Definitions and guidelines for research on antibiotic per

Nature Reviews Microbiology 17, 441-448

DOI: 10.1038/s41579-019-0196-3

Citation Report

#	Article	IF	CITATIONS
1	The search for persistence mechanisms continues. Nature Reviews Microbiology, 2019, 17, 589-589.	28.6	0
2	A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 2019, 74, 3231-3239.	3.0	7
3	Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms. FEMS Microbiology Ecology, 2019, 95, .	2.7	34
4	Forecasting cell fate during antibiotic exposure using stochastic gene expression. Communications Biology, 2019, 2, 259.	4.4	15
5	Bacterial Heterogeneity and Antibiotic Survival: Understanding and Combatting Persistence and Heteroresistance. Molecular Cell, 2019, 76, 255-267.	9.7	123
6	Single cell ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190076.	4.0	11
7	Targeting redox heterogeneity to counteract drug tolerance in replicating <code><i>Mycobacterium tuberculosis</i>. Science Translational Medicine, 2019, 11, .</code>	12.4	76
8	The Crohn's disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathogens, 2019, 15, e1008123.	4.7	44
9	Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biology, 2019, 17, e3000397.	5.6	45
10	Reaction Kinetic Models of Antibiotic Heteroresistance. International Journal of Molecular Sciences, 2019, 20, 3965.	4.1	5
11	Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature, 2019, 573, 276-280.	27.8	169
12	Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. ACS Chemical Biology, 2019, 14, 2453-2462.	3.4	12
13	Hypoionic Shock Facilitates Aminoglycoside Killing of Both Nutrient Shift- and Starvation-Induced Bacterial Persister Cells by Rapidly Enhancing Aminoglycoside Uptake. Frontiers in Microbiology, 2019, 10, 2028.	3.5	17
14	Bacterial Persisters and Infection: Past, Present, and Progressing. Annual Review of Microbiology, 2019, 73, 359-385.	7.3	167
15	Transient antibiotic resistance calls for attention. Nature Microbiology, 2019, 4, 1606-1607.	13.3	15
16	Spreading resistance in Salmonella's sleep. Nature Reviews Microbiology, 2019, 17, 645-645.	28.6	O
17	Comparison of Starvation-Induced Persister Cells with Antibiotic-Induced Persister Cells. Current Microbiology, 2019, 76, 1495-1502.	2.2	12
18	Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Frontiers in Microbiology, 2019, 10, 1908.	3.5	28

#	Article	IF	CITATIONS
19	Commentary: Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Frontiers in Microbiology, 2019, 10, 2164.	3 . 5	9
20	Antibiotics: Combatting Tolerance To Stop Resistance. MBio, 2019, 10, .	4.1	103
21	Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nature Communications, 2019, 10, 5216.	12.8	30
22	Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli. Scientific Reports, 2019, 9, 18043.	3.3	10
23	Hijacking of immune defences by biofilms: a multifront strategy. Biofouling, 2019, 35, 1055-1074.	2.2	54
24	Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens, 2019, 8, 299.	2.8	25
25	AcrB: a mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 2020, 1459, 38-68.	3.8	99
26	Constructing and deconstructing the bacterial cell wall. Protein Science, 2020, 29, 629-646.	7.6	41
27	Proteomic Investigation of Tolerant <i>Escherichia coli</i> Populations from Cyclic Antibiotic Treatment. Journal of Proteome Research, 2020, 19, 900-913.	3.7	39
28	Antibacterial Liquid Metals: Biofilm Treatment <i>via</i> Magnetic Activation. ACS Nano, 2020, 14, 802-817.	14.6	198
29	Proteolytic Queues at ClpXP Increase Antibiotic Tolerance. ACS Synthetic Biology, 2020, 9, 95-103.	3.8	14
30	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
31	Determining the Development of Persisters in Extensively Drug-Resistant Acinetobacter baumannii upon Exposure to Polymyxin B-Based Antibiotic Combinations Using Flow Cytometry. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
32	Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. ACS Nano, 2020, 14, 1609-1622.	14.6	42
33	Pulse Dosing of Antibiotic Enhances Killing of a Staphylococcus aureus Biofilm. Frontiers in Microbiology, 2020, 11, 596227.	3.5	10
34	Tolerance and Persistence of Pseudomonas aeruginosa in Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. Frontiers in Microbiology, 2020, 11, 2057.	3 . 5	40
35	Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. LWT - Food Science and Technology, 2020, 133, 110115.	5.2	22
36	The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cellular Signalling, 2020, 75, 109750.	3.6	19

#	Article	IF	CITATIONS
37	Antibiotic tolerance. PLoS Pathogens, 2020, 16, e1008892.	4.7	38
38	Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 2020, 34, .	13.6	66
39	Functional roles of microbial cell-to-cell heterogeneity and emerging technologies for analysis and control. Current Opinion in Microbiology, 2020, 57, 87-94.	5.1	19
40	Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nature Microbiology, 2020, 5, 1271-1284.	13.3	102
41	Wide lag time distributions break a trade-off between reproduction and survival in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18729-18736.	7.1	72
42	Salmonella intracellular adaptation is key to understand cephalosporin treatment relapse. EBioMedicine, 2020, 56, 102802.	6.1	2
43	Role of Tobramycin in the Induction and Maintenance of Viable but Non-Culturable Pseudomonas aeruginosa in an In Vitro Biofilm Model. Antibiotics, 2020, 9, 399.	3.7	8
44	High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli. Nature Communications, 2020, 11, 5970.	12.8	37
45	Next-Generation Antibiotics, Bacteriophage Endolysins, and Nanomaterials for Combating Pathogens. Biochemistry (Moscow), 2020, 85, 1374-1388.	1.5	9
47	<i>In Vitro</i> Studies of Persister Cells. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	42
48	Mechanisms Protecting Acinetobacter baumannii against Multiple Stresses Triggered by the Host Immune Response, Antibiotics and Outside-Host Environment. International Journal of Molecular Sciences, 2020, 21, 5498.	4.1	41
49	Insights into the global effect on Staphylococcus aureus growth arrest by induction of the endoribonuclease MazF toxin. Nucleic Acids Research, 2020, 48, 8545-8561.	14.5	9
50	Formation and Properties of Persister Cells of Staphylococcus capitis and Staphylococcus epidermidis, Bacteria Inhabiting Human Skin. Microbiology, 2020, 89, 425-434.	1.2	3
51	Inhibition of indole production increases the activity of quinolone antibiotics against E. coli persisters. Scientific Reports, 2020, 10, 11742.	3.3	14
52	(p)ppGpp and Its Role in Bacterial Persistence: New Challenges. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	62
53	Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	307
54	Delving Into the Functional Meaning of Phenotypic Variation in Mycobacterial Persistence: Who Benefits the Most From Programmed Death of Individual Cells?. Microbiology Insights, 2020, 13, 117863612094530.	2.0	1
55	Campylobacter jejuni 11168H Exposed to Penicillin Forms Persister Cells and Cells With Altered Redox Protein Activity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 565975.	3.9	7

#	ARTICLE	IF	CITATIONS
56	Predicting toxins found in toxin–antitoxin systems with a role in host-induced Burkholderia pseudomallei persistence. Scientific Reports, 2020, 10, 16923.	3.3	6
57	High-Level Antibiotic Tolerance of a Clinically Isolated Enterococcus faecalis Strain. Applied and Environmental Microbiology, 2020, 87, .	3.1	2
58	Combating Antibiotic Tolerance Through Activating Bacterial Metabolism. Frontiers in Microbiology, 2020, 11, 577564.	3.5	23
59	Staphylococcus epidermidis Biofilms Have a High Tolerance to Antibiotics in Periprosthetic Joint Infection. Life, 2020, 10, 253.	2.4	18
60	The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals, 2020, 13, 214.	3.8	25
61	Regulation of protein biosynthetic activity during growth arrest. Current Opinion in Microbiology, 2020, 57, 62-69.	5.1	12
62	Incubation with a Complex Orange Essential Oil Leads to Evolved Mutants with Increased Resistance and Tolerance. Pharmaceuticals, 2020, 13, 239.	3.8	8
63	Staphylococcus aureus ATP Synthase Promotes Biofilm Persistence by Influencing Innate Immunity. MBio, 2020, 11 , .	4.1	25
64	Dead cells release a â€necrosignal' that activates antibiotic survival pathways in bacterial swarms. Nature Communications, 2020, 11, 4157.	12.8	48
65	Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22167-22172.	7.1	19
66	The Persister Character of Clinical Isolates of Staphylococcus aureus Contributes to Faster Evolution to Resistance and Higher Survival in THP-1 Monocytes: A Study With Moxifloxacin. Frontiers in Microbiology, 2020, 11, 587364.	3.5	11
67	Fluorescent macrolide probes – synthesis and use in evaluation of bacterial resistance. RSC Chemical Biology, 2020, 1, 395-404.	4.1	28
68	Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). International Journal of Molecular Sciences, 2020, 21, 8967.	4.1	14
69	Antitoxin Îμ Reverses Toxin ζ-Facilitated Ampicillin Dormants. Toxins, 2020, 12, 801.	3.4	5
70	The within-host evolution of antimicrobial resistance in <i>Mycobacterium tuberculosis</i> . FEMS Microbiology Reviews, 2021, 45, .	8.6	23
71	Understanding tolerance to cell wall–active antibiotics. Annals of the New York Academy of Sciences, 2021, 1496, 35-58.	3.8	22
72	Persistent Cancer Cells: The Deadly Survivors. Cell, 2020, 183, 860-874.	28.9	157
73	From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules, 2020, 25, 4949.	3.8	13

#	Article	IF	CITATIONS
74	Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus. Frontiers in Microbiology, 2020, 11, 573253.	3.5	11
75	In Vivo Imaging with Genetically Encoded Redox Biosensors. International Journal of Molecular Sciences, 2020, 21, 8164.	4.1	33
76	Antimicrobial Peptide Induced-Stress Renders Staphylococcus aureus Susceptible to Toxic Nucleoside Analogs. Frontiers in Immunology, 2020, 11, 1686.	4.8	7
77	Clinical Mutations That Partially Activate the Stringent Response Confer Multidrug Tolerance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	16
78	Role of low-level quinolone resistance in generating tolerance in Escherichia coli under therapeutic concentrations of ciprofloxacin. Journal of Antimicrobial Chemotherapy, 2020, 75, 2124-2132.	3.0	9
79	Identification of FDA-approved antivirulence drugs targeting the <i>Pseudomonas aeruginosa </i> quorum sensing effector protein PqsE. Virulence, 2020, 11, 652-668.	4.4	28
80	Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 683-693.	1.5	11
81	Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 2020, 33, .	13.6	898
82	Characterization of fosfomycin heteroresistance among multidrug-resistant Escherichia coli isolates from hospitalized patients in Rio de Janeiro, Brazil. Journal of Global Antimicrobial Resistance, 2020, 22, 584-593.	2.2	8
83	Extreme Antibiotic Persistence via Heterogeneity-Generating Mutations Targeting Translation. MSystems, 2020, 5, .	3.8	28
84	Evolutionary causes and consequences of bacterial antibiotic persistence. Nature Reviews Microbiology, 2020, 18, 479-490.	28.6	113
85	Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. Journal of Microbiology, 2020, 58, 431-444.	2.8	10
86	Bacterial metabolic heterogeneity: origins and applications in engineering and infectious disease. Current Opinion in Biotechnology, 2020, 64, 183-189.	6.6	19
87	Drug-induced tolerance: the effects of antibiotic pre-exposure in <i>Stenotrophomonas maltophilia</i> . Future Microbiology, 2020, 15, 497-508.	2.0	6
88	Mutations in ArgS Arginine-tRNA Synthetase Confer Additional Antibiotic Tolerance Protection to Extended-Spectrum-1 ² -Lactamase-Producing Burkholderia thailandensis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	1
89	A Physiological Basis for Nonheritable Antibiotic Resistance. MBio, 2020, 11, .	4.1	39
90	Adaption/resistance to antimicrobial nanoparticles: Will it be a problem?. Nano Today, 2020, 34, 100909.	11.9	33
91	An RNA biology perspective on speciesâ€specific programmable RNA antibiotics. Molecular Microbiology, 2020, 113, 550-559.	2.5	30

#	Article	IF	Citations
92	Absence of tmRNA Increases the Persistence to Cefotaxime and the Intercellular Accumulation of Metabolite GlcNAc in Aeromonas veronii. Frontiers in Cellular and Infection Microbiology, 2020, 10, 44.	3.9	7
93	5-Methylindole Potentiates Aminoglycoside Against Gram-Positive Bacteria Including Staphylococcus aureus Persisters Under Hypoionic Conditions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 84.	3.9	25
94	Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP. MSphere, 2020, 5, .	2.9	11
95	Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathogens, 2020, 16, e1008354.	4.7	49
96	Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends in Microbiology, 2020, 28, 566-577.	7.7	55
97	Loss of phenotypic inheritance associated with <i>ydcl</i> mutation leads to increased frequency of small, slow persisters in <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4152-4157.	7.1	17
98	Enhancing the Thermo-Stability and Anti-Bacterium Activity of Lysozyme by Immobilization on Chitosan Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 1635.	4.1	30
99	Extreme Drug Tolerance of Mycobacterium abscessus "Persisters― Frontiers in Microbiology, 2020, 11, 359.	3.5	42
100	Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptidesâ€"A Review. Pathogens, 2020, 9, 522.	2.8	39
101	The Neutrally Charged Diarylurea Compound PQ401 Kills Antibiotic-Resistant and Antibiotic-Tolerant Staphylococcus aureus. MBio, 2020, 11, .	4.1	23
102	Biology of antimicrobial resistance and approaches to combat it. Science Translational Medicine, 2020, 12, .	12.4	99
103	PasT of <i>Escherichia coli</i> sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10. MicrobiologyOpen, 2020, 9, e1064.	3.0	13
104	A pursuit of Staphylococcus aureus continues: a role of persister cells. Archives of Pharmacal Research, 2020, 43, 630-638.	6.3	36
105	Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 326.	3.9	70
106	A Deep Learning Approach to Antibiotic Discovery. Cell, 2020, 180, 688-702.e13.	28.9	978
107	hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus. Scientific Reports, 2020, 10, 2865.	3.3	28
108	Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 2020, 18, 319-331.	28.6	342
109	Evaluation of pooled human urine and synthetic alternatives in a dynamic bladder infection in vitro model simulating oral fosfomycin therapy. Journal of Microbiological Methods, 2020, 171, 105861.	1.6	15

#	Article	IF	CITATIONS
110	Assaying Chlamydia pneumoniae Persistence in Monocyte-Derived Macrophages Identifies Dibenzocyclooctadiene Lignans as Phenotypic Switchers. Molecules, 2020, 25, 294.	3.8	6
111	Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiology Reviews, 2020, 44, 171-188.	8.6	154
112	l-Alanine specifically potentiates fluoroquinolone efficacy against Mycobacterium persisters via increased intracellular reactive oxygen species. Applied Microbiology and Biotechnology, 2020, 104, 2137-2147.	3.6	3
113	Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology, 2020, 18, 195-210.	28.6	257
114	When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2020, 75, 1071-1086.	3.0	37
115	Innovative Technologies for Market Leadership. Future of Business and Finance, 2020, , .	0.4	5
116	Tolerance and Persister Formation in Oral Streptococci. Antibiotics, 2020, 9, 167.	3.7	6
117	Linking bacterial growth, survival, and multicellularity – small signaling molecules as triggers and drivers. Current Opinion in Microbiology, 2020, 55, 57-66.	5.1	59
118	Chemical, Metabolic, and Cellular Characterization of a FtsZ Inhibitor Effective Against Burkholderia cenocepacia. Frontiers in Microbiology, 2020, 11, 562.	3.5	5
119	Heteroresistant Bacteria Detected by an Extended Raman-Based Antibiotic Susceptibility Test. Analytical Chemistry, 2020, 92, 8722-8731.	6.5	26
120	Compounding Effects of Climate Warming and Antibiotic Resistance. IScience, 2020, 23, 101024.	4.1	54
121	Are we really studying persister cells?. Environmental Microbiology Reports, 2021, 13, 3-7.	2.4	23
122	Antimicrobial zinc toxicity in Mϕs: ZnT1 pays the toll. Journal of Leukocyte Biology, 2021, 109, 281-282.	3.3	0
123	Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Science of the Total Environment, 2021, 755, 142632.	8.0	45
124	Nanotechnologyâ€Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Advanced Therapeutics, 2021, 4, 2000113.	3.2	37
125	Impact of bacterial persisters on their host. Current Opinion in Microbiology, 2021, 59, 65-71.	5.1	28
126	Most-Probable-Number-Based Minimum Duration of Killing Assay for Determining the Spectrum of Rifampicin Susceptibility in Clinical Mycobacterium tuberculosis Isolates. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	5
127	Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nature Reviews Microbiology, 2021, 19, 331-342.	28.6	213

#	Article	IF	CITATIONS
128	Heterogeneous Host–Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends in Microbiology, 2021, 29, 606-620.	7.7	10
129	The Polyaminoisoprenyl Potentiator NV716 Revives Old Disused Antibiotics against Intracellular Forms of Infection by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	9
130	Quorum sensing controls persistence, resuscitation, and virulence of <i>Legionella</i> subpopulations in biofilms. ISME Journal, 2021, 15, 196-210.	9.8	36
131	Antimicrobial pharmacokinetics and preclinical in vitro models to support optimized treatment approaches for uncomplicated lower urinary tract infections. Expert Review of Anti-Infective Therapy, 2021, 19, 271-295.	4.4	5
132	Persistence and environmental geochemistry transformation of antibiotic-resistance bacteria/genes in water at the interface of natural minerals with light irradiation. Critical Reviews in Environmental Science and Technology, 2022, 52, 2270-2301.	12.8	9
133	A Robust Method for Generating, Quantifying, and Testing Large Numbers of Escherichia coli Persisters. Methods in Molecular Biology, 2021, 2357, 41-62.	0.9	1
134	Transcriptional Diversity and Niche-Specific Distribution of Leukocyte Populations during <i>Staphylococcus aureus </i> Craniotomy-Associated Biofilm Infection. Journal of Immunology, 2021, 206, 751-765.	0.8	12
135	Antibiotic Tolerance and Persistence Studied Throughout Bacterial Growth Phases. Methods in Molecular Biology, 2021, 2357, 23-40.	0.9	4
136	Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus. Applied Microbiology and Biotechnology, 2021, 105, 725-739.	3.6	12
137	Toxin–Antitoxin Systems in Pathogenic Bacteria. Toxins, 2021, 13, 74.	3.4	7
138	Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms?. Nanomaterials, 2021, 11, 82.	4.1	26
139	Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit <i>Escherichia coli</i> Persistence and Biofilm Formation. Journal of Microbiology and Biotechnology, 2021, 31, 130-136.	2.1	14
140	Studying Bacterial Persistence: Established Methods and Current Advances. Methods in Molecular Biology, 2021, 2357, 3-20.	0.9	2
141	Stimulating Aminoglycoside Uptake to Kill Staphylococcus aureus Persisters. Methods in Molecular Biology, 2021, 2357, 223-236.	0.9	4
142	Phenotypic Characterization of Antibiotic Persisters at the Single-Cell Level: From Data Acquisition to Data Analysis. Methods in Molecular Biology, 2021, 2357, 95-106.	0.9	0
143	Designer protein pseudo-capsids targeting intracellular bacteria. Biomaterials Science, 2021, 9, 6807-6812.	5.4	3
144	Persistence of Intracellular Bacterial Pathogensâ€"With a Focus on the Metabolic Perspective. Frontiers in Cellular and Infection Microbiology, 2020, 10, 615450.	3.9	26
145	The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chemical Society Reviews, 2021, 50, 7820-7880.	38.1	187

#	Article	IF	CITATIONS
146	Studying Antibiotic Persistence During Infection. Methods in Molecular Biology, 2021, 2357, 273-289.	0.9	4
147	Molecular reprogramming and phenotype switching in <i>Staphylococcus aureus</i> lead to high antibiotic persistence and affect therapy success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
148	Contribution of Drugs Interfering with Protein and Cell Wall Synthesis to the Persistence of Pseudomonas aeruginosa Biofilms: An In Vitro Model. International Journal of Molecular Sciences, 2021, 22, 1628.	4.1	1
149	Metabolites Potentiate Nitrofurans in Nongrowing Escherichia coli. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	8
150	Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. Nano Letters, 2021, 21, 1992-2000.	9.1	46
151	Virulence Factors in Coagulase-Negative Staphylococci. Pathogens, 2021, 10, 170.	2.8	73
152	Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cellular and Molecular Life Sciences, 2021, 78, 2585-2606.	5.4	21
153	MazF toxin causes alterations in <i>Staphylococcus aureus</i> transcriptome, translatome and proteome that underlie bacterial dormancy. Nucleic Acids Research, 2021, 49, 2085-2101.	14.5	14
154	Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles. Nano Structures Nano Objects, 2021, 25, 100657.	3.5	8
155	Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Critical Reviews in Microbiology, 2021, 47, 162-191.	6.1	14
156	A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting (p)ppGpp synthetases. Cell Chemical Biology, 2021, 28, 1420-1432.e9.	5.2	18
158	Antibiotics modulate attractive interactions in bacterial colonies affecting survivability under combined treatment. PLoS Pathogens, 2021, 17, e1009251.	4.7	15
159	Immunopathogenesis of Craniotomy Infection and Niche-Specific Immune Responses to Biofilm. Frontiers in Immunology, 2021, 12, 625467.	4.8	14
160	When to wake up? The optimal waking-up strategies for starvation-induced persistence. PLoS Computational Biology, 2021, 17, e1008655.	3.2	8
161	Evolution of Bacterial Tolerance Under Antibiotic Treatment and Its Implications on the Development of Resistance. Frontiers in Microbiology, 2021, 12, 617412.	3.5	43
162	Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biology, 2021, 19, e3001093.	5.6	31
163	Antibody-Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilms. Biomacromolecules, 2021, 22, 1639-1653.	5.4	25
165	Bacteria primed by antimicrobial peptides develop tolerance and persist. PLoS Pathogens, 2021, 17, e1009443.	4.7	39

#	Article	IF	CITATIONS
166	The Natural Alkaloid Berberine Can Reduce the Number of <i>Pseudomonas aeruginosa</i> Tolerant Cells. Journal of Natural Products, 2021, 84, 993-1001.	3.0	10
169	Clinical Evidence of Current Irrigation Practices and the Use of Oral Antibiotics to Prevent and Treat Periprosthetic Joint Infection. Orthopedic Clinics of North America, 2021, 52, 93-101.	1.2	2
170	Rapid Detection of Escherichia coli Antibiotic Susceptibility Using Live/Dead Spectrometry for Lytic Agents. Microorganisms, 2021, 9, 924.	3.6	10
171	Synergistic effect of dielectric barrier discharge plasma and Ho-TiO2/rGO catalytic honeycomb ceramic plate for removal of quinolone antibiotics in aqueous solution. Separation and Purification Technology, 2022, 281, 118723.	7.9	7
172	Protein Aggregation as a Bacterial Strategy to Survive Antibiotic Treatment. Frontiers in Molecular Biosciences, 2021, 8, 669664.	3.5	29
174	Draft Genome Sequence of Persistent Klebsiella grimontii AT013-Mero-001, Isolated from Human Feces. Microbiology Resource Announcements, 2021, 10, .	0.6	0
175	Elevated Expression of Toxin TisB Protects Persister Cells against Ciprofloxacin but Enhances Susceptibility to Mitomycin C. Microorganisms, 2021, 9, 943.	3.6	9
177	Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chemical Engineering Journal, 2021, 410, 128209.	12.7	60
178	Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Advanced Drug Delivery Reviews, 2021, 172, 339-360.	13.7	42
179	Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence. Nature Microbiology, 2021, 6, 783-791.	13.3	59
180	Ploidy is an important determinant of fluoroquinolone persister survival. Current Biology, 2021, 31, 2039-2050.e7.	3.9	23
181	Impacts of the Type I Toxin–Antitoxin System, SprG1/SprF1, on Staphylococcus aureus Gene Expression. Genes, 2021, 12, 770.	2.4	2
182	Quantification of persister formation of <i>Escherichia coli </i> leveraging electronic cell counting and semi-mechanistic pharmacokinetic/pharmacodynamic modelling. Journal of Antimicrobial Chemotherapy, 2021, 76, 2088-2096.	3.0	6
183	Machine Learning Establishes Single-Cell Calcium Dynamics as an Early Indicator of Antibiotic Response. Microorganisms, 2021, 9, 1000.	3.6	7
184	Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B. IScience, 2021, 24, 102391.	4.1	16
187	Antibiotic persistence: The power of being a diploid. Current Biology, 2021, 31, R493-R495.	3.9	1
188	Novel Pharmacokinetic/Pharmacodynamic Parameters Quantify the Exposure–Effect Relationship of Levofloxacin against Fluoroquinolone-Resistant Escherichia coli. Antibiotics, 2021, 10, 615.	3.7	4
190	Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus. MBio, 2021, 12, .	4.1	24

#	Article	IF	CITATIONS
191	Heterologous Protein Expression Favors the Formation of Protein Aggregates in Persister and Viable but Nonculturable Bacteria. ACS Infectious Diseases, 2021, 7, 1848-1858.	3.8	32
192	Non-Genetic Diversity in Chemosensing and Chemotactic Behavior. International Journal of Molecular Sciences, 2021, 22, 6960.	4.1	8
193	Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis?. Frontiers in Immunology, 2021, 12, 703060.	4.8	8
194	<i>Pseudomonas aeruginosa</i> Biofilm Lung Infection in Cystic Fibrosis: The Challenge of Persisters. , 0, , .		1
195	Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients. Cancers, 2021, 13, 2776.	3.7	9
197	The classification of bacterial survival strategies in the presence of antimicrobials. Microbial Pathogenesis, 2021, 155, 104901.	2.9	11
198	The Role of OmpR in Bile Tolerance and Pathogenesis of Adherent-Invasive Escherichia coli. Frontiers in Microbiology, 2021, 12, 684473.	3.5	10
199	Thermophilic rather than mesophilic sludge anaerobic digesters possess lower antibiotic resistant genes abundance. Bioresource Technology, 2021, 329, 124924.	9.6	19
200	Fast Antibiotic Susceptibility Testing via Raman Microspectrometry on Single Bacteria: An MRSA Case Study. ACS Omega, 2021, 6, 16273-16279.	3.5	13
201	Phylogeny Reveals Novel HipA-Homologous Kinase Families and Toxin-Antitoxin Gene Organizations. MBio, 2021, 12, e0105821.	4.1	12
202	Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. Molecular Biology and Evolution, 2021, 38, 4095-4115.	8.9	6
203	Deacylated tRNA Accumulation Is a Trigger for Bacterial Antibiotic Persistence Independent of the Stringent Response. MBio, 2021, 12, e0113221.	4.1	5
204	Inhibitors of bacterial H ₂ S biogenesis targeting antibiotic resistance and tolerance. Science, 2021, 372, 1169-1175.	12.6	112
206	Towards robust <i>Pseudomonas</i> cell factories to harbour novel biosynthetic pathways. Essays in Biochemistry, 2021, 65, 319-336.	4.7	44
207	A method for the enrichment, isolation and validation of Mycobacterium smegmatis population surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin. FEMS Microbiology Letters, 2021, 368, .	1.8	3
208	Emerging mutant populations of Listeria monocytogenes EGD-e under selective pressure of Thymbra capitata essential oil question its use in food preservation. Food Research International, 2021, 145, 110403.	6.2	10
209	The potential of SERS as an AST methodology in clinical settings. Nanophotonics, 2021, 10, 2537-2561.	6.0	12
211	Removal of peptidoglycan and inhibition of active cellular processes leads to daptomycin tolerance in Enterococcus faecalis. PLoS ONE, 2021, 16, e0254796.	2.5	7

#	Article	IF	CITATIONS
213	The progress of type II persisters of <i>Escherichia coli</i> O157:H7 to a non-culturable state during prolonged exposure to antibiotic stress with revival being aided through acid-shock treatment and provision of methyl pyruvate. Canadian Journal of Microbiology, 2021, 67, 518-528.	1.7	3
214	Persister Escherichia coli Cells Have a Lower Intracellular pH than Susceptible Cells but Maintain Their pH in Response to Antibiotic Treatment. MBio, 2021, 12, e0090921.	4.1	46
216	Spatiotemporal dynamics of growth and death within spherical bacterial colonies. Biophysical Journal, 2021, 120, 3418-3428.	0.5	13
217	Phenotypic heterogeneity in persisters: a novel â€~hunker' theory of persistence. FEMS Microbiology Reviews, 2022, 46, .	8.6	25
218	Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. Journal of Biosciences, 2021, 46, 1.	1.1	52
219	Novel Antimicrobial Treatment Strategy Based on Drug Delivery Systems for Acute Otitis Media. Frontiers in Pharmacology, 2021, 12, 640514.	3.5	6
220	Recent Progress in Lyme Disease and Remaining Challenges. Frontiers in Medicine, 2021, 8, 666554.	2.6	55
221	Proteome Dynamics during Antibiotic Persistence and Resuscitation. MSystems, 2021, 6, e0054921.	3.8	4
222	A Water-Soluble Antibiotic in Rhubarb Stalk Shows an Unusual Pattern of Multiple Zones of Inhibition and Preferentially Kills Slow-Growing Bacteria. Antibiotics, 2021, 10, 951.	3.7	5
223	Rifamycin antibiotics and the mechanisms of their failure. Journal of Antibiotics, 2021, 74, 786-798.	2.0	25
224	Identification and Characterization of Pleiotropic High-Persistence Mutations in the Beta Subunit of the Bacterial RNA Polymerase. Antimicrobial Agents and Chemotherapy, 2021, 65, e0052221.	3.2	2
225	Multilocus sequence analysis reveals genetic diversity in Staphylococcus aureus isolate of goat with mastitis persistent after treatment with enrofloxacin. Scientific Reports, 2021, 11, 17252.	3.3	2
226	The Dynamic Transition of Persistence toward the Viable but Nonculturable State during Stationary Phase Is Driven by Protein Aggregation. MBio, 2021, 12, e0070321.	4.1	42
227	Toxin Induction or Inhibition of Transcription or Translation Posttreatment Increases Persistence to Fluoroquinolones. MBio, 2021, 12, e0198321.	4.1	8
228	Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Frontiers in Microbiology, 2021, 12, 712564.	3.5	3
229	Improving the ability of antimicrobial susceptibility tests to predict clinical outcome accurately: Adding metabolic evasion to the equation. Drug Discovery Today, 2021, 26, 2182-2189.	6.4	4
230	Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. Journal of Nanobiotechnology, 2021, 19, 291.	9.1	25
231	Bacterial persistence is essential for susceptible cell survival in indirect resistance, mainly for lower cell densities. PLoS ONE, 2021, 16, e0246500.	2.5	6

#	Article	IF	CITATIONS
233	Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. International Journal of Molecular Sciences, 2021, 22, 10059.	4.1	7
234	From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nature Reviews Microbiology, 2022, 20, 129-142.	28.6	43
235	Drug-induced resistance evolution necessitates less aggressive treatment. PLoS Computational Biology, 2021, 17, e1009418.	3.2	14
236	A minimal model for gene expression dynamics of bacterial type II toxin–antitoxin systems. Scientific Reports, 2021, 11, 19516.	3.3	1
237	Cellular Growth Arrest and Efflux Pumps Are Associated With Antibiotic Persisters in Streptococcus pyogenes Induced in Biofilm-Like Environments. Frontiers in Microbiology, 2021, 12, 716628.	3.5	8
238	Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. Trends in Microbiology, 2022, 30, 379-389.	7.7	27
239	Commentary: Description of Clinical Characteristics of VAP Patients in MIMIC Database. Frontiers in Pharmacology, 2021, 12, 736447.	3.5	0
240	Memory shapes microbial populations. PLoS Computational Biology, 2021, 17, e1009431.	3.2	7
241	Stochastic response of bacterial cells to antibiotics: its mechanisms and implications for population and evolutionary dynamics. Current Opinion in Microbiology, 2021, 63, 104-108.	5.1	11
242	Adsorption of nalidixic acid antibiotic using a renewable adsorbent based on Graphene oxide from simulated wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105975.	6.7	29
243	Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated "nanoknife―effect and photodynamic/CO gas therapy. Biomaterials, 2021, 277, 121084.	11.4	30
244	Effect of antibiotic treatment on Mycoplasma hyopneumoniae detection and infectious potential. Veterinary Microbiology, 2021, 262, 109222.	1.9	0
245	Bioguided isolation, identification and bioactivity evaluation of anti-MRSA constituents from Morus alba Linn Journal of Ethnopharmacology, 2021, 281, 114542.	4.1	9
246	Modulators of protein–protein interactions as antimicrobial agents. RSC Chemical Biology, 2021, 2, 387-409.	4.1	19
247	Systematic alteration of inÂvitro metabolic environments reveals empirical growth relationships in cancer cell phenotypes. Cell Reports, 2021, 34, 108647.	6.4	5
248	Using membrane perturbing small molecules to target chronic persistent infections. RSC Medicinal Chemistry, 2021, 12, 1312-1324.	3.9	7
249	Counting Chromosomes in Individual Bacteria to Quantify Their Impacts on Persistence. Methods in Molecular Biology, 2021, 2357, 125-146.	0.9	0
250	Microfluidics for Single-Cell Study of Antibiotic Tolerance and Persistence Induced by Nutrient Limitation. Methods in Molecular Biology, 2021, 2357, 107-124.	0.9	3

#	Article	IF	Citations
251	Development, dynamics and control of antimicrobial-resistant bacterial biofilms: a review. Environmental Chemistry Letters, 2021, 19, 1983-1993.	16.2	25
252	A multifaceted cellular damage repair and prevention pathway promotes highâ€level tolerance to βâ€lactam antibiotics. EMBO Reports, 2021, 22, e51790.	4.5	26
254	RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus. Nature Microbiology, 2021, 6, 209-220.	13.3	25
255	A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Science Advances, 2021, 7, .	10.3	50
256	Evolution Under Antibiotic Treatments: Interplay Between Antibiotic Persistence, Tolerance, and Resistance. , 2019 , , $1-17$.		7
257	Control of Bacterial Biofilms for Mitigating Antimicrobial Resistance. Sustainable Agriculture Reviews, 2020, , 147-176.	1.1	4
258	In vivo efficacy of a dry powder formulation of ciprofloxacin-copper complex in a chronic lung infection model of bioluminescent Pseudomonas aeruginosa. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 210-217.	4.3	7
259	β-Lactams against the Fortress of the Gram-Positive <i>Staphylococcus aureus</i> Bacterium. Chemical Reviews, 2021, 121, 3412-3463.	47.7	52
260	A peptide of a type I toxinâr antitoxin system induces <i> Helicobacter pylori</i> morphological transformation from spiral shape to coccoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31398-31409.	7.1	24
261	The general stress response of Staphylococcus aureus promotes tolerance of antibiotics and survival in whole human blood. Microbiology (United Kingdom), 2020, 166, 1088-1094.	1.8	17
271	Postâ€transcriptional deregulation of the <i><scp>tisB</scp>/<scp>istR</scp>â€1</i> toxin–antitoxin system promotes <scp>SOS</scp> â€independent persister formation in <scp><i>Escherichia coli</i></scp> . Environmental Microbiology Reports, 2021, 13, 159-168.	2.4	10
272	Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000Research, 2019, 8, 1781.	1.6	9
273	Bacterial behavior in human blood reveals complement evaders with some persister-like features. PLoS Pathogens, 2020, 16, e1008893.	4.7	18
274	Bacterial persisters in long-term infection: Emergence and fitness in a complex host environment. PLoS Pathogens, 2020, 16, e1009112.	4.7	53
275	Antibiotic resistance and persistenceâ€"Implications for human health and treatment perspectives. EMBO Reports, 2020, 21, e51034.	4.5	228
276	Drug resistance in glioblastoma: are persisters the key to therapy?. , 2020, 3, 287-301.		23
277	Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations. Current Topics in Medicinal Chemistry, 2020, 20, 1264-1273.	2.1	4
278	Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs). Frontiers in Microbiology, 2020, 11, 1028.	3.5	67

#	Article	IF	CITATIONS
279	Mycobacterium tuberculosis Cells Surviving in the Continued Presence of Bactericidal Concentrations of Rifampicin in vitro Develop Negatively Charged Thickened Capsular Outer Layer That Restricts Permeability to the Antibiotic. Frontiers in Microbiology, 2020, 11, 554795.	3.5	9
280	Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics, 2021, 10, 3.	3.7	206
281	Quantifying antibiotic impact on within-patient dynamics of extended-spectrum beta-lactamase resistance. ELife, 2020, 9, .	6.0	21
282	Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. ELife, 2020, 9, .	6.0	56
283	Advances on chemically modified antimicrobial peptides for generating peptide antibiotics. Chemical Communications, 2021, 57, 11578-11590.	4.1	25
285	Expanding the Staphylococcus aureus SarA Regulon to Small RNAs. MSystems, 2021, 6, e0071321.	3.8	11
286	Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biology, 2021, 19, e3001406.	5.6	26
289	Staphylococcal Bacterial Persister Cells, Biofilms, and Intracellular Infection Are Disrupted by JD1, a Membrane-Damaging Small Molecule. MBio, 2021, 12, e0180121.	4.1	16
290	Quantitative biology of survival under antibiotic treatments. Current Opinion in Microbiology, 2021, 64, 139-145.	5.1	7
291	Salmonella enterica serovar Typhimurium genetic variants isolated after lethal treatment with Thymbra capitata essential oil (TCO) showed increased resistance to TCO in milk. International Journal of Food Microbiology, 2021, 360, 109443.	4.7	5
292	Antibiotic persistence and tolerance: not just one and the same. Current Opinion in Microbiology, 2021, 64, 76-81.	5.1	30
293	Persister Resuscitation., 2019,, 203-216.		0
298	Wider Context of Antimicrobial Resistance, Including Molecular Biology Perspective and Implications for Clinical Practice., 2020,, 233-279.		1
305	Assessment of the efficiency of synergistic photocatalysis on penicillin G biodegradation by whole cell Paracoccus sp. Journal of Biological Engineering, 2021, 15, 25.	4.7	4
306	Cellular Self-Digestion and Persistence in Bacteria. Microorganisms, 2021, 9, 2269.	3.6	6
310	Unique Mode of Cell Division by the Mycobacterial Genetic Resister Clones Emerging De Novo from the Antibiotic-Surviving Population. MSphere, 2020, 5, .	2.9	4
311	Analytic Philosophy for Biomedical Research: The Imperative of Applying Yesterday's Timeless Messages to Today's Impasses. Future of Business and Finance, 2020, , 167-200.	0.4	3
313	Eradication of Porphyromonas gingivalis Persisters Through Colloidal Bismuth Subcitrate Synergistically Combined With Metronidazole. Frontiers in Microbiology, 2021, 12, 748121.	3.5	7

#	Article	IF	Citations
314	In Vitro Antimicrobial Activity of Medicinal Plant Extracts against Some Bacterial Pathogens Isolated from Raw and Processed Meat. Life, 2021, 11, 1178.	2.4	7
315	The vulnerable versatility of Salmonella antibiotic persisters during infection. Cell Host and Microbe, 2021, 29, 1757-1773.e10.	11.0	43
317	Ecology and evolution of antibiotic persistence. Trends in Microbiology, 2022, 30, 466-479.	7.7	32
322	Environmental pollutants induce noninherited antibiotic resistance to polymyxin B in Escherichia coli. Future Microbiology, 2020, 15, 1631-1643.	2.0	1
323	Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nature Communications, 2021, 12, 6792.	12.8	49
324	Awakening sleeper cells: a narrative review on bacterial magic spot synthetases as potential drug targets to overcome persistence. Current Genetics, 2022, 68, 49-60.	1.7	3
325	Existence of log-phase <i>Escherichia coli</i> persisters and lasting memory of a starvation pulse. Life Science Alliance, 2022, 5, e202101076.	2.8	8
326	Observation of universal ageing dynamics in antibiotic persistence. Nature, 2021, 600, 290-294.	27.8	47
327	Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophysical Reviews, 2021, 13, 1039-1051.	3.2	4
329	Stress and disarray leading to persistence. Nature Reviews Microbiology, 2021, , .	28.6	2
330	Potential genes associated with survival of Acinetobacter baumannii under ciprofloxacin stress. Microbes and Infection, 2021, 23, 104844.	1.9	5
331	Photothermal therapy may be a double-edged sword by inducing the formation of bacterial antibiotic tolerance. Biomaterials Science, 2022, 10, 1995-2005.	5.4	7
332	Evolution of fluoroquinolone-resistant Escherichia coli in the gut after ciprofloxacin treatment. International Journal of Medical Microbiology, 2022, 312, 151548.	3.6	1
333	Novel Fabl inhibitor disrupts the biofilm formation of MRSA through down-regulating the expression of quorum-sensing regulatory genes. Microbial Pathogenesis, 2022, 163, 105391.	2.9	3
334	Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. Water Research, 2022, 211, 117997.	11.3	21
336	Inhibition of NPC1L1 disrupts adaptive responses of drugâ€tolerant persister cells to chemotherapy. EMBO Molecular Medicine, 2022, 14, e14903.	6.9	46
337	Mutations in respiratory complex I promote antibiotic persistence through alterations in intracellular acidity and protein synthesis. Nature Communications, 2022, 13, 546.	12.8	21
339	<i>Pseudomonas aeruginosa</i> Biofilm Dispersion by the Human Atrial Natriuretic Peptide. Advanced Science, 2022, 9, e2103262.	11.2	20

#	Article	IF	CITATIONS
340	Bacterial respiration during stationary phase induces intracellular damage that leads to delayed regrowth. IScience, 2022, 25, 103765.	4.1	6
341	Anthranilate Acts as a Signal to Modulate Biofilm Formation, Virulence, and Antibiotic Tolerance of Pseudomonas aeruginosa and Surrounding Bacteria. Microbiology Spectrum, 2022, 10, e0146321.	3.0	24
342	<i>lon</i> Deletion Impairs Persister Cell Resuscitation in Escherichia coli. MBio, 2022, 13, e0218721.	4.1	8
343	Antipersister strategies against stress induced bacterial persistence. Microbial Pathogenesis, 2022, 164, 105423.	2.9	13
344	Bugs on Drugs: A Drosophila melanogaster Gut Model to Study In Vivo Antibiotic Tolerance of E. coli. Microorganisms, 2022, 10, 119.	3.6	5
346	Fluoroquinolone Persistence in Escherichia coli Requires DNA Repair despite Differing between Starving Populations. Microorganisms, 2022, 10, 286.	3.6	1
347	Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Science Advances, 2022, 8, eabi7711.	10.3	1
348	Quantification of within-patient Staphylococcus aureus phenotypic heterogeneity as a proxy for the presence of persisters across clinical presentations. Clinical Microbiology and Infection, 2022, 28, 1022.e1-1022.e7.	6.0	8
349	Are Bacterial Persisters Dormant Cells Only?. Frontiers in Microbiology, 2021, 12, 708580.	3.5	21
350	n-Butanol Potentiates Subinhibitory Aminoglycosides against Bacterial Persisters and Multidrug-Resistant MRSA by Rapidly Enhancing Antibiotic Uptake. ACS Infectious Diseases, 2022, 8, 373-386.	3.8	10
351	Defining bacterial heterogeneity and dormancy with the parallel use of single-cell and population level approaches. Current Opinion in Food Science, 2022, 44, 100808.	8.0	5
352	Tolerance and resistance of microbial biofilms. Nature Reviews Microbiology, 2022, 20, 621-635.	28.6	316
353	Development of an efficient antimicrobial susceptibility testing method with species identification by Nanopore sequencing of 16S rRNA amplicons. PLoS ONE, 2022, 17, e0262912.	2.5	4
355	Tobramycin Stress Induced Differential Gene Expression in Acinetobacter baumannii. Current Microbiology, 2022, 79, 88.	2.2	7
356	Identifying Bacterial Lineages in Salmonella by Flow Cytometry. EcoSal Plus, 2022, 10, eESP00182021.	5.4	1
357	Gradients and consequences of heterogeneity in biofilms. Nature Reviews Microbiology, 2022, 20, 593-607.	28.6	84
358	An easy-to-use antimicrobial hydrogel effectively kills bacteria, fungi, and influenza virus. Biomaterials Science, 2022, 10, 2014-2028.	5.4	10
359	Application of antibiotic-derived fluorescent probes to bacterial studies. Methods in Enzymology, 2022, 665, 1-28.	1.0	3

#	Article	IF	CITATIONS
360	Polycationic Glycopolymer Demonstrates Activity Against Persisters and Biofilms of Non-tuberculosis Mycobacteria Cystic Fibrosis Clinical Isolates in vitro. Frontiers in Microbiology, 2022, 13, 821820.	3.5	4
361	High-Throughput Screening of a Promoter Library Reveals New Persister Mechanisms in Escherichia Coli. Microbiology Spectrum, 2022, 10, e0225321.	3.0	6
362	Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. Environmental Toxicology and Chemistry, 2022, 41, 687-714.	4.3	39
364	Mechanosensitive Channels Mediate Hypoionic Shock-Induced Aminoglycoside Potentiation against Bacterial Persisters by Enhancing Antibiotic Uptake. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0112521.	3.2	6
365	Skeletal infections: microbial pathogenesis, immunity and clinical management. Nature Reviews Microbiology, 2022, 20, 385-400.	28.6	165
366	Interaction Tolerance Detection Test for Understanding the Killing Efficacy of Directional Antibiotic Combinations. MBio, 2022, 13, e0000422.	4.1	6
367	Host Cell Oxidative Stress Induces Dormant Staphylococcus aureus Persisters. Microbiology Spectrum, 2022, 10, e0231321.	3.0	24
368	Diverse Survival Functions of Secondary Metabolites in Nature. , 0, , .		0
369	Predation of antibiotic persister bacteria by the predatory bacterium <i>Bdellovibrio bacteriovorus </i> . Environmental Microbiology Reports, 2022, 14, 239-244.	2.4	1
370	Transient Antibiotic Tolerance Triggered by Nutrient Shifts From Gluconeogenic Carbon Sources to Fatty Acid. Frontiers in Microbiology, 2022, 13, 854272.	3.5	2
371	The Error-Prone Polymerase DnaE2 Mediates the Evolution of Antibiotic Resistance in Persister Mycobacterial Cells. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0177321.	3.2	6
372	Pleiotropic actions of phenothiazine drugs are detrimental to Gram-negative bacterial persister cells. Communications Biology, 2022, 5, 217.	4.4	7
373	A Shift in Perspective: A Role for the Type I Toxin TisB as Persistence-Stabilizing Factor. Frontiers in Microbiology, 2022, 13, 871699.	3.5	5
374	<i>IdhA</i> â€induced persister in <i>Escherichia coli</i> is formed through accidental SOS response via intracellular metabolic perturbation. Microbiology and Immunology, 2022, , .	1.4	1
375	Evolution of Bacterial Persistence to Antibiotics during a 50,000-Generation Experiment in an Antibiotic-Free Environment. Antibiotics, 2022, 11, 451.	3.7	2
376	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	28.6	311
377	Transcription-coupled DNA repair underlies variation in persister awakening and the emergence of resistance. Cell Reports, 2022, 38, 110427.	6.4	20
379	TisB Protein Protects Escherichia coli Cells Suffering Massive DNA Damage from Environmental Toxic Compounds. MBio, 2022, 13, e0038522.	4.1	4

#	Article	IF	Citations
380	Mathematical models to study the biology of pathogens and the infectious diseases they cause. IScience, 2022, 25, 104079.	4.1	8
383	Types and functions of heterogeneity in mycobacteria. Nature Reviews Microbiology, 2022, 20, 529-541.	28.6	19
384	Probiotic Escherichia coli Nissle 1917 inhibits bacterial persisters that survive fluoroquinolone treatment. Journal of Applied Microbiology, 2022, 132, 4020-4032.	3.1	7
385	Sodium dehydroacetate confers broad antibiotic tolerance by remodeling bacterial metabolism. Journal of Hazardous Materials, 2022, 432, 128645.	12.4	4
386	Highly Persistent Strains of Hydrocarbon-Oxidizing Bacteria as a Base for Increasing the Viable Cell Numbers during Long-Term Storage. Microbiology, 2021, 90, 868-872.	1.2	0
388	Salmonella "RecAmends―self-healing. Cell Host and Microbe, 2021, 29, 1729-1731.	11.0	0
389	Development and Research Progress of Anti-Drug Resistant Bacteria Drugs. Infection and Drug Resistance, 2021, Volume 14, 5575-5593.	2.7	18
390	Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut. ELife, $2021,10,10$	6.0	15
391	Persister control by leveraging dormancy associated reduction of antibiotic efflux. PLoS Pathogens, 2021, 17, e1010144.	4.7	10
392	Antibiotic Heteroresistance in Klebsiella pneumoniae. International Journal of Molecular Sciences, 2022, 23, 449.	4.1	17
393	Presence, formation, and elimination of foodborne pathogen persisters. JSFA Reports, 2022, 2, 4-16.	0.8	3
394	Tissue compartmentalization enables $\langle i \rangle$ Salmonella $\langle i \rangle$ persistence during chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
395	Elevated Levels of Three Reactive Oxygen Species and Fe(II) in the Antibiotic-Surviving Population of Mycobacteria Facilitate <i>De Novo</i> Emergence of Genetic Resisters to Antibiotics. Antimicrobial Agents and Chemotherapy, 2022, 66, e0228521.	3.2	12
396	A Cecropin-4 Derived Peptide C18 Inhibits Candida albicans by Disturbing Mitochondrial Function. Frontiers in Microbiology, 2022, 13, 872322.	3.5	7
398	Antimicrobial activity of the membrane-active compound nTZDpa is enhanced at low pH. Biomedicine and Pharmacotherapy, 2022, 150, 112977.	5.6	6
420	Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends in Microbiology, 2022, 30, 841-852.	7.7	32
421	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	12.8	22
422	Non-genetic variability in microbial populations: survival strategy or nuisance?. Reports on Progress in Physics, 2021, 84, .	20.1	10

#	Article	IF	CITATIONS
423	è–¬å‰ ĕ €æ€§ã«é…æ…®ã⊷ãŸæŠ—èŒè–¬é¸æŠžï¼šæ€¥æ€§é¼»å‰ ⁻ 鼻腔ç,Ž. Nihon Bika Gakkai Kaishi (Jap	oan ese Jou	rnad of Rhinol
424	Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology, 2022, 20, 685-701.	28.6	142
425	Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chemical Biology, 2022, 29, 741-756.	5.2	4
426	Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics. Molecular Microbiology, 2022, 117, 1384-1404.	2.5	7
427	Yersinia pseudotuberculosis doxycycline tolerance strategies include modulating expression of genes involved in cell permeability and tRNA modifications. PLoS Pathogens, 2022, 18, e1010556.	4.7	1
428	Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. MBio, 2022, 13, e0048022.	4.1	14
429	CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nature Microbiology, 2022, 7, 766-779.	13.3	68
430	Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nature Microbiology, 2022, 7, 796-809.	13.3	17
432	Comparison of Selected Phenotypic Features of Persistent and Sporadic Strains of Listeria monocytogenes Sampled from Fish Processing Plants. Foods, 2022, 11, 1492.	4.3	6
433	Repeated Exposure of Escherichia coli to High Ciprofloxacin Concentrations Selects gyrB Mutants That Show Fluoroquinolone-Specific Hyperpersistence. Frontiers in Microbiology, 2022, 13, .	3.5	3
437	The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane. European Journal of Medicinal Chemistry, 2022, 238, 114496.	5 . 5	5
438	Effect of Epinephrine, Norepinephrine, and Estradiol on Persister Formation in the Cultures of Staphylococci from the Human Microbiota and Their Resistance to Starvation and New Medium Stresses. Microbiology, 2022, 91, 267-277.	1.2	1
439	A broadly applicable, stress-mediated bacterial death pathway regulated by the phosphotransferase system (PTS) and the cAMP-Crp cascade. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
441	Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). Applied Biochemistry and Microbiology, 2022, 58, 213-231.	0.9	4
443	Potentiation of Vancomycin: Creating Cooperative Membrane Lysis through a "Derivatization-for-Sensitization―Approach. Journal of the American Chemical Society, 2022, 144, 10622-10639.	13.7	15
445	Bacteria grow swiftly and live thriftily. Current Biology, 2022, 32, R599-R605.	3.9	8
446	Stress-Induced Mutagenesis, Gambler Cells, and Stealth Targeting Antibiotic-Induced Evolution. MBio, 2022, 13, .	4.1	18
447	Emergent expression of fitness-conferring genes by phenotypic selection. , 0, , .		5

#	Article	IF	CITATIONS
448	pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa. Antibiotics, 2022, 11, 773.	3.7	0
449	Chimeric Ligands of Pili and Lectin A Inhibit Tolerance, Persistence, and Virulence Factors of <i>Pseudomonas aeruginosa </i> over a Wide Range of Phenotypes. ACS Infectious Diseases, 0, , .	3.8	0
450	Localized pmrB hypermutation drives the evolution of colistin heteroresistance. Cell Reports, 2022, 39, 110929.	6.4	11
451	Fast bacterial growth reduces antibiotic accumulation and efficacy. ELife, 0, 11, .	6.0	32
453	Salmonella Central Carbon Metabolism Enhances Bactericidal Killing by Fluoroquinolone Antibiotics. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	4
454	Assessing persister awakening dynamics following antibiotic treatment in E.Âcoli. STAR Protocols, 2022, 3, 101476.	1.2	1
455	Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiology, 2022, 8, 239-277.	2.2	34
456	Machine Learning for Antimicrobial Resistance Research and Drug Development. , 0, , .		3
457	Modeling Polygenic Antibiotic Resistance Evolution in Biofilms. Frontiers in Microbiology, 0, 13, .	3.5	5
458	Growth kinetics of multiple Acinetobacter baumannii resistotype after meropenem-based antibiotic combination exposure. F1000Research, 0, 11 , 762 .	1.6	0
459	The Association between Biofilm Formation and Antimicrobial Resistance with Possible Ingenious Bio-Remedial Approaches. Antibiotics, 2022, 11, 930.	3.7	23
460	Distinct Agents Induce Streptococcus mutans Cells with Altered Biofilm Formation Capacity. Microbiology Spectrum, 2022, 10, .	3.0	4
462	Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	18
463	Mutation to <i>ispA</i> Produces Stable Small-Colony Variants of Pseudomonas aeruginosa That Have Enhanced Aminoglycoside Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	4
464	Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics, 2022, 14, 1425.	4.5	15
466	A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nature Genetics, 2022, 54, 976-984.	21.4	23
467	Efficacy of Amikacin and Meropenem on Colistin-Induced <i>Klebsiella pneumoniae</i> Persisters. Microbial Drug Resistance, 2022, 28, 765-772.	2.0	1
468	Antibiotic susceptibility testing for therapy and antimicrobial resistance surveillance:Âgenotype beats phenotype?. Future Microbiology, 0, , .	2.0	O

#	Article	IF	CITATIONS
469	Biofilm and persister cell fomation variability in clinical isolates of Klebsiella pneumoniae in Colombia. Universitas Scientiarum, 2020, 25, 545-571.	0.4	0
470	Antibiotic persistence of intracellular Brucella abortus. PLoS Neglected Tropical Diseases, 2022, 16, e0010635.	3.0	10
471	Are all antibiotic persisters created equal?. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
472	What are the options for treating infections by <scp>persisterâ€forming</scp> pathogens?. Environmental Microbiology, 0, , .	3.8	2
473	Single-cell Raman spectroscopy identifies Escherichia coli persisters and reveals their enhanced metabolic activities. Frontiers in Microbiology, $0,13,.$	3.5	5
474	Current trends and definitions in high-performance antimicrobial strategies. Current Opinion in Biomedical Engineering, 2022, 23, 100407.	3.4	2
475	Suitability of Methods to Determine Resistance to Biocidal Active Substances and Disinfectants—A Systematic Review. Hygiene, 2022, 2, 109-119.	1.7	1
477	Characteristics of Antibiotic Resistance and Tolerance of Environmentally Endemic Pseudomonas aeruginosa. Antibiotics, 2022, 11, 1120.	3.7	2
479	A DNA-Damage Inducible Gene Promotes the Formation of Antibiotic Persisters in Response to the Quorum Sensing Signaling Peptide in Streptococcus mutans. Genes, 2022, 13, 1434.	2.4	6
480	Anti-trypanosomatid drug discovery: progress and challenges. Nature Reviews Microbiology, 2023, 21, 35-50.	28.6	52
481	Proton Motive Force Inhibitors Are Detrimental to Methicillin-Resistant Staphylococcus aureus Strains. Microbiology Spectrum, 2022, 10, .	3.0	7
482	The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Communications Biology, 2022, 5, .	4.4	17
483	Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	7
484	Alternative Approaches for Antibiotic Discovery. , 2022, , 227-246.		0
485	Volatile Signatures of the Microbiome. , 2022, , 181-196.		0
486	Evaluation of standard dosing for selected broad-spectrum Hydrophilic antibiotics in critically ill patients with Augmented renal clearance: An Observational Study. Saudi Critical Care Journal, 2022, 6, 43.	0.4	0
487	Advancements in antimicrobial nanoscale materials and self-assembling systems. Chemical Society Reviews, 2022, 51, 8696-8755.	38.1	23
488	MetA is a "thermal fuse―that inhibits growth and protects Escherichia coli at elevated temperatures. Cell Reports, 2022, 40, 111290.	6.4	5

#	Article	IF	Citations
490	The top 100 cited studies on bacterial persisters: A bibliometric analysis. Frontiers in Pharmacology, 0 , 13 , .	3.5	4
491	Microbial persisters and host: recent advances and future perspectives. Critical Reviews in Microbiology, 2023, 49, 658-670.	6.1	3
492	Development of Fluoroquinolone Resistance through Antibiotic Tolerance in Campylobacter jejuni. Microbiology Spectrum, 2022, 10, .	3.0	4
493	Time-averaging and nonergodicity of reset geometric Brownian motion with drift. Physical Review E, 2022, 106, .	2.1	18
494	Addressing Drug Resistance in Cancer: A Team Medicine Approach. Journal of Clinical Medicine, 2022, 11, 5701.	2.4	5
495	A whole-genome assay identifies four principal gene functions that confer tolerance of meropenem stress upon Escherichia coli. , 0, 1 , .		3
496	Relationships between Efflux Pumps and Emergence of Heteroresistance: A Comprehensive Study on the Current Findings. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-11.	1.9	0
497	Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	26
498	Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2
499	Nonessential tRNA and rRNA modifications impact the bacterial response to sub-MIC antibiotic stress. MicroLife, 2022, 3, .	2.1	14
501	Causes of polymyxin treatment failure and new derivatives to fill the gap. Journal of Antibiotics, 2022, 75, 593-609.	2.0	5
502	Defects in DNA doubleâ€strand break repair resensitize antibioticâ€resistant <i>Escherichia coli</i> Áto multiple bactericidal antibiotics. MicrobiologyOpen, 2022, 11, .	3.0	3
504	Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. PLoS ONE, 2022, 17, e0274125.	2.5	0
505	The evolving biology of Mycobacterium tuberculosis drug resistance. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	3.9	6
506	Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Molecular Biology, 2022, 56, 638-648.	1.3	9
507	Toxin-Antitoxin Systems: A Key Role on Persister Formation in Salmonella enterica Serovar Typhimurium. Infection and Drug Resistance, 0, Volume 15, 5813-5829.	2.7	3
508	Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. Environmental Research, 2022, 215, 114188.	7.5	33
509	Antibiotic Resistance in Pseudomonas. Advances in Experimental Medicine and Biology, 2022, , 117-143.	1.6	10

#	ARTICLE	IF	Citations
511	Carbapenem-Only Combination Therapy against Multi-Drug Resistant Pseudomonas aeruginosa: Assessment of In Vitro and In Vivo Efficacy and Mode of Action. Antibiotics, 2022, 11, 1467.	3.7	1
512	The identification of Pseudomonas aeruginosa persisters using flow cytometry. Microbiology (United) Tj ETQq $1\ 1$	0,784314 1.8	rgBT /Overlo
514	Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	7
515	Persistent Borrelia burgdorferi <i>Sensu Lato</i> Infection after Antibiotic Treatment: Systematic Overview and Appraisal of the Current Evidence from Experimental Animal Models. Clinical Microbiology Reviews, 2022, 35, .	13.6	2
516	pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Frontiers in Microbiology, 0, 13 , .	3.5	10
517	Navigating Environmental Transitions: the Role of Phenotypic Variation in Bacterial Responses. MBio, 2022, 13 , .	4.1	15
518	Biofilm antimicrobial susceptibility through an experimental evolutionary lens. Npj Biofilms and Microbiomes, 2022, 8, .	6.4	19
519	Antimicrobial Peptides Can Generate Tolerance by Lag and Interfere with Antimicrobial Therapy. Pharmaceutics, 2022, 14, 2169.	4.5	3
520	Effects and mechanisms of animal-free hydrolysates on recombination protein yields in CHO cells. Applied Microbiology and Biotechnology, 2022, 106, 7387-7396.	3.6	1
521	Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	3.9	6
522	Darobactins Exhibiting Superior Antibiotic Activity by Cryoâ€EM Structure Guided Biosynthetic Engineering**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
523	Darobactins Exhibiting Superior Antibiotic Activity by Cryoâ€EM Structure Guided Biosynthetic Engineering. Angewandte Chemie, 0, , .	2.0	1
524	Studying antibiotic persistenceÂin vivo using the model organismÂSalmonella Typhimurium. Current Opinion in Microbiology, 2022, 70, 102224.	5.1	4
525	Deciphering the induction of Listeria monocytogenes into sublethal injury using fluorescence microscopy and RT-qPCR. International Journal of Food Microbiology, 2023, 385, 109983.	4.7	1
526	SERS-based antibiotic susceptibility testing: Towards point-of-care clinical diagnosis. Biosensors and Bioelectronics, 2023, 219, 114843.	10.1	24
527	Association between antibiotic resistance and increasing ambient temperature in China: an ecological study with nationwide panel data. The Lancet Regional Health - Western Pacific, 2023, 30, 100628.	2.9	14
528	Rapid Bactericidal Activity of SC5005 Combined with Docosahexaenoic Acid against Multidrug-Resistant Staphylococcus aureus Persisters and Biofilms. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	1
529	Antibiotic tolerance and persistence have distinct fitness trade-offs. PLoS Pathogens, 2022, 18, e1010963.	4.7	14

#	ARTICLE	IF	CITATIONS
531	Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	5
532	The Effect of the Gallbladder Environment during Chronic Infection on Salmonella Persister Cell Formation. Microorganisms, 2022, 10, 2276.	3.6	O
533	Antibiotic Tolerance Indicative of Persistence Is Pervasive among Clinical Streptococcus pneumoniae Isolates and Shows Strong Condition Dependence. Microbiology Spectrum, 2022, 10, .	3.0	2
534	Clinically encountered growth phenotypes of tuberculosis-causing bacilli and their in vitro study: A review. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
535	Microfluidic dose–response platform to track the dynamics of drug response in single mycobacterial cells. Scientific Reports, 2022, 12, .	3.3	6
536	Experimental, DFT, molecular docking and in silico ADMET studies of cadmium-benzenetricarboxylates. Ecletica Quimica, 2022, 47, 37-50.	0.5	5
537	Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 2023, 21, 280-295.	28.6	197
538	Growth kinetics of multiple Acinetobacter baumannii resistotype after meropenem-based antibiotic combination exposure. F1000Research, 0, 11, 762.	1.6	O
539	Antibiotic Tolerance and Treatment Outcomes in Cystic Fibrosis Methicillin-Resistant Staphylococcus aureus Infections. Microbiology Spectrum, 2023, 11 , .	3.0	2
540	Increased Expression of Efflux Pump <i>norA</i> Drives the Rapid Evolutionary Trajectory from Tolerance to Resistance against Ciprofloxacin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	3
541	The RNA-Binding Protein ProQ Promotes Antibiotic Persistence in Salmonella. MBio, 2022, 13, .	4.1	5
542	Polynucleotide Phosphorylase Mediates a New Mechanism of Persister Formation in Escherichia coli. Microbiology Spectrum, 0, , .	3.0	O
543	Forms of Bacterial Survival in Model Biofilms. Coatings, 2022, 12, 1913.	2.6	2
544	VapC toxin switches M. smegmatis cells into dormancy through 23S rRNA cleavage. Archives of Microbiology, 2023, 205, .	2.2	2
545	Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opinion on Drug Discovery, 2023, 18, 83-97.	5.0	6
546	Persistence of Mycobacterium tuberculosis in response to infection burden and host-induced stressors. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
547	Variability in Adaptive Resistance of Salmonella Typhimurium to Sublethal Levels of Antibiotics. Antibiotics, 2022, 11, 1725.	3.7	2
550	Bacterial survivors: evaluating the mechanisms of antibiotic persistence. Microbiology (United) Tj ETQq1 1 0.784	314 rgBT / 1.8	Oyerlock 10

#	Article	IF	CITATIONS
551	Active responsive colloids driven by intrinsic dichotomous noise. Physical Review E, 2022, 106, .	2.1	0
552	Within-Host Genotypic and Phenotypic Diversity of Contemporaneous Carbapenem-Resistant Klebsiella pneumoniae from Blood Cultures of Patients with Bacteremia. MBio, 2022, 13, .	4.1	7
553	Variable <scp>DNA</scp> topology is an epigenetic generator of physiological heterogeneity in bacterial populations. Molecular Microbiology, 2023, 119, 19-28.	2.5	2
554	Immune cell interactions in tuberculosis. Cell, 2022, 185, 4682-4702.	28.9	39
555	Host Cell Oxidative Stress Promotes Intracellular Fluoroquinolone Persisters of Streptococcus pneumoniae. Microbiology Spectrum, 2022, 10, .	3.0	7
556	Heterogeneous Distribution of Proton Motive Force in Nonheritable Antibiotic Resistance. MBio, 0, , .	4.1	1
557	Bioenergetic State of Escherichia coli Controls Aminoglycoside Susceptibility. MBio, 2023, 14, .	4.1	3
558	Mechanisms and Clinical Relevance of <i>Pseudomonas aeruginosa</i> Infections, 2023, 24, 27-38.	1.4	2
559	Genome-wide mapping of fluoroquinolone-stabilized DNA gyrase cleavage sites displays drug specific effects that correlate with bacterial persistence. Nucleic Acids Research, 2023, 51, 1208-1228.	14.5	2
560	Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiology Spectrum, 2023, 11 , .	3.0	2
561	Tryptophan Availability during Persistence of Chlamydia trachomatis Directly Impacts Expression of Chlamydial Cell Division Proteins. Infection and Immunity, 2023, 91, .	2.2	1
562	Community interactions drive the evolution of antibiotic tolerance in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	11
563	Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. MSystems, 2023, 8, .	3.8	5
564	Serine-threonine phosphoregulation by PknB and Stp contributes to quiescence and antibiotic tolerance in $\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$. Science Signaling, 2023, 16, .	3.6	6
565	Long-term antibacterial, antioxidative, and bioadhesive hydrogel wound dressing for infected wound healing applications. Biomaterials Science, 2023, 11, 2080-2090.	5.4	4
566	Development of Nanoparticle Adaptation Phenomena in Acinetobacter baumannii: Physiological Change and Defense Response. Microbiology Spectrum, 2023, 11, .	3.0	0
568	Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
569	The Klebsiella pneumoniae <i>ter</i> Operon Enhances Stress Tolerance. Infection and Immunity, 0, , .	2.2	5

#	Article	IF	CITATIONS
570	Antibiotic perseverance increases the risk of resistance development. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	10
571	Advances in linking single-cell bacterial stress response to population-level survival. Current Opinion in Biotechnology, 2023, 79, 102885.	6.6	6
572	Reframing antimicrobial resistance as a continuous spectrum of manifestations. Current Opinion in Microbiology, 2023, 72, 102259.	5.1	8
573	Transcriptional Profiling of Phagocytic Leukocytes and Microglia Reveals a Critical Role for Reactive Oxygen Species in Biofilm Containment during <i>Staphylococcus aureus</i> Craniotomy Infection. Journal of Immunology, 2022, 209, 1973-1986.	0.8	5
574	Emergence of growth and dormancy from a kinetic model of the <i>Escherichia coli</i> central carbon metabolism. Physical Review Research, 2022, 4, .	3.6	3
575	Using click chemistry to study microbial ecology and evolution. ISME Communications, 2023, 3, .	4.2	3
576	Nồng độ ức chá°¿ tối thiá»fu và mức độ dai dẳng kháng sinh vá»›i vancomycin cá»§a các ch Nghien Cuu Y Hoc, 2023, 160, 12-18.	ná»§ng Sta	aphylococcus
577	Genome-wide screen in human plasma identifies multifaceted complement evasion of Pseudomonas aeruginosa. PLoS Pathogens, 2023, 19, e1011023.	4.7	0
578	Nanoscale imaging and force probing of single microbial cells by atomic force microscopy. , 2023, , 187-217.		1
579	Editorial: Emerging multidrug-resistant bacterial pathogens "superbugs― A rising public health threat. Frontiers in Microbiology, 0, 14, .	3.5	48
580	Drug resistance in Leishmania: does it really matter?. Trends in Parasitology, 2023, 39, 251-259.	3.3	4
581	Formation of Listeria monocytogenes persister cells in the produce-processing environment. International Journal of Food Microbiology, 2023, 390, 110106.	4.7	5
582	Staphylococcus aureus dormancy: waiting for insurgency. Current Pharmaceutical Biotechnology, 2023, 24, .	1.6	0
583	Determinants of persistent Salmonella infections. Current Opinion in Immunology, 2023, 82, 102306.	5.5	3
584	Molecular bases of the interaction of <i>Mycobacteria tuberculosis complex</i> and anti-tuberculosis drugs: Current state of the problem and its epidemiological significance. Epidemiology and Infectious Diseases (Russian Journal), 2023, 28, 78-97.	0.1	0
585	Systematic design of pulse dosing to eradicate persister bacteria. PLoS Computational Biology, 2023, 19, e1010243.	3.2	3
586	Extended lag phase indicates the dormancy of biphenyl degrading Rhodococcus biphenylivorans TG9 under heat stress. Environmental Pollution, 2023, 322, 121248.	7.5	2
587	The Emergence of Antibiotics Resistance Genes, Bacteria, and Micropollutants in Grey Wastewater. Applied Sciences (Switzerland), 2023, 13, 2322.	2.5	1

#	Article	IF	CITATIONS
588	The deficiency of poly- \hat{l}^2 -1,6-N-acetyl-glucosamine deacetylase trigger A. baumannii to convert to biofilm-independent colistin-tolerant cells. Scientific Reports, 2023, 13, .	3.3	1
589	Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. Journal of Microbiology, 2023, 61, 331-341.	2.8	1
591	Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Frontiers in Microbiology, 0, 14, .	3.5	0
592	Magnesium Hydroxide Nanoparticles Inhibit the Biofilm Formation of Cariogenic Microorganisms. Nanomaterials, 2023, 13, 864.	4.1	4
593	Local Regulator AcrR Regulates Persister Formation by Repression of AcrAB Efflux Pump during Exponential Growth in Aeromonas veronii. Antimicrobial Agents and Chemotherapy, 0, , .	3.2	0
594	Antimicrobials in polymethylmethacrylate: from prevention to prosthetic joint infection treatment: basic principles and risk of resistance. Arthroplasty, 2023, 5, .	2.2	3
595	Resuscitation dynamics reveal persister partitioning after antibiotic treatment. Molecular Systems Biology, 2023, 19 , .	7. 2	4
596	Glyphosate affects persistence and tolerance but not antibiotic resistance. BMC Microbiology, 2023, 23, .	3.3	1
597	Effects of osmotic stress on Listeria monocytogenes ATCC 7644: persistent cells and heat resistance. Italian Journal of Food Safety, 2023, 12, .	0.8	1
598	The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics, 2023, 12, 554.	3.7	7
599	Survival of Escherichia coli after high-antibiotic stress is dependent on both the pregrown physiological state and incubation conditions. Frontiers in Microbiology, 0, 14, .	3.5	1
600	Role of (p)ppGpp in antibiotic resistance, tolerance, persistence and survival in Firmicutes. MicroLife, 2023, 4, .	2.1	6
601	<i>Aspergillus fumigatus</i> Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiology Spectrum, 2023, 11 , .	3.0	5
602	Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	12
603	Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538. Food Research International, 2023, 167, 112710.	6.2	2
604	Stimulating Transcription in Antibiotic-Tolerant Escherichia coli Sensitizes It to Fluoroquinolone and Nonfluoroquinolone Topoisomerase Inhibitors. Antimicrobial Agents and Chemotherapy, 2023, 67,	3.2	1
605	Identification of a Small Molecule Compound Active against Antibiotic-Tolerant Staphylococcus aureus by Boosting ATP Synthesis. International Journal of Molecular Sciences, 2023, 24, 6242.	4.1	0
606	Intracellular persister: A stealth agent recalcitrant to antibiotics. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	5

#	Article	IF	CITATIONS
607	Multiomics Integration of Tuberculosis Pathogenesis. Integrated Science, 2023, , 937-967.	0.2	0
608	Use of niosomes for the treatment of intracellular pathogens infecting the lungs. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	6.1	О
609	High rifampicin peak plasma concentrations accelerate the slow phase of bacterial decline in tuberculosis patients: Evidence for heteroresistance. PLoS Computational Biology, 2023, 19, e1011000.	3.2	0
610	Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Nature Communications, 2023, 14, .	12.8	3
612	Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiology and Molecular Biology Reviews, 2023, 87, .	6.6	9
614	Staphylococcus aureus persisters are associated with reduced clearance in a catheter-associated biofilm infection. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	4
615	Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nature Reviews Microbiology, 2023, 21, 671-685.	28.6	12
616	The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm. Biofilm, 2023, 5, 100131.	3.8	2
617	Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Frontiers in Cellular and Infection Microbiology, $0,13,.$	3.9	5
618	Combatting persister cells: The daunting task in post-antibiotics era. , 2023, 2, 100104.		4
619	Natural and biocompatible dressing unit based on tea carbon dots modified core-shell electrospun fiber for diabetic wound disinfection and healing. Colloids and Surfaces B: Biointerfaces, 2023, 226, 113325.	5.0	4
620	The combinatorial applications of 1,4-naphthoquinone and tryptophan inhibit the biofilm formation of Staphylococcus aureus. Folia Microbiologica, 2023, 68, 801-811.	2.3	0
621	Bactericidal activity of silver nanoparticles in drug-resistant bacteria. Brazilian Journal of Microbiology, 2023, 54, 691-701.	2.0	2
622	<i>In Vitro</i> Persistence Level Reflects <i>In Vivo</i> Antibiotic Survival of Natural Pseudomonas aeruginosa Isolates in a Murine Lung Infection Model. Microbiology Spectrum, 2023, 11, .	3.0	0
623	Reforestation substantially changed the soil antibiotic resistome and its relationships with metal resistance genes, mobile genetic elements, and pathogens. Journal of Environmental Management, 2023, 342, 118037.	7.8	3
624	Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling. Antibiotics, 2023, 12, 896.	3.7	1
625	Decline in nitrosative stress drives antibiotic persister regrowth during infection. Cell Host and Microbe, 2023, 31, 993-1006.e6.	11.0	10
626	Persister Cell Formation and Elevated IsrA and IsrC Gene Expression upon Hydrogen Peroxide Exposure in a Periodontal Pathogen Aggregatibacter actinomycetemcomitans. Microorganisms, 2023, 11, 1402.	3.6	1

#	Article	IF	CITATIONS
627	Bacteriophages potentiate the effect of antibiotics by eradication of persister cells and killing of biofilm-forming cells. Research in Microbiology, 2023, , 104083.	2.1	0
628	Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand. Microorganisms, 2023, 11, 1511.	3.6	0
629	Timing of antibiotic administration determines the spread of plasmid-encoded antibiotic resistance during microbial range expansion. Nature Communications, 2023, 14, .	12.8	4
630	The Selfâ€Adaptive Nanosystem for Implantâ€Related Infections Theranostics via Phaseâ€Change Driven Antiâ€Biofilm and the Enhancement of Immune Memory. Advanced Functional Materials, 2023, 33, .	14.9	1
631	Single-cell microfluidics enabled dynamic evaluation of drug combinations on antibiotic resistance bacteria. Talanta, 2023, 265, 124814.	5.5	1
632	Dysregulated NAD(H) homeostasis associated with ciprofloxacin tolerance in Escherichia coli investigated on a single-cell level with the Peredox [NADH:NAD+] biosensor. Frontiers in Microbiology, $0,14,.$	3.5	0
633	Mycobacterium abscessus VapC5 toxin potentiates evasion of antibiotic killing by ribosome overproduction and activation of multiple resistance pathways. Nature Communications, 2023, 14 , .	12.8	0
634	COVID-19 and FDI nexus in Pakistan: fresh evidence from QARDL and time-varying casualty techniques. Future Business Journal, 2023, 9, .	2.8	2
635	Ways of Long-Term Survival of Hydrocarbon-Oxidizing Bacteria in a New Biocomposite Materialâ€"Silanol-Humate Gel. Microorganisms, 2023, 11, 1133.	3.6	0
636	The recognition, control, and stress tolerance of bacterial persister cells. Journal of the Japanese Society for Food Science and Technology, 2023, , .	0.1	0
637	Reconsidering Dogmas about the Growth of Bacterial Populations. Cells, 2023, 12, 1430.	4.1	0
638	Lyme disease and the pursuit of a clinical cure. Frontiers in Medicine, 0, 10 , .	2.6	3
639	Antibiotic tolerance: targetingÂbacterialÂsurvival. Current Opinion in Microbiology, 2023, 74, 102328.	5.1	2
640	Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
641	Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics, 2023, 12, 1111.	3.7	1
642	The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine, 2023, 169, 156285.	3.2	2
643	Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Reports, 2023, 24, .	4.5	3
644	Environmental conditions define the energetics of bacterial dormancy and its antibiotic susceptibility. Biophysical Journal, 2023, 122, 3207-3218.	0.5	0

#	Article	IF	CITATIONS
645	What are the missing pieces needed to stop antibiotic resistance?. Microbial Biotechnology, 2023, 16, 1900-1923.	4.2	2
646	The phosphotransferase system gene ptsH affects persister formation in Klebsiella pneumoniae by regulating cyclic adenosine monophosphate levels. International Journal of Antimicrobial Agents, 2023, 62, 106925.	2.5	1
648	Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Advanced Drug Delivery Reviews, 2023, 200, 115007.	13.7	4
649	Effect of Hormones and Biogenic Amines on Growth and Survival of Enterococcus durans. Microbiology, 2023, 92, 517-533.	1.2	0
650	Small Molecules Incorporating Privileged Amidine Moiety as Potential Hits Combating Antibiotic-Resistant Bacteria. Pharmaceuticals, 2023, 16, 1040.	3.8	1
651	Methods for detection and identification of beer-spoilage microbes. Frontiers in Microbiology, 0, 14, .	3.5	1
652	Pharmacokinetics of cefpirome following intravenous and intramuscular administrations in healthy and febrile sheep (Ovis aries). Indian Journal of Animal Sciences, 2023, 93, .	0.2	0
653	Transcriptome Analysis of Streptococcus mutans Quorum Sensing-Mediated Persisters Reveals an Enrichment in Genes Related to Stress Defense Mechanisms. Genes, 2023, 14, 1887.	2.4	0
654	Bacterial memory in antibiotic resistance evolution and nanotechnology in evolutionary biology. IScience, 2023, 26, 107433.	4.1	0
655	Assessment of phenotypic heterogeneity in <i>Salmonella</i> Typhimurium preadapted to ciprofloxacin and tetracycline. FEMS Microbiology Letters, 2023, 370, .	1.8	2
656	Bacterial persistence in Legionella pneumophila clinical isolates from patients with recurring legionellosis. Frontiers in Cellular and Infection Microbiology, $0,13,.$	3.9	0
657	Liquid–Liquid Phase Separation and Protective Protein Aggregates in Bacteria. Molecules, 2023, 28, 6582.	3.8	1
658	Impact of Environmental Sub-Inhibitory Concentrations of Antibiotics, Heavy Metals, and Biocides on the Emergence of Tolerance and Effects on the Mutant Selection Window in E. coli. Microorganisms, 2023, 11, 2265.	3.6	0
659	Recovering the susceptibility of antibiotic-resistant bacteria using photooxidative damage. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
660	The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Frontiers in Microbiology, 0, 14, .	3.5	0
661	Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nature Reviews Clinical Oncology, 2023, 20, 799-813.	27.6	8
662	Synergistic action of indole-3-carbinol with membrane-active agents against multidrug-resistant Gram-negative bacteria. Letters in Applied Microbiology, 2023, 76, .	2.2	1
663	Biofilms as self-shaping growing nematics. Nature Physics, 2023, 19, 1936-1944.	16.7	4

#	Article	IF	CITATIONS
664	Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2023, 24, 11618.	4.1	0
665	Lincosamide and glycopeptide antibiotics. , 2023, , 183-202.		0
666	Octanoic acid promotes clearance of antibiotic-tolerant cells and eradicates biofilms of Staphylococcus aureus isolated from recurrent bovine mastitis. Biofilm, 2023, 6, 100149.	3.8	2
667	The RavA-ViaA chaperone complex modulates bacterial persistence through its association with the fumarate reductase enzyme. Journal of Biological Chemistry, 2023, 299, 105199.	3.4	0
668	A statistical genomics framework to trace bacterial genomic predictors of clinical outcomes in Staphylococcus aureus bacteremia. Cell Reports, 2023, 42, 113069.	6.4	0
669	Unveiling drug-tolerant and persister-like cells in Leishmania braziliensis lines derived from patients with cutaneous leishmaniasis. Frontiers in Cellular and Infection Microbiology, 0, 13 , .	3.9	1
670	A paradox of bacterial persistence and antibiotic resistance: chloramphenicol acetyl transferase as a double barrel shot gun. MicroLife, 2023, 4, .	2.1	0
671	Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm, 2023, 6, 100156.	3.8	0
672	Recent Advances in Bacterial Persistence Mechanisms. International Journal of Molecular Sciences, 2023, 24, 14311.	4.1	4
673	Broad photodynamic antibacterial activity of a functionalized, highly fluorinated sensitizer. Journal of Porphyrins and Phthalocyanines, 0, , .	0.8	0
674	Overlooked <i>Candida glabrata</i> petites are echinocandin tolerant, induce host inflammatory responses, and display poor <i>in vivo</i> fitness. MBio, 0 , , .	4.1	0
675	Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. Current Research in Microbial Sciences, 2023, 5, 100204.	2.3	0
677	Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular <i>Staphylococcus aureus</i> Eradication. Journal of the American Chemical Society, 2023, 145, 23372-23384.	13.7	2
678	Single-cell patterning and characterisation of antibiotic persistent bacteria using bio-sCAPA. Lab on A Chip, 2023, 23, 5018-5028.	6.0	1
679	RavAâ€ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in <i>Vibrio cholerae</i> . Microbiology Spectrum, 0, , .	3.0	0
680	Dual Inhibition of $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$ and the Host TGFBR1 by an Anilinoquinazoline. Journal of Medicinal Chemistry, 0, , .	6.4	0
681	Edge-selective covalent passivation of black phosphorus nanosheets by fullerene C70 toward enhanced antimicrobial performance. Chemical Engineering Journal, 2023, 477, 146997.	12.7	1
682	Antibacterial MoS ₂ -Ce6-lonic Liquid Nanoplatform against Photothermal/Photodynamic Combined Therapy and Wound Healing Acceleration. ACS Applied Nano Materials, 2023, 6, 20556-20568.	5.0	2

#	Article	IF	CITATIONS
683	Fluoroquinolone and beta-lactam antimicrobials induce different transcriptome profiles in Salmonella enterica persister cells. Scientific Reports, 2023, 13, .	3.3	0
684	Emerging single-cell microfluidic technology for microbiology. TrAC - Trends in Analytical Chemistry, 2024, 170, 117444.	11.4	1
685	The Benefits of Toxicity: M. smegmatis VapBC TA Module Is Induced by Tetracycline Exposure and Promotes Survival. Microorganisms, 2023, 11, 2863.	3.6	0
686	Antimicrobial Resistance of Cattle Mastitis-Causing Bacteria: How to Treat?. Veterinary Medicine and Science, 0, , .	0.0	0
687	Contribution of the gyrA and waaG mutants to fluoroquinolones resistance, biofilm development, and persister cells formation in Salmonella enterica serovar Typhi. Gene, 2024, 894, 147943.	2.2	0
688	Antibiotic therapy of acne and antibiotic resistance: State of the art. Russian Journal of Skin and Venereal Diseases, 2023, 26, 449-464.	0.2	0
689	Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiology Reviews, 2024, 48, .	8.6	0
690	Optimization of ciprofloxacin removal by response surface methodology using activated carbon from Burmese grape obtained from Vietnam. Journal of Chemical Research, 2023, 47, .	1.3	0
691	Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm, 2023, 4, .	7.2	1
692	Heterogeneous Phenotypic Responses of Antibiotic-Resistant Salmonella Typhimurium to Food Preservative-Related Stresses. Antibiotics, 2023, 12, 1702.	3.7	0
693	Pathogenicity and virulence of <i>Acinetobacter baumannii</i> : Factors contributing to the fitness in healthcare settings and the infected host. Virulence, 2024, 15, .	4.4	1
694	Antibiotic Efficacy in Escherichia coli and Klebsiella pneumoniae Under Nutrient Limitation and Effectiveness of Colistin-Based Antibiotic Combinations to Eradicate Persister Cells. Current Microbiology, 2024, 81, .	2.2	0
695	Metabolic and transcriptional activities underlie stationary-phase $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$ sensitivity to Levofloxacin. Microbiology Spectrum, 0, , .	3.0	1
696	Need for standardization in sub-lethal antibiotics research. Frontiers in Microbiology, 0, 14, .	3.5	0
697	Cephalosporin resistance, tolerance, and approaches to improve their activities. Journal of Antibiotics, 2024, 77, 135-146.	2.0	0
698	A Methylazanediyl Bisacetamide Derivative Sensitizes <i>Staphylococcus aureus</i> Persisters to a Combination of Gentamicin And Daptomycin. Advanced Science, 2024, 11, .	11.2	0
699	Optimization of the Antibacterial Spectrum and the Developability Profile of the Novel-Class Natural Product Corramycin. Journal of Medicinal Chemistry, 0, , .	6.4	2
700	The significance of persisters in tuberculosis drug discovery: Exploring the potential of targeting the glyoxylate shunt pathway. European Journal of Medicinal Chemistry, 2024, 265, 116058.	5.5	0

#	Article	IF	CITATIONS
701	Microbial life in slow and stopped lanes. Trends in Microbiology, 2023, , .	7.7	0
702	Imipenem heteroresistance but not tolerance in Haemophilus influenzae during chronic lung infection associated with chronic obstructive pulmonary disease. Frontiers in Microbiology, 0, 14, .	3.5	0
704	Loratadine Combats Methicillin-Resistant <i>Staphylococcus aureus</i> by Modulating Virulence, Antibiotic Resistance, and Biofilm Genes. ACS Infectious Diseases, 0, , .	3.8	0
705	Influence of Nε-Lysine Acetylation on the Formation of Protein Aggregates and Antibiotic Persistence in E. coli. Molecules, 2024, 29, 383.	3.8	0
706	Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nature Communications, 2024, 15 , .	12.8	4
707	Bacterial growth and cultivation. , 2024, , 155-175.		O
708	Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host and Microbe, 2024, 32, 276-289.e7.	11.0	0
709	Understanding <i>Staphylococcus aureus </i> internalisation and induction of antimicrobial tolerance. Expert Review of Anti-Infective Therapy, 2024, 22, 87-101.	4.4	2
710	In-patient evolution of a high-persister <i>Escherichia coli</i> strain with reduced in vivo antibiotic susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
711	The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus. Frontiers in Microbiology, 0, 14, .	3.5	0
712	Brain glucose induces tolerance of Cryptococcus neoformans to amphotericin B during meningitis. Nature Microbiology, 2024, 9, 346-358.	13.3	2
713	Laboratory Evolution of Antimicrobial Resistance in Bacteria to Develop Rational Treatment Strategies. Antibiotics, 2024, 13, 94.	3.7	O
714	Genetic factors affecting storage and utilization of lipids during dormancy in <i>Mycobacterium tuberculosis</i> . MBio, 2024, 15, .	4.1	0
715	Trained immunity in recurrent Staphylococcus aureus infection promotes bacterial persistence. PLoS Pathogens, 2024, 20, e1011918.	4.7	0
716	A stochastic approach for modelling the in-vitro effect of osmotic stress on growth dynamics and persistent cell formation in Listeria monocytogenes. International Journal of Food Microbiology, 2024, 413, 110586.	4.7	0
717	Tuning the heterostructure improves the catalytic activity of recyclable nanozymes for efficient absorption and degradation of norfloxacin-contaminated water. Separation and Purification Technology, 2024, 338, 126576.	7.9	O
718	Polyether ionophore resistance in a one health perspective. Frontiers in Microbiology, 0, 15, .	3.5	0
719	How Plant Toxins Cause Early Larval Mortality in Herbivorous Insects: An Explanation by Modeling the Net Energy Curve. Toxins, 2024, 16, 72.	3.4	0

#	Article	IF	Citations
720	Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. International Journal of Nanomedicine, 0, Volume 19, 1125-1143.	6.7	0
721	Improving phage therapy by evasion of phage resistance mechanisms. JAC-Antimicrobial Resistance, 2023, 6, .	2.1	0
722	Microfluidic approaches in microbial ecology. Lab on A Chip, 2024, 24, 1394-1418.	6.0	0
723	Identification of genes associated with persistence in Mycobacterium smegmatis. Frontiers in Microbiology, $0,15,.$	3.5	0
724	Stress-Tolerant Dormant Bacterial Forms: Biological and Ultrastructural Properties of Moraxella catarrhalis and Kocuria rhizophila. Bulletin of Experimental Biology and Medicine, 2024, 176, 342-346.	0.8	0
725	Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. Cell Host and Microbe, 2024, 32, 396-410.e6.	11.0	1
726	$$ <i>Staphylococcus aureus $$ /i > AbcA transporter enhances persister formation under \hat{l}^2-lactam exposure. Antimicrobial Agents and Chemotherapy, 2024, 68, .</i>	3.2	0
727	Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS ONE, 2024, 19, e0298724.	2.5	O
728	An anti-mycobacterial conjugated oligoelectrolyte effective against <i>Mycobacterium abscessus</i> Science Translational Medicine, 2024, 16, .	12.4	0
729	Persistence and viable but non-culturable state induced by streptomycin in Erwinia amylovora. Frontiers in Microbiology, 0, 15 , .	3.5	0
730	Polymyxin B nonapeptide potentiates the eradication of Gram-negative bacterial persisters. Microbiology Spectrum, 2024, 12 , .	3.0	0
731	Beyond resistance: antifungal heteroresistance and antifungal tolerance in fungal pathogens. Current Opinion in Microbiology, 2024, 78, 102439.	5.1	0
733	Dissecting cell heterogeneities in bacterial biofilms and their implications for antibiotic tolerance. Current Opinion in Microbiology, 2024, 78, 102450.	5.1	0
734	Intoxication of antibiotic persisters by host RNS inactivates their efflux machinery during infection. PLoS Pathogens, 2024, 20, e1012033.	4.7	0
735	Persisting cancer cells are different from bacterial persisters. Trends in Cancer, 2024, , .	7.4	0
736	The macrophage–bacterium mismatch in persister formation. Trends in Microbiology, 2024, , .	7.7	0
737	Effects of polyamines and indole on the expression of ribosome hibernation factors in <i>Escherichia coli</i> at the translational level. Vavilovskii Zhurnal Genetiki I Selektsii, 2024, 28, 24-32.	1.1	0
738	RpoS role in antibiotic resistance, tolerance and persistence in E. coli natural isolates. BMC Microbiology, 2024, 24, .	3.3	0

#	Article	IF	Citations
740	Inhibition of multiple staphylococcal growth states by a small molecule that disrupts membrane fluidity and voltage. MSphere, 2024, 9 , .	2.9	0
741	Bacteria can compensate the fitness costs of amplified resistance genes via a bypass mechanism. Nature Communications, 2024, 15, .	12.8	0
742	Detection of Mycoplasma hyopneumoniae viability using a PCR-based assay. Veterinary Microbiology, 2024, 292, 110058.	1.9	0
743	Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. Nature Communications, 2024, $15, \ldots$	12.8	O
744	Research Progress of Plant-Derived Natural Products against Drug-Resistant Cancer. Nutrients, 2024, 16, 797.	4.1	0
745	Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nature Communications, 2024, 15, .	12.8	0
746	Echinocandin persistence directly impacts the evolution of resistance and survival of the pathogenic fungus <i>Candida glabrata</i> . MBio, 2024, 15, .	4.1	0
747	Antibiotic Resistance, Biofilm Formation, and Persistent Phenotype of <i>Klebsiella pneumoniae</i> in a Vietnamese Tertiary Hospital: A Focus on Amikacin. Microbial Drug Resistance, 0, , .	2.0	0