and research. Nature Machine Intelligence, 2021, 3, 840-849.	8.3	23
112	From sonic experiences to urban planning innovations. European Planning Studies, 2024, 32, 302-319.	1.6	0

CITATION REPORT ARTICLE IF CITATIONS Agent Structure of Multimodal User Interface to the National Cybersecurity Platform – Part 2. , 2019, 0.1 0 23, 5-18. Recent development in artificial neural network based distributed fiber optic sensors., 2020,,. A Deep Neural Network Based on ResNet for Predicting Solutions of Poisson–Boltzmann Equation. 2 1.8 Electronics (Switzerland), 2021, 10, 2627. Multiclass Spoken Language Identification for Indian Languages using Deep Learning., 2020, , . Detection of overlapping ultrasonic echoes with deep neural networks. Ultrasonics, 2022, 119, 106598. 2.1 4 Trainable Windowing Coefficients in DNN for Raw Audio Classification. Communications in Computer 0.4 and Information Science, 2020, , 153-166. Underwater Spherical Shell Classification and Parameter Estimation Based on Acoustic 2.6 2 Backscattering Characteristics. IEEE Access, 2021, 9, 162756-162764. Active Learning for Auditory Hierarchy. Lecture Notes in Computer Science, 2020, , 365-384. 1.0 Two-stream convolutional neural networks based on a self-attention mechanism for environmental 0 sound classification., 2021,,. Music Detection Using Deep Learning withÂTensorflow. Lecture Notes in Electrical Engineering, 2022, , 283-291. A Deep Learning Architecture with Word Embeddings to Classify Sentiment in Twitter. Advances in 3 0.5 Intelligent Systems and Computing, 2021, , 115-125. Deep learning-based guided wave method for semi-grouting sleeve detection. Journal of Building 1.6 Engineering, 2022, 46, 103739. Fetal Movement Detection using Long Short-Term Memory Network., 2021,,. 4 Underwater Target Signal Classification Using the Hybrid Routing Neural Network. Sensors, 2021, 21, 2.1 7799. Physics-Based Deep Learning for Flow Problems. Energies, 2021, 14, 7760. 1.6 5 Applying Variational Circuits in Deep Learning Architectures for Improving Discriminative Power of Speaker Embeddings. Lecture Notes in Networks and Systems, 2022, , 483-492. Design and implementation of arrhythmic ECG signals for biomedical engineering applications on 1.2 $\mathbf{13}$ FPGĂ. European Physical Journal: Special Topics, 2022, 231, 869-884.

132	Deep Cross-Corpus Speech Emotion Recognition: Recent Advances and Perspectives. Frontiers in Neurorobotics, 2021, 15, 784514.	1.6	9
-----	---	-----	---

#

113

114

116

118

121

123

124

125

127

129

131

#	Article	IF	CITATIONS
133	Multiple source localization using learning-based sparse estimation in deep ocean. Journal of the Acoustical Society of America, 2021, 150, 3773-3786.	0.5	15
134	Assessment of a non-invasive accelerometer for detecting cattle urination and defecation events. Smart Agricultural Technology, 2022, 2, 100031.	3.1	0
135	IRLNet: A Short-Time and Robust Architecture for Automatic Modulation Recognition. IEEE Access, 2021, 9, 143661-143676.	2.6	7
136	In-Car Violence Detection Based on the Audio Signal. Lecture Notes in Computer Science, 2021, , 437-445.	1.0	8
137	An acoustic sensor technology to detect urine excretion. Biosystems Engineering, 2022, 214, 90-106.	1.9	5
138	Online Music Style Recognition via Mobile Computing. International Journal of Mobile Computing and Multimedia Communications, 2022, 13, 0-0.	0.4	0
139	Underwater Signal Denoising Using Deep Learning Approach. , 2020, , .		9
140	The Evaluation Method of Speech Interference Effect Based on Deep Learning. , 2020, , .		0
141	RD-CNN: A Compact and Efficient Convolutional Neural Net for Sound Classification. , 2020, , .		1
142	Implementasi Penghitung Laju Respirasi pada Sistem Polisomnografi menggunakan Mikrofon dan Arduino Nano. , 2021, 7, 59-64.		0
143	Phase-Based Signal Representations for Scattering. , 2021, , .		0
144	From Advanced Digital Signal Processing to Machine Learning. , 2021, , .		0
145	Excitation-Inhibition Cell Activity Patterns for Binaural Source Localisation. , 2021, , .		0
146	Research progress and trend analysis of speech recognition technology using CiteSpace and computer neural network. , 2021, , .		1
147	Decompression of Bluetooth-transmitted Audio using Super Resolution for Low-Latency Applications. , 2021, , .		0
148	Intra-class and Inter-class Differences in Mel-spectrogram Images of DC Motor Sounds. , 2021, , .		0
149	Audio Synthesis-based Data Augmentation Considering Audio Event Class. , 2021, , .		3
150	Analysis of early fault vibration detection and analysis of offshore wind power transmission based on deep neural network. Connection Science, 2022, 34, 1005-1017.	1.8	6

#	Article	IF	CITATIONS
151	Network Traffic Classification Using Deep Learning Networks and Bayesian Data Fusion. Journal of Network and Systems Management, 2022, 30, 1.	3.3	17
152	Extremely Randomized Trees With Privacy Preservation for Distributed Structured Health Data. IEEE Access, 2022, 10, 6010-6027.	2.6	15
153	Deep mutual attention network for acoustic scene classification. , 2022, 123, 103450.		7
154	Environmental Sound Classification Algorithm Based on Adaptive Data Padding. , 2022, , .		0
156	Better Modelling Out-of-Distribution Regression on Distributed Acoustic Sensor Data Using Anchored Hidden State Mixup. IEEE Transactions on Industrial Informatics, 2022, , 1-1.	7.2	0
157	Fusion of Target and Shadow Regions for Improved SAR ATR. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	14
159	Audio recognition of Chinese traditional instruments based on machine learning. Cognitive Computation and Systems, 2022, 4, 108-115.	0.8	4
160	Survey of Deep Learning Paradigms for Speech Processing. Wireless Personal Communications, 2022, 125, 1913-1949.	1.8	43
162	Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks. Scientific Programming, 2022, 2022, 1-7.	0.5	1
163	Deep Learning for Activity Recognition Using Audio and Video. Electronics (Switzerland), 2022, 11, 782.	1.8	8
164	Microphone Array for Speaker Localization and Identification in Shared Autonomous Vehicles. Electronics (Switzerland), 2022, 11, 766.	1.8	5
165	Learnable filter-banks for CNN-based audio applications. Proceedings of the Northern Lights Deep Learning Workshop, 0, 3, .	0.0	3
166	Spoken Utterance Classification Task of Arabic Numerals and Selected Isolated Words. Arabian Journal for Science and Engineering, 2022, 47, 10731-10750.	1.7	2
167	Multiple acoustic source localization using deep data association. Applied Acoustics, 2022, 192, 108731.	1.7	2
168	Acoustic sensor determination of repeatable cow urinations traits in winter and spring. Computers and Electronics in Agriculture, 2022, 196, 106846.	3.7	2
169	Robustness of musical features on deep learning models for music genre classification. Expert Systems With Applications, 2022, 199, 116879.	4.4	16
170	Recognize the surrounding: Development and evaluation of convolutional deep networks using gammatone spectrograms and raw audio signals. Expert Systems With Applications, 2022, 200, 116998.	4.4	1
171	Machine-learnt Beamforming for Large Aperture 3D Microphone Arrays, An Industrial Application. , 2021, , .		0

#	Article	IF	Citations
172	Multitaper Spectrogram for Classification of Speech and Music With Pretrained Audio Neural Networks. , 2021, , .		0
173	Reinforcement Learning for Dialogue Generation: A Systematic Literature Review. , 2021, , .		0
174	Sound Event Detection: A Wavelet Based Approach For Weakly Labelled Data. , 2021, , .		0
175	Comparative Analysis of Pre-Trained Deep Neural Networks for Vision-Based Security Systems on a Novel Dataset. , 2021, , .		Ο
176	Region-based Birdcall Recognition Using Signal Processing. , 2021, , .		0
177	Conditional Wasserstein generative adversarial networks applied to acoustic metamaterial design. Journal of the Acoustical Society of America, 2021, 150, 4362-4374.	0.5	14
178	Mallard Detection Using Microphone Arrays Combined with Delay-and-Sum Beamforming for Smart and Remote Rice–Duck Farming. Applied Sciences (Switzerland), 2022, 12, 108.	1.3	0
179	Network Intrusion Detection: An Analytical Assessment Using Deep Learning and State-of-the-Art Machine Learning Models. International Journal of Computational Intelligence Systems, 2021, 14, 1.	1.6	9
180	Automated Event Detection and Classification in Soccer: The Potential of Using Multiple Modalities. Machine Learning and Knowledge Extraction, 2021, 3, 1030-1054.	3.2	9
181	Machine and Deep Learning Algorithms and Applications. Synthesis Lectures on Signal Processing, 2021, 12, 1-123.	0.3	1
182	A Study of Real-Time Physical Activity Recognition from Motion Sensors via Smartphone Using Deep Neural Network. , 2021, , .		4
183	Multimodal Sparse Transformer Network for Audio-Visual Speech Recognition. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10028-10038.	7.2	16
184	An Attention Encoder-Decoder Dual Graph Convolutional Network with Time Series Correlation for Multi-Step Traffic Flow Prediction. Journal of Advanced Transportation, 2022, 2022, 1-17.	0.9	2
185	Perceptual Hash of Neural Networks. Symmetry, 2022, 14, 810.	1.1	2
186	Fast environmental sound classification based on resource adaptive convolutional neural network. Scientific Reports, 2022, 12, 6599.	1.6	8
187	Voice Recognition on Humanoid Robot Darwin OP Using Mel Frequency Cepstrum Coefficients (MFCC) Feature and Artificial Neural Networks (ANN) Method. , 2022, , .		1
188	The Influence of Deep Learning in Detecting Cyber Attacks on E-Government Applications. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2022, , 107-122.	0.2	9
189	Deep-Learning-Based Stream-Sensing Method for Detecting Asynchronous Multiple Signals. Applied Sciences (Switzerland), 2022, 12, 4534.	1.3	Ο

#	Article	IF	CITATIONS
190	Spatial Mixup: Directional Loudness Modification as Data Augmentation for Sound Event Localization and Detection. , 2022, , .		1
191	Mining Hard Samples Locally And Globally For Improved Speech Separation. , 2022, , .		1
192	Augmented/Mixed Reality Audio for Hearables: Sensing, control, and rendering. IEEE Signal Processing Magazine, 2022, 39, 63-89.	4.6	13
193	Design and Analysis of Linear Phase Finite Impulse Response Filter Using Water Strider Optimization Algorithm in FPGA. Circuits, Systems, and Signal Processing, 2022, 41, 5254-5282.	1.2	16
194	Semi-Supervised Source Localization With Residual Physical Learning. , 2022, , .		0
195	Diagnosis of COVID-19 via acoustic analysis and artificial intelligence by monitoring breath sounds on smartphones. Journal of Biomedical Informatics, 2022, 130, 104078.	2.5	11
196	Impact Analysis of Emerging Semantic Communication Systems on Network Performance. Electronics (Switzerland), 2022, 11, 1567.	1.8	0
197	An overview of machine learning and other data-based methods for spatial audio capture, processing, and reproduction. Eurasip Journal on Audio, Speech, and Music Processing, 2022, 2022, .	1.3	10
198	Deep autoencoders for acoustic anomaly detection: experiments with working machine and in-vehicle audio. Neural Computing and Applications, 2022, 34, 19485-19499.	3.2	6
199	Modulating STDP With Back-Propagated Error Signals to Train SNNs for Audio Classification. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 89-101.	3.4	3
200	Objective Evaluation Method of Broadcasting Vocal Timbre Based on Feature Selection. Wireless Communications and Mobile Computing, 2022, 2022, 1-17.	0.8	1
201	Cross-Lingual Transfer Learning for End-to-End Speech Translation. Journal of Natural Language Processing, 2022, 29, 611-637.	0.1	0
202	Deep Learning in Healthcare: Applications, Challenges, and Opportunities. Studies in Computational Intelligence, 2022, , 27-44.	0.7	2
203	Music Score Recognition and Composition Application Based on Deep Learning. Mathematical Problems in Engineering, 2022, 2022, 1-9.	0.6	1
204	Piecewise linear neural networks and deep learning. Nature Reviews Methods Primers, 2022, 2, .	11.8	11
205	Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning Preprocessing Pipelines. , 2022, , .		4
206	Approximation in shift-invariant spaces with deep ReLU neural networks. Neural Networks, 2022, 153, 269-281.	3.3	3
207	An Experimental Study on Speech Enhancement Based on a Combination of Wavelets and Deep Learning. Computation, 2022, 10, 102.	1.0	7

	CITATION R	EPORT	
# 208	ARTICLE Acoustic Source Localization in the Circular Harmonic Domain Using Deep Learning Architecture. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 2475-2491.	IF 4.0	Citations 7
210	Reasoning on the Air: An Implicit Semantic Communication Architecture. , 2022, , .		13
211	Detection of physical violence through audio. , 2022, , .		1
212	L ³ -Net Deep Audio Embeddings to Improve COVID-19 Detection from Smartphone Data. , 2022, , .		2
213	A survey of sound source localization with deep learning methods. Journal of the Acoustical Society of America, 2022, 152, 107-151.	0.5	93
214	A survey on deep reinforcement learning for audio-based applications. Artificial Intelligence Review, 2023, 56, 2193-2240.	9.7	18
215	The 10th International Workshop on News Recommendation and Analytics (INRA 2022). , 2022, , .		0
216	Acoustic sensors for detecting cow behaviour. Smart Agricultural Technology, 2023, 3, 100071.	3.1	1
217	Frequency-Centroid Features for Word Recognition of Non-Native English Speakers. , 2022, , .		1
218	Environmental Sound Classification Based on Transfer-Learning Techniques with Multiple Optimizers. Electronics (Switzerland), 2022, 11, 2279.	1.8	3
219	YONO: Modeling Multiple Heterogeneous Neural Networks on Microcontrollers. , 2022, , .		3
220	Sound Based DC Motor Classification by a Convolution Neural Network. , 2022, , .		1
221	Music Deep Learning: A Survey on Deep Learning Methods for Music Processing. , 2022, , .		3
222	Deepfake Audio Detection with Neural Networks Using Audio Features. , 2022, , .		0
223	Implementation of an Irregular Lung Sound Diagnostic System. , 2022, , .		0
224	Speech Sentiment Analysis for Citizen's Engagement in Smart Cities' Events. , 2022, , .		3
225	Neural network for multi-exponential sound energy decay analysis. Journal of the Acoustical Society of America, 2022, 152, 942-953.	0.5	4
226	Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN. Chaos, Solitons and Fractals, 2022, 162, 112441.	2.5	15

#	Article	IF	CITATIONS
227	Environmental Sound Classiï¬cation on the Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-Constrained Devices. Pattern Recognition, 2023, 133, 109025.	5.1	17
228	A scalable species-based genetic algorithm for reinforcement learning problems. Knowledge Engineering Review, 2022, 37, .	2.1	1
229	Conditional Generative Data Augmentation forÂClinical Audio Datasets. Lecture Notes in Computer Science, 2022, , 345-354.	1.0	4
230	Deep Feature Learning forÂMedical Acoustics. Lecture Notes in Computer Science, 2022, , 39-50.	1.0	1
231	Deep Learning-Based Approaches for Fault Detection in Disc Mower. IFAC-PapersOnLine, 2022, 55, 217-221.	0.5	0
232	Modeling Concurrent Vowel Scores Using the Time Delay Neural Network and Multitask Learning. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 2452-2459.	4.0	1
233	Adversarial Attacks Against Acoustic Monitoring of Industrial Machines. IEEE Internet of Things Journal, 2023, 10, 2832-2839.	5.5	0
234	Multilabel Classification of Heterogeneous Underwater Soundscapes With Bayesian Deep Learning. IEEE Journal of Oceanic Engineering, 2022, 47, 1143-1154.	2.1	3
235	Deep-Learning-Assisted Sound Source Localization From a Flying Drone. IEEE Sensors Journal, 2022, 22, 20828-20838.	2.4	7
236	Dynamic noise filtering for multi-class classification of beehive audio data. Expert Systems With Applications, 2023, 213, 118850.	4.4	4
237	Learning relationships between audio signals based on reservoir networks. , 2022, , .		0
238	Audio Based Action Recognition for Monitoring Elderly Dementia Patients. , 2022, , .		0
239	Sound Source Localization Based on Convolutional Neural Network. , 2022, , .		2
240	Automated Adaptive Playback for Encoder-Adjudicated Live Sports. , 2022, , .		0
242	Apply an optimized NN model to low-dimensional format speech recognition and exploring the performance with restricted factors. Measurement and Control, 2023, 56, 3-17.	0.9	0
243	Pepper bell leaf disease detection and classification using optimized convolutional neural network. Multimedia Tools and Applications, 2023, 82, 12065-12080.	2.6	12
244	Automatic offline annotation of turn-taking transitions in task-oriented dialogue. Computer Speech and Language, 2022, , 101462.	2.9	0
245	Variational Bootstrap for Classification. Procedia Computer Science, 2022, 207, 1222-1231.	1.2	0

#	ARTICLE	IF	CITATIONS
246	Usage of deep learning in recent applications. Archives of Materials Science and Engineering, 2022, 115, 49-57.	0.7	0
247	RED: An Intelligent Edge based Speaker System with Ambient Sensing Technology. , 2022, , .		0
248	The proposal of 4 Steps U-Net Neual Network with New Active Function and Data Preprocessing for Sound Quality Improvement. Journal of Digital Contents Society, 2022, 23, 1847-1855.	0.1	0
249	HindiSpeech-Net: a deep learning based robust automatic speech recognition system for Hindi language. Multimedia Tools and Applications, 2023, 82, 16173-16193.	2.6	1
251	Few-shot learning for modeling cyber physical systems in non-stationary environments. Neural Computing and Applications, 2023, 35, 3853-3863.	3.2	1
252	Imitated Detectors. , 2022, , .		7
254	Speech Enhancement Model Synthesis Based on Federal Learning for Industrial CPS in Multiple Noise Conditions. Symmetry, 2022, 14, 2285.	1.1	0
255	A lightweight CNN-based model for early warning in sow oestrus sound monitoring. Ecological Informatics, 2022, 72, 101863.	2.3	6
256	AFnet and PAFnet: Fast and Accurate SAR Autofocus Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	1
257	Towards Understanding and Mitigating Audio Adversarial Examples for Speaker Recognition. IEEE Transactions on Dependable and Secure Computing, 2023, 20, 3970-3987.	3.7	10
258	A Temporal-oriented Broadcast ResNet for COVID-19 Detection. , 2022, , .		0
259	A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives. Diagnostics, 2022, 12, 2708.	1.3	6
260	Sequence-to-Sequence CNN-BiLSTM Based Glottal Closure Instant Detection fromÂRaw Speech. Lecture Notes in Computer Science, 2023, , 107-120.	1.0	0
261	An Efficient Machine Learning Approach for Diagnosing Parkinson's Disease by Utilizing Voice Features. Electronics (Switzerland), 2022, 11, 3782.	1.8	8
262	Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges. IEEE Communications Surveys and Tutorials, 2023, 25, 213-250.	24.8	43
263	Condition Monitoring using Convolutional Neural Network in Agricultural Machinery - Use Case: Disc Mower. IFAC-PapersOnLine, 2022, 55, 235-240.	0.5	2
264	Target Classification in Unattended Ground Sensors With a Two-Stream Convolutional Network. IEEE Sensors Journal, 2023, 23, 3747-3755.	2.4	1
265	Adversarial Attacks Against Audio Surveillance Systems. , 2022, , .		0

ARTICLE IF CITATIONS # Multiroom Speech Emotion Recognition., 2022,,. 266 0 Interpretation of Dynamic Models Based on Neural Networks in the Form of Integral-Power Series. Lecture Notes in Nétworks and Systems, 2023, , 258-265. Adapting GCC-PHAT to Co-Prime Circular Microphone Arrays for Speech Direction of Arrival 268 1 Estimation Using Neural Networks., 2022,,. Deep Learning in Diverse Intelligent Sensor Based Systems. Sensors, 2023, 23, 62. Multi-Objective Surrogate-Model-Based Neural Architecture and Physical Design Co-Optimization of 270 Energy Efficient Neural Network Hardware Accelerators. IEEE Transactions on Circuits and Systems I: 3.5 1 Regular Papers, 2023, 70, 40-53. 271 Analysis of Industrial Product Sound by Applying Image Similarity Measures. Mathematics, 2023, 11, 498. 1.1 Radar specific emitter identification based on open-selective kernel residual network. , 2023, 134, 272 6 103913. Cochleogram-based adventitious sounds classification using convolutional neural networks. 3.5 10 Biomedical Signal Processing and Control, 2023, 82, 104555. 274 Performance Analysis of Inbuilt Hearing Aid using Signal Enhancement by Deep Learning., 2022, , . 0 Smart voice recognition based on deep learning for depression diagnosis. Artificial Life and Robotics, A Truly Multilingual First Pass and Monolingual Second Pass Streaming on-Device ASR System., 2023,,. 276 1 Dynamic speaker localization based on a novel lightweight R–CNN model. Neural Computing and 3.2 Applications, 0, , . Deep Learning Based Cognitive Radio Modulation Parameter Estimation. IEEE Access, 2023, 11, 278 2.6 1 20963-20978. Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective. IEEE Access, 2023, 279 2.6 11, 27641-27661. Transposition ofÂSimple Waveforms fromÂRaw Audio withÂDeep Learning. Lecture Notes in Computer 280 1.0 0 Science, 2023, , 341-356. Acoustic sensors for automated detection of cow vocalization duration and type. Computers and Electronics in Agriculture, 2023, 208, 107760. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using 282 Natural Language Processing Methods: Feasibility Study With Real-world Data. JMIR Formative 0.7 5 Research, 0, 7, e43014. Physical Modeling. Springer Topics in Signal Processing, 2022, , 609-707.

#	Article	IF	CITATIONS
284	A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Nanotechnology, 2023, 34, 195501.	1.3	4
285	Device Status Evaluation Method Based on Deep Learning for PHM Scenarios. Electronics (Switzerland), 2023, 12, 779.	1.8	3
286	Machine learning assisted inverse design of microresonators. Optics Express, 2023, 31, 8020.	1.7	4
287	Music Deep Learning: Deep Learning Methods for Music Signal Processing—A Review of the State-of-the-Art. IEEE Access, 2023, 11, 17031-17052.	2.6	6
288	Music Similarity Detection Guided by Deep Learning Model. Computational Intelligence and Neuroscience, 2023, 2023, 1-10.	1.1	1
289	Leveraging Voltage-Controlled Magnetic Anisotropy to Solve Sneak Path Issues in Crossbar Arrays. IEEE Transactions on Electron Devices, 2023, 70, 2021-2027.	1.6	0
290	Deep learning-based EEG emotion recognition: Current trends and future perspectives. Frontiers in Psychology, 0, 14, .	1.1	6
291	Deep Learning Models for Single-Channel Speech Enhancement on Drones. IEEE Access, 2023, 11, 22993-23007.	2.6	10
292	Al Inspired ATC, Based on ANN and Using NLP. , 0, , .		2
293	Research on Intelligent Diagnosis System for High-voltage Cables Based on Partial Discharge Characteristics. , 2022, , .		1
294	Comparison ofÂML Solutions forÂHRIR Individualization Design inÂBinaural Audio. Lecture Notes in Networks and Systems, 2023, , 271-278.	0.5	0
295	AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	48
296	Web-based Automatic Deep Learning Service Generation System by Ontology Technologies. , 2022, , .		0
297	Predicting Drug Synergy and Discovering New Drug Combinations Based on a Graph Autoencoder and Convolutional Neural Network. Interdisciplinary Sciences, Computational Life Sciences, 2023, 15, 316-330.	2.2	3
298	Convergence Analysis of Music Technology: From Audio Digital Watermarking to Denoising Algorithm. , 2023, , .		0
299	A new YOLO-based method for social distancing from real-time videos. Neural Computing and Applications, 2023, 35, 15261-15271.	3.2	6
300	Deep Learning Approach for Sound Signal Processing. , 2022, , .		0
304	Efficient Domain Adaptation for Speech Foundation Models. , 2023, , .		1

# 306	ARTICLE A Deep Learning-Based Methodology forÂDetecting andÂVisualizing Continuous Gravitational Waves. IFIP Advances in Information and Communication Technology, 2023, , 3-14.	IF 0.5	Citations 0
307	Classification and recognition of soybean leaf diseases in Madhya Pradesh and Chhattisgarh using Deep learning methods. , 2023, , .		0
312	Heartbeat Prediction using Mel Spectrogram and MFCC Value. , 2023, , .		1
316	Semi-Supervised Learning with Per-Class Adaptive Confidence Scores for Acoustic Environment Classification with Imbalanced Data. , 2023, , .		0
317	jaCappella Corpus: A Japanese a Cappella Vocal Ensemble Corpus. , 2023, , .		0
318	On Neural Architectures for Deep Learning-Based Source Separation of Co-Channel OFDM Signals. , 2023, , .		0
323	Italian Speech Emotion Recognition. , 2023, , .		0
326	Data Augmentation using Reverb and Noise in Deep Learning Implementation of Cough Classification. , 2023, , .		1
327	A Customizable Mathematical Model for Determining the Difficulty of Guitar Triad Chords for Machine Learning. Lecture Notes in Networks and Systems, 2023, , 667-679.	0.5	0
328	Speaker recognition system of flexible throat microphone using contrastive learning. , 2023, , .		Ο
331	Using machine learning principles, the classification method for face spoof detection in artificial neural networks. , 2023, , .		0
335	Classification of Multilingual Medical Documents using Deep Learning. , 2023, , .		0
336	Music Regeneration with RNN Architecture Using LSTM. , 2023, , .		0
346	Integral Neural Networks. , 2023, , .		2
347	A Light Weight Model for Active Speaker Detection. , 2023, , .		4
350	Generating Background Music from Vocal Sound with Low-End Hardware using AutoEncoder and GRU. , 2023, , .		Ο
351	The Eleventh International Workshop on News Recommendation and Analytics (INRAâ \in M23). , 2023, , .		0
352	Compressing Audio CNNS with Graph Centrality Based Filter Pruning. , 2023, , .		0

#	Article	IF	CITATIONS
353	Hypernetworks Build Implicit Neural Representations ofÂSounds. Lecture Notes in Computer Science, 2023, , 661-676.	1.0	1
354	Training Neural Networks with Momental Bound of Learning Rate. , 2023, , .		О
355	Detection of Pulmonary Disorders with CNN model using Knowledge Distillation technique. , 2023, , .		0
360	Federated Learning andÂMel-Spectrograms forÂPhysical Violence Detection inÂAudio. Lecture Notes in Computer Science, 2023, , 379-393.	1.0	0
364	Efficient Monaural Speech Enhancement using Spectrum Attention Fusion. , 2023, , .		0
365	Audio Signal Processing Using MATLab. , 2023, , .		Ο
369	Differentiation of speech in Parkinson's disease and spinocerebellar degeneration using deep neural networks. Journal of Neurology, 2024, 271, 1004-1012.	1.8	0
371	From Time Series toÂMulti-modality: Classifying Multivariate Time Series viaÂBothÂ1D andÂ2D Representations. Lecture Notes in Computer Science, 2023, , 19-33.	1.0	О
374	A Deep Learning-Based Method for Categorizing Indian Bird Species. , 2023, , .		0
378	On-Device MFCC-CNN Voice Recognition System with ESP-32 and Web-Based Application. , 2023, , .		Ο
379	Robust MCU Oriented KWS Model forÂChildren Robotic Prosthetic Hand Control. Lecture Notes in Computer Science, 2024, , 285-296.	1.0	0
380	Improved Techniques forÂtheÂConditional Generative Augmentation ofÂClinical Audio Data. Lecture Notes in Electrical Engineering, 2023, , 389-398.	0.3	Ο
388	Audio-Restauration. , 2024, , 1-18.		0
391	Fusion Spectrogram for Sound Classification Using 2D Convolutional Neural Network. Lecture Notes in Electrical Engineering, 2024, , 637-650.	0.3	О
395	Parkinson's Disease Diagnosis Using Voice Features and Effective Machine Learning Methods. Advances in Medical Technologies and Clinical Practice Book Series, 2024, , 108-123.	0.3	0
405	Autoencoder-Based Motion Artifact Reduction in Photoplethysmography (PPG) Signals Acquired from Wearable Sensors during Construction Tasks. , 2024, , .		0