Control of tumor-associated macrophages and T cells in

Nature Neuroscience 22, 729-740 DOI: 10.1038/s41593-019-0370-y

Citation Report

CITA	TION	Drr	ODT

#	Article	IF	CITATIONS
1	Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature Immunology, 2019, 20, 1100-1109.	7.0	421
3	Glioblastoma: Role of Mitochondria N-acetylserotonin/Melatonin Ratio in Mediating Effects of miR-451 and Aryl Hydrocarbon Receptor and in Coordinating Wider Biochemical Changes. International Journal of Tryptophan Research, 2019, 12, 117864691985594.	1.0	25
4	Modulation of glioma-inflammation crosstalk profiles in human glioblastoma cells by indirubin-3'-(2,3) Tj ETQ Interactions, 2019, 312, 108816.)q0 0 0 rgE 1.7	3T /Overlock 9
5	Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, 5, 822-834.	3.8	273
6	Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Frontiers in Immunology, 2019, 10, 1973.	2.2	47
7	Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. International Journal of Molecular Sciences, 2019, 20, 4719.	1.8	48
8	Towards Immunotherapy for Pediatric Brain Tumors. Trends in Immunology, 2019, 40, 748-761.	2.9	77
9	Macrophage manipulation. Nature Reviews Cancer, 2019, 19, 304-304.	12.8	1
10	Role of AHR in the control of GBM-associated myeloid cells. Seminars in Cancer Biology, 2020, 64, 13-18.	4.3	18
11	Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nature Medicine, 2020, 26, 39-46.	15.2	236
12	The therapeutic potential of targeting tryptophan catabolism in cancer. British Journal of Cancer, 2020, 122, 30-44.	2.9	159
13	IL411 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell, 2020, 182, 1252-1270.e34.	13.5	259
14	Targeting STAT3 in Cancer Immunotherapy. Molecular Cancer, 2020, 19, 145.	7.9	423
15	The current state of immunotherapy for primary and secondary brain tumors: similarities and differences. Japanese Journal of Clinical Oncology, 2020, 50, 1231-1245.	0.6	13
16	Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. Journal of Clinical Medicine, 2020, 9, 3226.	1.0	41
17	Epigenetic Regulations of AhR in the Aspect of Immunomodulation. International Journal of Molecular Sciences, 2020, 21, 6404.	1.8	10
18	Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron, 2020, 108, 1025-1044.	3.8	31
19	AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nature Neuroscience, 2020, 23, 939-951.	7.1	57

#	Article	IF	CITATIONS
20	Tolerogenic nanoparticles suppress central nervous system inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32017-32028.	3.3	60
21	Metabolic Cancer-Macrophage Crosstalk in the Tumor Microenvironment. Biology, 2020, 9, 380.	1.3	16
22	A Prognostic Microenvironment-Related Immune Signature via ESTIMATE (PROMISE Model) Predicts Overall Survival of Patients With Glioma. Frontiers in Oncology, 2020, 10, 580263.	1.3	26
23	Targeting CD39 in cancer. Nature Reviews Immunology, 2020, 20, 739-755.	10.6	185
24	Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment. Cancers, 2020, 12, 1960.	1.7	20
25	Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nature Communications, 2020, 11, 4011.	5.8	198
26	Gut dysbiosis induced by cardiac pressure overload enhances adverse cardiac remodeling in a T cell-dependent manner. Gut Microbes, 2020, 12, 1823801.	4.3	75
27	Glioblastoma Immune Landscape and the Potential of New Immunotherapies. Frontiers in Immunology, 2020, 11, 585616.	2.2	76
28	CD39: the potential target in small cell lung cancer. Translational Lung Cancer Research, 2020, 9, 1483-1495.	1.3	12
29	Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology, 2020, 21, 216.	3.8	73
30	Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 2020, 11, 583084.	2.2	783
31	Peripherally-sourced myeloid antigen presenting cells increase with advanced aging. Brain, Behavior, and Immunity, 2020, 90, 235-247.	2.0	11
32	Prognostic Value of a Ten-Gene Signature in HNSCC Patients Based on Tumor-Associated Macrophages Expression Profiling. Frontiers in Oncology, 2020, 10, 569002.	1.3	3
33	Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes. JCO Clinical Cancer Informatics, 2020, 4, 421-435.	1.0	10
34	Single-Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction of Tissue-Invading Leukocytes. Cell, 2020, 181, 1626-1642.e20.	13.5	388
35	Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Frontiers in Immunology, 2020, 11, 1185.	2.2	131
36	T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. Journal of Neuro-Oncology, 2020, 147, 281-295.	1.4	32
37	Malignant Evaluation and Clinical Prognostic Values of m6A RNA Methylation Regulators in Glioblastoma. Frontiers in Oncology, 2020, 10, 208.	1.3	47

CITATION REPOR				
	C 1 - 1 -	101	DEDC	DOT
		()N	R + P(ד אונ

#	Article	IF	CITATIONS
38	Control of brain tumor growth by reactivating myeloid cells with niacin. Science Translational Medicine, 2020, 12, .	5.8	35
39	METTL3/YTHDF2 m ⁶ A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 4092-4104.	1.6	100
40	The Gut–CNS Axis in Multiple Sclerosis. Trends in Neurosciences, 2020, 43, 622-634.	4.2	64
41	The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis—ten years later. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1115-L1130.	1.3	44
42	Biology and therapeutic targeting of tumourâ€associated macrophages. Journal of Pathology, 2020, 250, 573-592.	2.1	56
43	Myeloid-derived suppressor cells—new and exciting players in lung cancer. Journal of Hematology and Oncology, 2020, 13, 10.	6.9	110
44	P2X7 receptor activation increases caveolin-1 expression and macrophage lipid raft formation boosting CD39 activity. Journal of Cell Science, 2020, 133, .	1.2	15
45	The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clinical Reviews in Allergy and Immunology, 2020, 59, 382-390.	2.9	114
46	Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers, 2020, 12, 1014.	1.7	19
47	On the mechanism of anti-CD39 immune checkpoint therapy. , 2020, 8, e000186.		82
48	A review of glioblastoma immunotherapy. Journal of Neuro-Oncology, 2021, 151, 41-53.	1.4	159
49	Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics, 2021, 11, 1016-1030.	4.6	149
50	Mitochondrial Dysfunction, Macrophage, and Microglia in Brain Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 620788.	1.8	11
51	CCL2 in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1302, 1-14.	0.8	24
52	Aryl Hydrocarbon Receptor Activation in Astrocytes by Laquinimod Ameliorates Autoimmune Inflammation in the CNS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	23
53	Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells. Cancers, 2021, 13, 165.	1.7	21
54	Ectonucleotidase Modulation of Lymphocyte Function in Gut and Liver. Frontiers in Cell and Developmental Biology, 2020, 8, 621760.	1.8	10
55	AhR and Cancer: From Gene Profiling to Targeted Therapy. International Journal of Molecular Sciences, 2021, 22, 752.	1.8	42

#	Article	IF	CITATIONS
56	The aryl hydrocarbon receptor and the gut–brain axis. Cellular and Molecular Immunology, 2021, 18, 259-268.	4.8	61
57	Oncolytic HSV Vectors and Anti-Tumor Immunity. Current Issues in Molecular Biology, 2021, 41, 381-468.	1.0	8
58	Recent advances in the development of AHR antagonists in immuno-oncology. RSC Medicinal Chemistry, 2021, 12, 902-914.	1.7	14
59	Ectonucleotidases in Acute and Chronic Inflammation. Frontiers in Pharmacology, 2020, 11, 619458.	1.6	32
60	Involvement of CD73 and A2B Receptor in Radiation-Induced DNA Damage Response and Cell Migration in Human Glioblastoma A172 Cells. Biological and Pharmaceutical Bulletin, 2021, 44, 197-210.	0.6	14
61	Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Frontiers in Immunology, 2021, 12, 631092.	2.2	25
62	Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy. Science Immunology, 2021, 6, .	5.6	62
63	Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Frontiers in Immunology, 2021, 12, 636081.	2.2	31
64	The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells, 2021, 10, 484.	1.8	73
65	Personalizing Oncolytic Virotherapy for Glioblastoma: In Search of Biomarkers for Response. Cancers, 2021, 13, 614.	1.7	23
66	The Aryl Hydrocarbon Receptor as a Modulator of Anti-viral Immunity. Frontiers in Immunology, 2021, 12, 624293.	2.2	29
67	Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathologica Communications, 2021, 9, 54.	2.4	99
68	Identification of a ceRNA Network in Lung Adenocarcinoma Based on Integration Analysis of Tumor-Associated Macrophage Signature Genes. Frontiers in Cell and Developmental Biology, 2021, 9, 629941.	1.8	9
69	Targeting macrophages in cancer immunotherapy. Signal Transduction and Targeted Therapy, 2021, 6, 127.	7.1	300
70	Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes, 2021, 12, 445.	1.0	43
71	Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers, 2021, 13, 1087.	1.7	16
72	The aryl hydrocarbon receptor facilitates the human cytomegalovirus-mediated G1/S block to cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
73	Diagnosis and Management of Glioblastoma: A Comprehensive Perspective. Journal of Personalized Medicine, 2021, 11, 258.	1.1	23

#	Article	IF	CITATIONS
74	Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms. Trends in Immunology, 2021, 42, 280-292.	2.9	42
75	Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 4644.	1.8	25
76	Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nature Communications, 2021, 12, 2582.	5.8	96
77	Macrophages/Microglia in the Clioblastoma Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 5775.	1.8	22
78	The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
79	Exploiting Radiation Therapy to Restore Immune Reactivity of Glioblastoma. Frontiers in Oncology, 2021, 11, 671044.	1.3	11
80	Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy. Brain Tumor Pathology, 2021, 38, 149-155.	1.1	7
81	In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers, 2021, 13, 2449.	1.7	27
82	Therapeutic induction of tolerogenic dendritic cells via aryl hydrocarbon receptor signaling. Current Opinion in Immunology, 2021, 70, 33-39.	2.4	19
83	Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 693215.	1.8	22
84	High PYGL Expression Predicts Poor Prognosis in Human Gliomas. Frontiers in Neurology, 2021, 12, 652931.	1.1	10
85	Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nature Medicine, 2021, 27, 1212-1222.	15.2	124
86	Detrimental activation of AhR pathway in cancer: an overview of therapeutic strategies. Current Opinion in Immunology, 2021, 70, 15-26.	2.4	41
87	Tryptophan metabolism in brain tumors — IDO and beyond. Current Opinion in Immunology, 2021, 70, 57-66.	2.4	30
88	Functional immune cellâ \in "astrocyte interactions. Journal of Experimental Medicine, 2021, 218, .	4.2	49
89	Immunotherapy in Glioblastoma: A Clinical Perspective. Cancers, 2021, 13, 3721.	1.7	16
90	Crosstalk Between Tumor-Associated Microglia/Macrophages and CD8-Positive T Cells Plays a Key Role in Glioblastoma. Frontiers in Immunology, 2021, 12, 650105.	2.2	15
91	Tumor Associated Macrophages, as the Dominant Immune Cells, Are an Indispensable Target for Immunologically Cold Tumor—Glioma Therapy?. Frontiers in Cell and Developmental Biology, 2021, 9, 706286.	1.8	43

#	Article	IF	CITATIONS
92	Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma. CNS Neuroscience and Therapeutics, 2021, 27, 1105-1117.	1.9	27
93	TDO2 knockdown inhibits colorectal cancer progression via TDO2–KYNU–AhR pathway. Gene, 2021, 792, 145736.	1.0	15
94	Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Frontiers in Cellular Neuroscience, 2021, 15, 716947.	1.8	13
95	AHR signaling is induced by infection with coronaviruses. Nature Communications, 2021, 12, 5148.	5.8	38
96	Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers, 2021, 13, 4226.	1.7	43
97	Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy. Cancers, 2021, 13, 4255.	1.7	53
98	Construction of Interferon-Gamma-Related Gene Signature to Characterize the Immune-Inflamed Phenotype of Glioblastoma and Predict Prognosis, Efficacy of Immunotherapy and Radiotherapy. Frontiers in Immunology, 2021, 12, 729359.	2.2	10
99	Bioengineered Models to Study Microenvironmental Regulation of Glioblastoma Metabolism. Journal of Neuropathology and Experimental Neurology, 2021, 80, 1012-1023.	0.9	1
100	Glial and myeloid heterogeneity in the brain tumour microenvironment. Nature Reviews Cancer, 2021, 21, 786-802.	12.8	83
101	Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway. Acta Pharmaceutica Sinica B, 2021, 11, 2835-2849.	5.7	18
102	Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene, 2021, 40, 6059-6070.	2.6	13
103	Gutâ€liver axisâ€mediated mechanism of liver cancer: A special focus on the role of gut microbiota. Cancer Science, 2021, 112, 4433-4443.	1.7	49
104	Immunomodulatory Effects of Tryptophan Metabolism in the Glioma Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 730289.	2.2	10
105	Indoleamine 2,3-dioxygenase 1 (IDO): A mediator of immunoresistance in adults with brain cancer treated with immunomodulatory therapy. , 2022, , 127-151.		0
106	Immunomodulatory roles of myeloid cells in gliomas. , 2022, , 109-125.		0
107	Aryl Hydrocarbon Receptor Signaling Controls CD155 Expression on Macrophages and Mediates Tumor Immunosuppression. Journal of Immunology, 2021, 206, 1385-1394.	0.4	15
108	Moonlighting Proteins Are Important Players in Cancer Immunology. Frontiers in Immunology, 2020, 11, 613069.	2.2	19
109	Adenosinergic Pathway: A Hope in the Immunotherapy of Clioblastoma. Cancers, 2021, 13, 229.	1.7	13

#	Article	IF	CITATIONS
110	Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics, 2021, 11, 9217-9233.	4.6	16
111	MicroRNAs in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1277, 1-31.	0.8	12
112	Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Molecular Cell, 2020, 80, 384-395.	4.5	128
113	MAFG-driven astrocytes promote CNS inflammation. Nature, 2020, 578, 593-599.	13.7	282
114	Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 2021, 144, 53-69.	3.7	43
115	Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro-Oncology, 2021, 23, 932-944.	0.6	32
116	Tumor-associated macrophages based signaling pathway analysis and hub genes identification in glioma. Medicine (United States), 2020, 99, e23840.	0.4	3
117	Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight, 2020, 5, .	2.3	43
118	Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. Journal of Clinical Investigation, 2020, 130, 2286-2300.	3.9	57
119	Inhibition of the de novo pyrimidine biosynthesis pathway limits ribosomal RNA transcription causing nucleolar stress in glioblastoma cells. PLoS Genetics, 2020, 16, e1009117.	1.5	38
121	Myeloid Cells in Glioblastoma Microenvironment. Cells, 2021, 10, 18.	1.8	81
122	How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. International Journal of Molecular Sciences, 2021, 22, 387.	1.8	54
123	Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. ELife, 2020, 9, .	2.8	154
124	Research Progress on the Relationship between Intestinal Flora, Immune System and Glioma. Advances in Clinical Medicine, 2021, 11, 4357-4364.	0.0	0
125	Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers, 2021, 13, 4986.	1.7	6
126	Old Stars and New Players in the Brain Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2021, 15, 709917.	1.8	11
127	The aryl hydrocarbon receptor: A diagnostic and therapeutic target in glioma. Drug Discovery Today, 2022, 27, 422-435.	3.2	5
128	Hijacking Sexual Immuno-Privilege in GBM—An Immuno-Evasion Strategy. International Journal of Molecular Sciences, 2021, 22, 10983.	1.8	6

#	Article	IF	Citations
129	The Gene Signature of Activated M-CSF-Primed Human Monocyte-Derived Macrophages Is IL-10-Dependent. Journal of Innate Immunity, 2022, 14, 243-256.	1.8	12
130	Metabolic regulation of the cancer-immunity cycle. Trends in Immunology, 2021, 42, 975-993.	2.9	28
131	Prognosis and Immunotherapy Significances of a Cancer-Associated Fibroblasts-Related Gene Signature in Gliomas. Frontiers in Cell and Developmental Biology, 2021, 9, 721897.	1.8	13
132	Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. , 2020, 3, 334-355.		3
133	Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS Journal, 2023, 290, 7-27.	2.2	30
134	Indoleamine-2,3-Dioxygenase as a Perioperative Marker of the Immune System. Frontiers in Physiology, 2021, 12, 766511.	1.3	11
135	Mechanism for hypoxia inducible factor-1α to promote immune escape and therapeutic tolerance in hepatocellular carcinoma under hypoxic microenvironment. World Chinese Journal of Digestology, 2020, 28, 904-913.	0.0	0
136	Smad3 Promotes Cancerâ€Associated Fibroblasts Generation via Macrophage–Myofibroblast Transition. Advanced Science, 2022, 9, e2101235.	5.6	51
137	Amplification of spatially isolated adenosine pathway by tumor–macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. Journal of Hematology and Oncology, 2021, 14, 200.	6.9	68
138	Phospholipid Phosphatase 4 as a Driver of Malignant Glioma and Pancreatic Adenocarcinoma. Frontiers in Oncology, 2021, 11, 790676.	1.3	4
139	Synthetic biology: at the crossroads of genetic engineering and human therapeutics—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, , .	1.8	2
140	mTOR-dependent translation drives tumor infiltrating CD8+ effector and CD4+ Treg cells expansion. ELife, 2021, 10, .	2.8	5
141	AEBP1 as a potential immune-related prognostic biomarker in glioblastoma: a bioinformatic analyses. Annals of Translational Medicine, 2021, 9, 1657-1657.	0.7	3
142	Role of miR-653 and miR-29c in downregulation of CYP1A2 expression in hepatocellular carcinoma. Pharmacological Reports, 2022, 74, 148-158.	1.5	0
143	Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy. Materials Today Bio, 2022, 13, 100170.	2.6	10
144	Therapeutic Targets in Diffuse Midline Gliomas—An Emerging Landscape. Cancers, 2021, 13, 6251.	1.7	12
145	Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives. Frontiers in Immunology, 2022, 13, 807271.	2.2	39
146	Quenching Epigenetic Drug Resistance Using Antihypoxic Microparticles in Glioblastoma Patientâ€Đerived Chips. Advanced Healthcare Materials, 2021, , 2102226.	3.9	5

#	Article	IF	CITATIONS
147	Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. International Journal of Molecular Sciences, 2022, 23, 1496.	1.8	16
149	Identification of Tumor Antigens and Immune Subtypes of Glioblastoma for mRNA Vaccine Development. Frontiers in Immunology, 2022, 13, 773264.	2.2	15
150	Mutational and immunologic Landscape in malignant Salivary Gland Tumors harbor the potential for novel therapeutic strategies. Critical Reviews in Oncology/Hematology, 2022, 170, 103592.	2.0	4
151	Cell-intrinsic view of the aryl hydrocarbon receptor in tumor immunity. Trends in Immunology, 2022, 43, 245-258.	2.9	16
152	Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022, 55, 324-340.e8.	6.6	179
153	Glioma targeted therapy: insight into future of molecular approaches. Molecular Cancer, 2022, 21, 39.	7.9	274
154	Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncology Letters, 2022, 23, 133.	0.8	6
155	DNA Damage and Activation of cGAS/STING Pathway Induce Tumor Microenvironment Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 828657.	1.8	21
156	Glioblastoma Vasculature: From its Critical Role in Tumor Survival to Relevant in Vitro Modelling. Frontiers in Drug Delivery, 2022, 2, .	0.4	2
157	Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. Journal of Experimental and Clinical Cancer Research, 2022, 41, 74.	3.5	25
158	Tumor-Associated Macrophages in Gliomas—Basic Insights and Treatment Opportunities. Cancers, 2022, 14, 1319.	1.7	40
160	Magnetic Resonance Imaging Correlates of Immune Microenvironment in Glioblastoma. Frontiers in Oncology, 2022, 12, 823812.	1.3	5
161	Immunotherapy of glioblastoma: Recent advances and future prospects. Human Vaccines and Immunotherapeutics, 2022, 18, 1-16.	1.4	29
162	T lymphocytes as dynamic regulators of glioma pathobiology. Neuro-Oncology, 2022, 24, 1647-1657.	0.6	18
163	Emodin inhibits U87 glioblastoma cells migration by activating aryl hydrocarbon receptor (AhR) signaling pathway. Ecotoxicology and Environmental Safety, 2022, 234, 113357.	2.9	2
164	Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Frontiers in Bioengineering and Biotechnology, 2022, 10, 889291.	2.0	14
165	Comprehensive analysis of TAMs marker genes in glioma for predicting prognosis and immunotherapy response. Molecular Immunology, 2022, 144, 78-95.	1.0	1
166	Metabolism of tissue macrophages in homeostasis and pathology. Cellular and Molecular Immunology, 2022, 19, 384-408.	4.8	117

#	Article	IF	CITATIONS
167	Targeting AhR as a Novel Therapeutic Modality against Inflammatory Diseases. International Journal of Molecular Sciences, 2022, 23, 288.	1.8	20
168	Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers, 2021, 13, 6231.	1.7	13
169	Aryl hydrocarbon receptor is a prognostic biomarker and is correlated with immune responses in cervical cancer. Bioengineered, 2021, 12, 11922-11935.	1.4	6
170	The Eclectic Nature of Glioma-Infiltrating Macrophages and Microglia. International Journal of Molecular Sciences, 2021, 22, 13382.	1.8	14
171	Immunotherapy Resistance in Glioblastoma. Frontiers in Genetics, 2021, 12, 750675.	1.1	13
172	Immune deconvolution and temporal mapping identifies stromal targets and developmental intervals for abrogating murine low-grade optic glioma formation. Neuro-Oncology Advances, 2022, 4, vdab194.	0.4	5
173	Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers, 2022, 14, 1627.	1.7	7
174	Brain coâ€delivery of firstâ€line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. Exploration, 2022, 2, .	5.4	40
175	Clioblastoma scRNA-seq shows treatment-induced, immune-dependent increase in mesenchymal cancer cells and structural variants in distal neural stem cells. Neuro-Oncology, 2022, 24, 1494-1508.	0.6	11
192	A Conceptual Framework for Inducing T Cell-Mediated Immunity Against Glioblastoma. Seminars in Immunopathology, 2022, 44, 697-707.	2.8	5
193	Pharmacological targeting of the tumor–immune symbiosis in glioblastoma. Trends in Pharmacological Sciences, 2022, 43, 686-700.	4.0	15
194	Synthetic Essentiality of Tryptophan 2,3-Dioxygenase 2 in <i>APC</i> -Mutated Colorectal Cancer. Cancer Discovery, 2022, 12, 1702-1717.	7.7	15
195	Signal Pathways Involved in the Interaction Between Tumor-Associated Macrophages/TAMs and Glioblastoma Cells. Frontiers in Oncology, 2022, 12, .	1.3	7
196	Regulation of intrinsic and extrinsic metabolic pathways in tumourâ€associated macrophages. FEBS Journal, 2023, 290, 3040-3058.	2.2	6
197	CD39 – A bright target for cancer immunotherapy. Biomedicine and Pharmacotherapy, 2022, 151, 113066.	2.5	20
198	Amino acid metabolism: challenges and opportunities for the therapeutic treatment of leukemia and lymphoma. Immunology and Cell Biology, 2022, 100, 507-528.	1.0	5
199	Ongoing Clinical Trials in Aging-Related Tissue Fibrosis and New Findings Related to AhR Pathways. , 2022, 13, 732.		5
201	Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Trends in Cancer, 2022, 8, 839-854.	3.8	23

ARTICLE IF CITATIONS Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to 202 2.9 26 overcome them. British Journal of Cancer, 2022, 127, 976-987. The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers, 2022, 14, 1.7 9 2756. Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune 204 microenvironment across multiple cancers. Computational and Structural Biotechnology Journal, 1.9 17 2022, 20, 3106-3119. Brain Coâ€Delivery of Temozolomide and Cisplatin for Combinatorial Glioblastoma Chemotherapy. 11.1 54 Advanced Materials, 2022, 34, . Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nature 206 12.8 40 Reviews Cancer, 2022, 22, 497-514. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of 6.6 inflammatory cDC2 via metabolic communication. Immunity, 2022, 55, 1032-1050.e14. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacological Reviews, 208 7.1 38 2022, 74, 799-824. Graphdiyne oxide nanosheets reprogram immunosuppressive macrophage for cancer immunotherapy. 209 6.2 10 Nano Today, 2022, 45, 101543. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic 210 2.2 31 opportunities. Frontiers in Immunology, 0, 13, . Discovery and Characterization of a Novel Aryl Hydrocarbon Receptor Inhibitor, IK-175, and Its 1.9 Inhibitory Activity on Tumor Immune Suppression. Molecular Cancer Therapeutics, 2022, 21, 1261-1272. Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune 212 19 synapse, and blockade of the immunosuppressive oncometabolic circuitry., 2022, 10, e004935. LncRNA RP3-525N10.2-NFKB1-PROS1 triplet-mediated low PROS1 expression is an onco-immunological biomarker in low-grade gliomas: a pan-cancer analysis with experimental verification. Journal of Translational Medicine, 2022, 20, . 1.8 Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma 214 3.7 24 pathogenicity. Brain, 2022, 145, 3288-3307. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in 5.8 glioblastoma. Nature Communications, 2022, 13, . Emerging role of ferroptosis in glioblastoma: Therapeutic opportunities and challenges. Frontiers in 216 1.6 7 Molecular Biosciences, 0, 9, . The glioblastoma multiforme tumor site promotes the commitment of tumor-infiltrating lymphocytes to the T_H17 lineage in humans. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . An integrative analysis revealing POLD2 as a tumor suppressive immune protein and prognostic 218 1.1 1 biomarker in pan-cancer. Frontiers in Genetics, 0, 13, . CCL8 as a promising prognostic factor in diffuse large B-cell lymphoma via M2 macrophage interactions: A bioinformatic analysis of the tumor microenvironment. Frontiers in Immunology, 0, 13, 2.2

		CITATION REPORT		
#	Article		IF	CITATIONS
220	Current understanding of the human microbiome in glioma. Frontiers in Oncology, 0, 12	' , •	1.3	5
221	Comprehensive metabolomics study on the pathogenesis of anaplastic astrocytoma via Medicine (United States), 2022, 101, e29594.	UPLC-Q/TOF-MS.	0.4	1
222	Deciphering diffuse glioma immune microenvironment as a key to improving immunothe Current Opinion in Oncology, 2022, 34, 653-660.	erapy results.	1.1	2
223	Advances in research on glioma microenvironment and immunotherapeutic targets. , 0,	, 14-29.		0
224	CircMERTK modulates the suppressive capacity of tumor-associated macrophage via targ colorectal cancer. Human Cell, 2023, 36, 276-285.	geting IL-10 in	1.2	2
225	Microglia–T cell conversations in brain cancer progression. Trends in Molecular Medici 951-963.	ne, 2022, 28,	3.5	10
226	The microbiome-derived metabolite TMAO drives immune activation and boosts respons checkpoint blockade in pancreatic cancer. Science Immunology, 2022, 7, .	es to immune	5.6	74
227	Origin, activation, and targeted therapy of glioma-associated macrophages. Frontiers in 0, 13, .	Immunology,	2.2	10
228	Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with c Science Advances, 2022, 8, .	ancer pain.	4.7	29
229	Targeting tumor-associated macrophages for the immunotherapy of glioblastoma: Navig clinical and translational landscape. Frontiers in Immunology, 0, 13, .	gating the	2.2	5
230	Metabolic guidance and stress in tumors modulate antigen-presenting cells. Oncogenes	is, 2022, 11, .	2.1	3
231	The Oncogenesis of Clial Cells in Diffuse Gliomas and Clinical Opportunities. Neuroscien 2023, 39, 393-408.	ce Bulletin,	1.5	2
232	CD155 is a putative therapeutic target in medulloblastoma. Clinical and Translational Or 25, 696-705.	1cology, 2023,	1.2	3
233	Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to immunotherapy. Advanced Drug Delivery Reviews, 2022, 191, 114585.	o cancer	6.6	4
234	Progress in research on the role of amino acid metabolic reprogramming in tumour thera Biomedicine and Pharmacotherapy, 2022, 156, 113923.	apy: A review.	2.5	7
235	Immunotherapy approaches for adult glioma: knowledge gained from recent clinical trial Opinion in Neurology, 2022, 35, 803-813.	s. Current	1.8	7
236	Identification of tryptophan metabolic gene-related subtypes, development of prognosti characterization of tumor microenvironment infiltration in gliomas. Frontiers in Molecula Neuroscience, 0, 15, .		1.4	1
237	The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Immunology, 0, 13, .	Frontiers in	2.2	11

#	Article	IF	CITATIONS
239	Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment. Science Signaling, 2022, 15, .	1.6	19
240	Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochemical Pharmacology, 2023, 208, 115371.	2.0	24
241	Absence of indoleamine 2,3‑dioxygenase 2 promotes liver regeneration after partial hepatectomy in mice. Molecular Medicine Reports, 2022, 27, .	1.1	0
242	Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Frontiers in Pharmacology, 0, 13, .	1.6	9
243	Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Frontiers in Immunology, 0, 13, .	2.2	4
244	Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: implications for precision immunotherapy. Annals of Oncology, 2023, 34, 300-314.	0.6	23
245	Epigenetics and Metabolism Reprogramming Interplay into Glioblastoma: Novel Insights on Immunosuppressive Mechanisms. Antioxidants, 2023, 12, 220.	2.2	4
246	High expression of RNF169 is associated with poor prognosis in pancreatic adenocarcinoma by regulating tumour immune infiltration. Frontiers in Genetics, 0, 13, .	1.1	1
247	Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity, 2023, 56, 14-31.	6.6	31
248	Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. Journal of Clinical Investigation, 2023, 133, .	3.9	57
250	In lung adenocarcinoma, low expression of the cell surface extracellular nucleotidase CD39 is related to immune infiltration and a poor prognosis. Journal of Thoracic Disease, 2022, 14, 4938-4950.	0.6	0
251	Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis. Molecular Medicine, 2023, 29, .	1.9	9
252	Targeted inhibition of RBPJ transcription complex alleviates the exhaustion of CD8+ T cells in hepatocellular carcinoma. Communications Biology, 2023, 6, .	2.0	3
253	Research Progress of the Brain-Gut Axis as a Therapeutic Target for Central Nervous System Diseases. Advances in Clinical Medicine, 2023, 13, 3475-3480.	0.0	0
255	The Immunology of Brain Tumors. , 2023, , .		0
256	Gene-based cancer-testis antigens as prognostic indicators in hepatocellular carcinoma. Heliyon, 2023, 9, e13269.	1.4	1
258	Characterization of purinergic signaling in tumor-infiltrating lymphocytes from lower- and high-grade gliomas. Purinergic Signalling, 2024, 20, 47-64.	1.1	0
259	Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death and Disease, 2023, 14, .	2.7	12

#	Article	IF	CITATIONS
261	Transcriptional Profiling of a Patient-Matched Cohort of Glioblastoma (IDH-Wildtype) for Therapeutic Target and Repurposing Drug Identification. Biomedicines, 2023, 11, 1219.	1.4	0
267	Optimizing the role of immunotherapy for the treatment of glioblastoma. , 2023, , 553-591.		1
269	Clioblastoma heterogeneity at single cell resolution. Oncogene, 2023, 42, 2155-2165.	2.6	17
277	Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	107
278	Immune regulation through tryptophan metabolism. Experimental and Molecular Medicine, 2023, 55, 1371-1379.	3.2	14
287	Tumor-associated macrophage-related strategies for glioma immunotherapy. Npj Precision Oncology, 2023, 7, .	2.3	5
297	Immunometabolism: a new dimension in immunotherapy resistance. Frontiers of Medicine, 2023, 17, 585-616.	1.5	0
320	The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics and Antimicrobial Proteins, 0, , .	1.9	О