Hydrophilic Silver Nanoparticles Induce Selective Nano Nanocomposite Polyamide Membranes

Environmental Science & amp; Technology 53, 5301-5308 DOI: 10.1021/acs.est.9b00473

Citation Report

#	Article	IF	CITATIONS
2	The upper bound of thin-film composite (TFC) polyamide membranes for desalination. Journal of Membrane Science, 2019, 590, 117297.	4.1	381
3	Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. Environmental Science & Technology, 2019, 53, 9764-9770.	4.6	91
4	Hydrophilic Selective Nanochannels Created by Metal Organic Frameworks in Nanofiltration Membranes Enhance Rejection of Hydrophobic Endocrine-Disrupting Compounds. Environmental Science & Technology, 2019, 53, 13776-13783.	4.6	111
5	Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. Journal of Membrane Science, 2020, 593, 117402.	4.1	52
6	Preparation and characterization of high-performance electrospun forward osmosis membrane by introducing a carbon nanotube interlayer. Journal of Membrane Science, 2020, 616, 118563.	4.1	45
7	Morphological effect of ZnO nanostructures on desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane. Desalination, 2020, 495, 114673.	4.0	39
8	Incorporation of lysine-modified UiO-66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity. Desalination, 2020, 493, 114661.	4.0	45
9	Engineering Heterostructured Thin-Film Nanocomposite Membrane with Functionalized Graphene Oxide Quantum Dots (GOQD) for Highly Efficient Reverse Osmosis. ACS Applied Materials & Interfaces, 2020, 12, 38662-38673.	4.0	51
10	High-Performance Zwitterionic Nanofiltration Membranes Fabricated via Microwave-Assisted Grafting of Betaine. ACS Applied Materials & Interfaces, 2020, 12, 35523-35531.	4.0	23
11	A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environmental Science & Technology, 2020, 54, 15563-15583.	4.6	308
12	Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance of Polyamide Nanofiltration Membranes. Environmental Science & Technology, 2020, 54, 11611-11621.	4.6	137
13	Probing the Contributions of Interior and Exterior Channels of Nanofillers toward the Enhanced Separation Performance of a Thin-Film Nanocomposite Reverse Osmosis Membrane. Environmental Science and Technology Letters, 2020, 7, 766-772.	3.9	41
14	Rationally designed in-situ fabrication of thin film nanocomposite membranes with enhanced desalination and anti-biofouling performance. Journal of Membrane Science, 2020, 615, 118542.	4.1	40
15	Optimized Size and Distribution of Silver Nanoparticles on the Surface of Titanium Implant Regarding Cell Viability. Applied Sciences (Switzerland), 2020, 10, 7063.	1.3	9
16	Metal–Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Applied Nano Materials, 2020, 3, 9238-9248.	2.4	57
17	Electrospray-Printed Three-Tiered Composite Membranes with Enhanced Mass Transfer Coefficients for Phenol Removal in an Aqueous–Aqueous Membrane Extractive Process. Environmental Science & Technology, 2020, 54, 7611-7618.	4.6	26
18	Improving chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in-situ grafted melamine. Desalination, 2020, 489, 114539.	4.0	49
19	Dually Charged MOF-Based Thin-Film Nanocomposite Nanofiltration Membrane for Enhanced Removal of Charged Pharmaceutically Active Compounds. Environmental Science & amp; Technology, 2020, 54, 7619-7628.	4.6	95

#	Article	IF	Citations
20	Thin-film composite polyamide membrane modified by embedding functionalized boron nitride nanosheets for reverse osmosis. Journal of Membrane Science, 2020, 611, 118389.	4.1	56
21	Graphene oxide membranes: controlling their transport pathways. Journal of Materials Chemistry A, 2020, 8, 15319-15340.	5.2	118
22	Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review. Advances in Colloid and Interface Science, 2020, 282, 102204.	7.0	154
23	Nanoclaysâ€Incorporated Thinâ€Film Nanocomposite Membranes for Reverse Osmosis Desalination. Advanced Materials Interfaces, 2020, 7, 1902108.	1.9	43
24	Pressure and osmotically driven membrane processes: A review of the benefits and production of nano-enhanced membranes for desalination. Desalination, 2020, 479, 114323.	4.0	52
25	Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chemical Engineering Journal, 2020, 387, 124202.	6.6	56
26	Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Research, 2020, 173, 115557.	5.3	230
27	Facile preparation of a crosslinked hydrophilic UHMWPE membrane. Journal of Applied Polymer Science, 2020, 137, 49015.	1.3	2
28	Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. Journal of Membrane Science, 2020, 604, 118039.	4.1	116
29	Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination, 2021, 498, 114740.	4.0	45
30	Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification. Journal of Membrane Science, 2021, 618, 118681.	4.1	37
31	Highly improved organic solvent reverse osmosis (OSRO) membrane for organic liquid mixture separation by simple heat treatment. Journal of Membrane Science, 2021, 618, 118710.	4.1	27
32	Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration. Chemical Engineering Journal, 2021, 420, 127602.	6.6	51
33	Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. Journal of Hazardous Materials, 2021, 410, 124633.	6.5	31
34	Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. Water Research, 2021, 189, 116666.	5.3	40
35	Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. Journal of Membrane Science, 2021, 620, 118952.	4.1	27
36	Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chemical Society Reviews, 2021, 50, 6290-6307.	18.7	263
37	Nanoparticle-templated polyamide membranes for improved biofouling resistance. Environmental Science: Nano, 2021, 8, 565-579.	2.2	8

#	Article	IF	CITATIONS
38	Polyamide Nanofiltration Membranes from Emulsion-Mediated Interfacial Polymerization. ACS ES&T Engineering, 2021, 1, 533-542.	3.7	23
39	Polymer nanocomposite membranes for wastewater treatment. , 2021, , 605-672.		Ο
40	2D Material Based Thinâ€Film Nanocomposite Membranes for Water Treatment. Advanced Materials Technologies, 2021, 6, 2000862.	3.0	25
41	Nanofiltration for separation and purification of saccharides from biomass. Frontiers of Chemical Science and Engineering, 2021, 15, 837-853.	2.3	24
42	Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal–Organic Framework. Environmental Science & Technology, 2021, 55, 5324-5334.	4.6	28
43	Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges. Nano Letters, 2021, 21, 3699-3707.	4.5	30
44	Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. Journal of Membrane Science, 2021, 626, 119106.	4.1	10
45	Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water (Switzerland), 2021, 13, 1369.	1.2	58
46	Application of ZIF-67 as a crosslinker to prepare sulfonated polysulfone mixed-matrix membranes for enhanced water permeability and separation properties. Water Science and Technology, 2021, 84, 144-158.	1.2	9
47	Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. Water Research, 2021, 195, 116976.	5.3	90
48	Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. Membranes, 2021, 11, 435.	1.4	14
49	Enhanced removal of hydrophobic endocrine disrupting compounds from wastewater by nanofiltration membranes intercalated with hydrophilic MoS2 nanosheets: Role of surface properties and internal nanochannels. Journal of Membrane Science, 2021, 628, 119267.	4.1	49
50	Aramid Nanofiber Membranes Reinforced by MXene Nanosheets for Recovery of Dyes from Textile Wastewater. ACS Applied Nano Materials, 2021, 4, 6328-6336.	2.4	29
51	Cleaning–Healing–Interfacial Polymerization Strategy for Upcycling Real End-of-Life Polyvinylidene Fluoride Microfiltration Membranes. ACS Sustainable Chemistry and Engineering, 2021, 9, 10352-10360.	3.2	15
52	Fabrication of nanofiltration membrane on MoS2 modified PVDF substrate for excellent permeability, salt rejection, and structural stability. Chemical Engineering Journal, 2021, 416, 129154.	6.6	46
53	Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology, 2021, 266, 118567.	3.9	122
54	Interlayered Forward Osmosis Membranes with Ti ₃ C ₂ T _{<i>x</i>} MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. Environmental Science & Technology, 2021, 55, 13219-13230.	4.6	16
55	Preparation and Desalination Performance of PA/UiO-66/PES Composite Membranes. Membranes, 2021, 11, 628.	1.4	4

#	Article	IF	CITATIONS
56	ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. Journal of Membrane Science, 2021, 632, 119356.	4.1	55
58	Recent advances of thin film nanocomposite membranes: Effects of shape/structure of nanomaterials and interfacial polymerization methods. Chemical Engineering Research and Design, 2021, 172, 135-158.	2.7	29
59	Next-generation thin-film composite nanofiltration membranes for water remediation: a review. Emergent Materials, 2022, 5, 1373-1390.	3.2	11
60	Zwitterionic Copolymer-Regulated Interfacial Polymerization for Highly Permselective Nanofiltration Membrane. Nano Letters, 2021, 21, 6525-6532.	4.5	49
61	Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269, 118719.	3.9	37
62	Polyamide membranes enabled by covalent organic framework nanofibers for efficient reverse osmosis. Journal of Polymer Science, 2022, 60, 2999-3008.	2.0	4
63	A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. Journal of Industrial and Engineering Chemistry, 2021, 101, 78-125.	2.9	43
64	Development of ultrathin polyamide nanofilm with enhanced inner-pore interconnectivity via graphene quantum dots-assembly intercalation for high-performance organic solvent nanofiltration. Journal of Membrane Science, 2021, 635, 119498.	4.1	31
65	Crumple-textured polyamide membranes via MXene nanosheet-regulated interfacial polymerization for enhanced nanofiltration performance. Journal of Membrane Science, 2021, 635, 119536.	4.1	64
66	Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. Journal of Membrane Science, 2021, 636, 119586.	4.1	32
67	Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122, 101450.	11.8	90
68	Ligninsulfonate/trimesoylchloride nanocomposite membrane with transmembrane nanochannels via bionic cell membrane for molecular separation. Journal of Membrane Science, 2021, 638, 119741.	4.1	4
69	Fabrication of high performance nanofiltration membranes based on the interfacial polymerization regulated by the incorporation of dextran nanoparticles. Desalination, 2021, 519, 115308.	4.0	20
70	Multilayer assembly of thin-film nanocomposite membranes with enhanced NaCl and antibiotic rejection. Desalination, 2021, 517, 115261.	4.0	17
71	Star polymer-mediated in-situ synthesis of silver-incorporated reverse osmosis membranes with excellent and durable biofouling resistance. Journal of Membrane Science, 2021, 639, 119778.	4.1	15
72	Highly efficient removal of quinolones by using the easily reusable MOF derived-carbon. Journal of Hazardous Materials, 2022, 423, 127181.	6.5	30
73	A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. Journal of Membrane Science, 2022, 641, 119871.	4.1	167
74	MXene Nanosheet Templated Nanofiltration Membranes toward Ultrahigh Water Transport. Environmental Science & Technology, 2021, 55, 1270-1278.	4.6	102

#	Article	IF	CITATIONS
75	Facile fabrication of functional cellulose paper with high-capacity immobilization of Ag nanoparticles for catalytic applications for tannery wastewater. Journal of Leather Science and Engineering, 2020, 2, .	2.7	27
76	A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Separation and Purification Technology, 2022, 280, 119866.	3.9	43
77	Mechanism insights into the role of the support mineralization layer toward ultrathin polyamide nanofilms for ultrafast molecular separation. Journal of Materials Chemistry A, 2021, 9, 26159-26171.	5.2	34
78	Nanofiltration for drinking water treatment: a review. Frontiers of Chemical Science and Engineering, 2022, 16, 681-698.	2.3	77
79	Second interfacial polymerization decorating defects of TFC NF membrane formed by 1D nanochannels for improving separation performance. Journal of Environmental Chemical Engineering, 2022, 10, 106896.	3.3	2
80	Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation. Journal of Membrane Science, 2022, 645, 120196.	4.1	17
81	Biocidal surfactant-assisted fabrication of thin film composite membranes with excellent and durable anti-biofouling performance. Chemical Engineering Journal, 2022, 431, 134114.	6.6	18
82	Effects of crossflow filtration cell configuration on membrane separation performance and fouling behaviour. Desalination, 2022, 525, 115505.	4.0	7
83	Novel Poly(piperazinamide)/poly(m-phenylene isophthalamide) composite nanofiltration membrane with polydopamine coated silica as an interlayer for the splendid performance. Separation and Purification Technology, 2022, 285, 120390.	3.9	23
84	Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination. Desalination, 2022, 526, 115502.	4.0	23
85	Carbon Nanotube Interlayer Enhances Water Permeance and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence. Environmental Science & Technology, 2022, 56, 2656-2664.	4.6	72
86	Decreased Density of Polyamide Nanofilm Derived from Coupling Reactions to Maximize Water Permeability and Water-Nacl Selectivity. SSRN Electronic Journal, 0, , .	0.4	0
87	Polymer-based nano-enhanced reverse osmosis membranes. , 2022, , 335-379.		1
88	Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Science Advances, 2022, 8, eabm4149.	4.7	87
89	Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward Targeted Removal of Organic Micropollutants for Water Reuse. Environmental Science and Technology Letters, 2022, 9, 247-257.	3.9	42
90	Probing the influence of shape and loading of CeO2 nanoparticles on the separation performance of thin-film nanocomposite membranes with an interlayer. Separation and Purification Technology, 2022, 291, 120930.	3.9	7
91	Self-cleaning ceramic membranes coated with low crystalline Fe2O3@CMWCNTs for highly efficient photo-Fenton removal of aromatic compounds. Journal of Environmental Chemical Engineering, 2022, 10, 107455.	3.3	13
92	Polyamide thin-film nanocomposite membrane containing star-shaped ZIF-8 with enhanced water permeance and PPCPs removal. Separation and Purification Technology, 2022, 292, 120886.	3.9	18

#	Article	IF	CITATIONS
93	Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS ₂ Nanosheets via Precise Thickness Control. Environmental Science & Technology, 2022, 56, 8807-8818.	4.6	27
94	Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. Chemosphere, 2022, 305, 135151.	4.2	34
95	A zwitterionic copolymer-interlayered ultrathin nanofilm with ridge-shaped structure for ultrapermeable nanofiltration. Journal of Membrane Science, 2022, 657, 120679.	4.1	19
96	Hydrophilic montmorillonite in tailoring the structure and selectivity of polyamide membrane. Journal of Membrane Science, 2022, 657, 120674.	4.1	10
97	Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. Journal of Membrane Science, 2022, 657, 120673.	4.1	47
98	Rapid solute transfer photocatalytic membrane: The combination of host–guest interaction and photocatalyst load. Chemical Engineering Journal, 2022, 446, 137316.	6.6	12
99	Chapter 2. Green Nanotechnology for High-performance Impurity Detection and Water Treatment. RSC Nanoscience and Nanotechnology, 2022, , 33-64.	0.2	0
100	Enhanced water permeability in nanofiltration membranes using 3D accordion-like MXene particles with random orientation of 2D nanochannels. Journal of Materials Chemistry A, 2022, 10, 16430-16438.	5.2	15
101	Fabrication and Characterization of Poly(vinyl alcohol)-chitosan-capped Silver Nanoparticle Hybrid Membranes for Pervaporation Dehydration of Ethanol. Gels, 2022, 8, 401.	2.1	3
102	Recent progress in nanomaterial-functionalized membranes for removal of pollutants. IScience, 2022, 25, 104616.	1.9	19
103	Vacuum-assisted MPD loading toward promoted nanoscale structure and enhanced water permeance of polyamide RO membrane. Separation and Purification Technology, 2022, 297, 121547.	3.9	6
104	Highâ€Precision and Highâ€Flux Separation by Rationally Designing the Nanochannels and Surface Nanostructure of Polyamide Nanofiltration Membranes. Small Science, 2022, 2, .	5.8	6
105	Cosolvent-Assisted Interfacial Polymerization toward Regulating the Morphology and Performance of Polyamide Reverse Osmosis Membranes: Increased <i>m</i> -Phenylenediamine Solubility or Enhanced Interfacial Vaporization?. Environmental Science & Technology, 2022, 56, 10308-10316.	4.6	20
106	Preparation of Nanofiltration Membrane Modified with Sawdust-Derived Cellulose Nanocrystals for Removal of Nitrate from Drinking Water. Membranes, 2022, 12, 670.	1.4	4
107	Improvement of <scp>PVDF</scp> composite membrane performance by using nanocrystals cellulose from waste pineapple leaf and <scp>g ₃N₄</scp> . Journal of Applied Polymer Science, 2022, 139, .	1.3	1
108	Unveiling the Growth of Polyamide Nanofilms at Water/Organic Free Interfaces: Toward Enhanced Water/Salt Selectivity. Environmental Science & Technology, 2022, 56, 10279-10288.	4.6	27
109	Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chinese Journal of Chemical Engineering, 2022, 49, 76-99.	1.7	11
110	Covalent organic polymers for aqueous and organic solvent nanofiltration. Separation and Purification Technology, 2022, 298, 121589.	3.9	12

#	ARTICLE	IF	CITATIONS
	Rapid Upcycling of End-of-Life Microfiltration Membrane Mediated by the Healing of Metal–Organic		0
111	Complex. ÁCS Šustainable Chemistry and Engineering, 2022, 10, 9841-9849.	3.2	9
112	Modeling Water Transport in Interlayered Thin-Film Nanocomposite Membranes: Gutter Effect vs Funnel Effect. ACS ES&T Engineering, 2022, 2, 2023-2033.	3.7	27
113	Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. Water Research, 2022, 222, 118901.	5.3	35
114	Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T Engineering, 2022, 2, 1574-1598.	3.7	21
115	Enhancing the NaCl/Na2SO4 separation selectivity and chlorine resistance of nanofiltration membranes by incorporating novel designed starch nanoparticles. Applied Surface Science, 2022, 604, 154417.	3.1	13
116	Enhanced high-salinity brines treatment using polyamide nanofiltration membrane with tunable interlayered MXene channel. Science of the Total Environment, 2023, 856, 158434.	3.9	17
117	A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. Journal of Membrane Science, 2022, 661, 120952.	4.1	32
118	Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects. Chemosphere, 2022, 308, 136329.	4.2	22
119	Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. Environmental Science & Technology, 2022, 56, 12811-12827.	4.6	92
120	Artificial water channels engineered thin-film nanocomposite membranes for high-efficient application in water treatment. Separation and Purification Technology, 2022, 303, 122206.	3.9	4
121	Natural-product-derived membranes for high-efficiency anionic dye removal. Journal of Membrane Science, 2022, 663, 121061.	4.1	6
122	Facile synthesis of nanofiltration membrane with asymmetric selectivity towards enhanced water recovery for groundwater remediation. Journal of Membrane Science, 2022, 663, 121038.	4.1	13
123	Polydopamine/ polyethyleneimine/ MOF ternary-coated poly (vinyl chloride) nanocomposite membranes based on green solvent for shale gas wastewater treatment. Journal of Membrane Science, 2023, 665, 121100.	4.1	6
124	Hydrophilic modified polydopamine tailored heterogeneous polyamide in thin-film nanocomposite membranes for enhanced separation performance and anti-fouling properties. Journal of Membrane Science, 2023, 666, 121124.	4.1	9
125	Enhanced water permeance and EDCs rejection using a UiO-66-NH2-predeposited polyamide membrane. Chemosphere, 2023, 312, 137114.	4.2	3
126	Porous substrate affects fouling propensity of thin-film composite nanofiltration membranes. , 2022, 2, 100036.		5
127	Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: A synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665, 121096.	4.1	6
128	Effect of carbon nanotube nanochannel on the separation performance of thin-film nanocomposite (TFN) membranes. Desalination, 2023, 546, 116216.	4.0	12

#	Article	IF	CITATIONS
129	Electrosprayed thin film nanocomposite polyamide nanofiltration with homogeneous distribution of nanoparticles for enhanced separation performance. Desalination, 2023, 546, 116206.	4.0	7
130	Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal, 2023, 454, 140447.	6.6	50
131	In-situ photoreduction strategy for synthesis of silver nanoparticle-loaded PVDF ultrafiltration membrane with high antibacterial performance and stability. Environmental Science and Pollution Research, 2023, 30, 26445-26457.	2.7	5
132	Multifunctionalization of self-assembled silver nanoparticle coated poly(ethyleneimine)/poly(diallyldimethylammonium chloride) modified silk fabric. Journal of the Textile Institute, 2023, 114, 1758-1768.	1.0	0
133	Enhancing Stability of Tannic Acid-Fe ^{III} Nanofiltration Membrane for Water Treatment: Intercoordination by Metal–Organic Framework. Environmental Science & Technology, 2022, 56, 17266-17277.	4.6	10
134	Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Advances, 2022, 12, 34245-34267.	1.7	2
135	Microbial deposition and growth on polyamide reverse osmosis membrane surfaces: Mechanisms, impacts, and potential cures. Desalination, 2023, 548, 116301.	4.0	7
136	Utilization of carboxyl group-grafted molybdenum disulfide for enhancing the performance of thin-film nanocomposite nanofiltration membranes. Desalination, 2023, 548, 116283.	4.0	14
137	Diazotized polyamide membranes on commercial polyethylene textile with simultaneously improved water permeance, salt rejections and anti-fouling. Desalination, 2023, 549, 116307.	4.0	4
138	Polyamide (PA)- and Polyimide (PI)-based membranes for desalination application. Polymer Bulletin, 2023, 80, 10661-10695.	1.7	6
139	Polyamide thin film nanocomposite membranes with in-situ integration of multiple functional nanoparticles for high performance reverse osmosis. Journal of Membrane Science, 2023, 669, 121311.	4.1	12
140	Highly permeable nanofilms with asymmetric multilayered structure engineered via amine-decorated interlayered interfacial polymerization. Journal of Membrane Science, 2023, 670, 121377.	4.1	14
141	Green modification of P84 co-polyimide with β-cyclodextrin for separation of dye/salt mixtures. Desalination, 2023, 549, 116365.	4.0	15
142	Regulating interfacial polymerization <i>via</i> a multi-functional calcium carbonate based interlayer for a highly permselective nanofiltration membrane. Journal of Materials Chemistry A, 2023, 11, 8836-8844.	5.2	10
143	Fabrication of novel thin-film nanocomposite polyamide membrane by the interlayer approach: A review. Desalination, 2023, 554, 116509.	4.0	20
144	Polyelectrolyte-assisted interfacial polymerization for polyamide nanofiltration membrane with enhanced separation and anti-biofouling properties in groundwater treatment. Desalination, 2023, 555, 116546.	4.0	7
145	Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. Journal of Membrane Science, 2023, 672, 121401.	4.1	12
146	Correlating the role of nanofillers with active layer properties and performance of thin-film nanocomposite membranes. Desalination, 2023, 550, 116370.	4.0	4

#	Article	IF	CITATIONS
147	Roles and gains of coordination chemistry in nanofiltration membrane: A review. Chemosphere, 2023, 318, 137930.	4.2	10
148	Fabrication of polyamide membranes by interlayer-assisted interfacial polymerization method with enhanced organic solvent nanofiltration performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131075.	2.3	9
149	Thin-film composite membrane for desalination containing a sulfonated UiO-66 material. Journal of Materials Science, 2023, 58, 3134-3146.	1.7	0
150	Improved heterogeneous photo-Fenton-like degradation of ofloxacin through polyvinylpyrrolidone modified CuFeO2 catalyst: Performance, DFT calculation and mechanism. Separation and Purification Technology, 2023, 311, 123261.	3.9	7
151	Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	7
152	Fouling-resistant surface modification of forward osmosis membranes using MoS2-Ag nanofillers. Surfaces and Interfaces, 2023, 38, 102844.	1.5	3