Giant Barocaloric Effect at the Spin Crossover Transitio

Advanced Materials 31, e1807334 DOI: 10.1002/adma.201807334

Citation Report

#	Article	IF	CITATIONS
1	Spin-crossover in iron(<scp>ii</scp>)-Schiff base complexes. Dalton Transactions, 2019, 48, 15321-15337.	3.3	59
2	Giant reversible barocaloric response of (MnNiSi)1â^' <i>x</i> (FeCoGe) <i>x</i> (<i>x</i> = 0.39, 0.40,) Tj ETQq1 1	0.78431 9.1	4 ဣBT /Ove
3	The refrigerant capacity in spin-crossover materials: Application to [Fe(phen)2(NCS)2]. Journal of Magnetic Materials, 2019, 489, 165421.	2.3	10
4	Novel mechanocaloric materials for solid-state cooling applications. Applied Physics Reviews, 2019, 6, .	11.3	66
5	Giant room-temperature barocaloric effect at the electronic phase transition in Ni _{1â^x} Fe _x S. Materials Horizons, 2020, 7, 2690-2695.	12.2	33
6	A large room-temperature entropy change in a new hybrid ferroelastic with an unconventional bond-switching mechanism. Chemical Communications, 2020, 56, 10054-10057.	4.1	31
7	Caloric materials for cooling and heating. Science, 2020, 370, 797-803.	12.6	159
8	Low-pressure-induced giant barocaloric effect in an all- <i>d</i> -metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy. APL Materials, 2020, 8, .	5.1	40
9	Structure:function relationships for thermal and light-induced spin-crossover in isomorphous molecular materials. Journal of Materials Chemistry C, 2020, 8, 8420-8429.	5.5	11
10	Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: Review, trends and perspectives. Coordination Chemistry Reviews, 2020, 417, 213357.	18.8	48
11	Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling. Chinese Journal of Polymer Science (English Edition), 2020, 38, 999-1005.	3.8	23
12	Manipulating metal spin states for biomimetic, catalytic and molecular materials chemistry. Dalton Transactions, 2020, 49, 15560-15567.	3.3	29
13	Pressureâ€Induced Conversion of a Paramagnetic FeCo Complex into a Molecular Magnetic Switch with Tuneable Hysteresis. Angewandte Chemie, 2020, 132, 17425-17429.	2.0	10
14	Pressureâ€Induced Conversion of a Paramagnetic FeCo Complex into a Molecular Magnetic Switch with Tuneable Hysteresis. Angewandte Chemie - International Edition, 2020, 59, 17272-17276.	13.8	29
15	Elucidating the Structural Chemistry of a Hysteretic Iron(II) Spinâ€Crossover Compound From its Copper(II) and Zinc(II) Congeners. Chemistry - A European Journal, 2020, 26, 4833-4841.	3.3	8
16	Large Enhancement of Magnetocaloric and Barocaloric Effects by Hydrostatic Pressure in La(Fe _{0.92} Co _{0.08}) _{11.9} Si _{1.1} with a NaZn ₁₃ -Type Structure. Chemistry of Materials, 2020, 32, 1807-1818.	6.7	23
17	Heat Capacity and Thermal Damping Properties of Spin rossover Molecules: A New Look at an Old Topic. Advanced Materials, 2020, 32, e2000987.	21.0	28
18	Optimization of crystal packing in semiconducting spin-crossover materials with fractionally charged TCNQ ^{<i>l´</i>â^'} anions (0 < <i>l´</i> < 1). Chemical Science, 2021, 12, 10765-10779.	7.4	17

#	Article	IF	CITATIONS
19	Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability, 2021, 8, 3.	3.0	21
20	Giant and Reversible Barocaloric Effect in Trinuclear Spin rossover Complex Fe ₃ (bntrz) ₆ (tcnset) ₆ . Advanced Materials, 2021, 33, e2008076.	21.0	58
21	Fantastic barocalorics and where to find them. Applied Physics Letters, 2021, 118, .	3.3	34
23	Coupling and decoupling of spin crossover and ferroelastic distortion: Unsymmetric hysteresis loop, phase diagram, and sequence of phases. Physical Review Materials, 2021, 5, .	2.4	15
25	Refrigeration through Barocaloric Effect Using the Spin Crossover Complex {Fe[H ₂ B(pz) ₂] ₂ (bipy)}. Physica Status Solidi (B): Basic Research, 2021, 258, 2100108.	1.5	11
26	Colossal barocaloric effects in the complex hydride Li\$\$_{2}\$\$B\$\$_{12}\$\$H\$\$_{12}\$\$. Scientific Reports, 2021, 11, 11915.	3.3	12
27	Iron/2,6â€Di(pyrazolâ€1â€yl)pyridine Complexes with a Discotic Pattern of Alkyl or Alkynyl Substituents. European Journal of Inorganic Chemistry, 2021, 2021, 2999-3007.	2.0	2
28	Low-pressure-induced large reversible barocaloric effect near room temperature in (MnNiGe)-(FeCoGe) alloys. Scripta Materialia, 2021, 200, 113908.	5.2	12
29	Giant reversible barocaloric effect with low hysteresis in antiperovskite PdNMn3 compound. Scripta Materialia, 2021, 203, 114049.	5.2	10
30	Self-organized Bi-rich grain boundary precipitates for realizing steep magnetic-field-driven metamagnetic transition in Bi-doped Mn2Sb. Acta Materialia, 2020, 200, 835-847.	7.9	12
31	Solid-state cooling by stress: A perspective. Applied Physics Letters, 2020, 116, .	3.3	43
32	Theoretical investigations on the pressure effects in spin-crossover materials: Reentrant phase transitions and other behavior. Physical Review B, 2020, 101, .	3.2	16
33	Large barocaloric effects in thermoelectric superionic materials. Physical Review Materials, 2020, 4, .	2.4	19
34	Simple and Low-Cost Footstep Energy-Recover Barocaloric Heating and Cooling Device. Materials, 2021, 14, 5947.	2.9	6
35	Giant barocaloric effects with a wide refrigeration temperature range in ethylene vinyl acetate copolymers. Materials Horizons, 2022, 9, 1293-1298.	12.2	5
36	Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes. Nature Communications, 2022, 13, 596.	12.8	29
37	Colossal Barocaloric Effect in Carboranes as a Performance Tradeoff. Advanced Functional Materials, 2022, 32, .	14.9	18
38	Heteroleptic iron(<scp>ii</scp>) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands – the interplay of two different ligands on the metal ion spin sate. Dalton Transactions, 2022, 51, 4262-4274.	3.3	6

		CITATION REPORT	
#	Article	IF	CITATIONS
39	Materials, physics and systems for multicaloric cooling. Nature Reviews Materials, 2022, 7, 633-652.	48.7	89
40	Giant mechanocaloric effect of nanoconfined water near room temperature. Cell Reports Physical Science, 2022, , 100822.	5.6	5
41	Driving Barocaloric Effects in a Molecular Spin-Crossover Complex at Low Pressures. Journal of the American Chemical Society, 2022, 144, 6493-6503.	13.7	23
42	Pressure-induced multi-step and self-organized spin states in an electro-elastic model for spin-crossover solids. Physical Chemistry Chemical Physics, 2022, , .	2.8	5
43	Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nature Communications, 2022, 13, 2293.	12.8	23
44	Cooling through barocaloric effect: A review of the state of the art up to 2022. Thermal Science and Engineering Progress, 2022, 33, 101380.	2.7	14
45	Concomitant Thermochromic and Phase hange Effect in a Switchable Spin Crossover Material for Efficient Passive Control of Day and Night Temperature Fluctuations. Advanced Science, 2022, 9, .	11.2	4
46	Effect of Proton Irradiation on Magnetic Properties of Two-Dimensional Ni(li) Molecular Magnet. SSRN Electronic Journal, 0, , .	0.4	0
47	Elastic properties related energy conversions of coordination polymers and metal–organic frameworks. Coordination Chemistry Reviews, 2022, 470, 214692.	18.8	17
48	Pressure dependence of rotational dynamics in barocaloric ammonium sulfate. Physical Review B, 2022, 106, .	3.2	2
49	Magnetic and structural entropy contributions to the multicaloric effects in Ni-Mn-Ga-Cu. Physical Review Materials, 2022, 6, .	2.4	4
50	Pressure Tuning of Coupled Structural and Spin State Transitions in the Molecular Complex [Fe(H ₂ B(pz) ₂) ₂ (phen)]. Inorganic Chemistry, 2022, 61, 15991-16002.	4.0	5
51	Nearâ€Roomâ€Temperature Magnetoelectric Coupling via Spin Crossover in a Fe(II) Complex. Angewandte Chemie - International Edition, 0, , .	13.8	4
52	Nearâ€Roomâ€Temperature Magnetoelectric Coupling via Spin Crossover in a Fe(II) Complex. Angewandte Chemie, 0, , .	2.0	0
53	Diâ€Iron(II) [2+2] Helicates of Bisâ€{Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry - A European Journal, 2023, 29, .	3.3	5
54	Understanding kinetically controlled spin transitions in bistable spin crossover materials. Journal of Materials Chemistry C, 2022, 11, 235-243.	5.5	2
55	Room-temperature valence transition in a strain-tuned perovskite oxide. Nature Communications, 2022, 13, .	12.8	5
56	Colossal barocaloric effect achieved by exploiting the amorphous high entropy of solidified polyethylene glycol. NPG Asia Materials, 2022, 14, .	7.9	3

ARTICLE

IF CITATIONS

Coupled spin cross-over and ferroelasticity: revisiting the prototype [Fe(ptz) $\langle sub \rangle 6 \langle sub \rangle$](BF) Tj ETQq0 0 0 rgBT₄/Overlock 10 Tf 50 7

58	A colossal barocaloric effect induced by the creation of a high-pressure phase. Materials Horizons, 2023, 10, 977-982.	12.2	5
59	Barocaloric effect in neopentylglycol plastic crystal: A theoretical study. Acta Materialia, 2023, 246, 118657.	7.9	2
60	Surface-Bulk 2D Spin-Crossover Nanoparticles within Ising-like Model Solved by Using Entropic Sampling Technique. Magnetochemistry, 2023, 9, 61.	2.4	1
61	Anisotropic deuteration effects on a molecular ferroelectric. Matter, 2023, 6, 1639-1653.	10.0	3
62	Shape memory and elastocaloric properties of melt-spun NiMn-based Heusler alloys. Journal of Alloys and Compounds, 2023, 965, 171437.	5.5	4
63	Influence of proton irradiation on the magnetic properties of two-dimensional Ni(II) molecular magnet. Scientific Reports, 2023, 13, .	3.3	1
64	The Effect of Inert Dopant Ions on Spin-Crossover Materials is not Simply Controlled by Chemical Pressure. Journal of Materials Chemistry C, 0, , .	5.5	0
65	Structural insight into the cooperativity of spin crossover compounds. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2023, 79, 354-367.	1.1	0
66	Structure and thermal property relationships in the thermomaterial di- <i>n</i> -butylammonium tetrafluoroborate for multipurpose cooling and cold-storage. Journal of Materials Chemistry A, 2023, 11, 22232-22247.	10.3	2
67	Iron(<scp>ii</scp>) complexes of 2,6-bis(imidazo[1,2- <i>a</i>]pyridin-2-yl)pyridine and related ligands with annelated distal heterocyclic donors. Dalton Transactions, 2023, 52, 14928-14940.	3.3	0
68	On (not) deriving the entropy of barocaloric phase transitions from crystallography and neutron spectroscopy. JPhys Energy, 2024, 6, 011001.	5.3	1
69	Thermometric Properties of Thio/Selenocyanato-Bridged Spin-Crossover Networks. Chemistry of Materials, 2023, 35, 9613-9622.	6.7	0
70	Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid. Nature Communications, 2023, 14, .	12.8	0
71	Anomalous Pressure Response of Temperature-Induced Spin Transition and a Pressure-Induced Spin Transition in Two-Dimensional Hofmann Coordination Polymers. Inorganic Chemistry, 2024, 63, 1214-1224.	4.0	0
72	Spin crossover transition driven by pressure: Barocaloric applications. Physica B: Condensed Matter, 2024, 677, 415689.	2.7	0
73	Dynamic simulation and performance analysis of a solid-state barocaloric refrigeration system. Energy, 2024, 294, 130800.	8.8	0
74	Realm of Spin State Switching Materials: Toward Realization of Molecular and Nanoscale Devices. Chemistry of Materials, 0, , .	6.7	0

#	Article	IF	CITATIONS
75	Colossal barocaloric effect of the spin-crossover compound {Fe(pz)2(BH3CN)2} near room temperature. Applied Physics Letters, 2024, 124, .	3.3	0