Baseline Assessment of Marine Litter and Microplastic I Benthos at the East Mingulay Marine Protected Area (Se

Frontiers in Marine Science

6,

DOI: 10.3389/fmars.2019.00080

Citation Report

#	Article	IF	CITATIONS
1	Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environmental Pollution, 2019, 253, 322-329.	3.7	61
2	Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018. Marine Pollution Bulletin, 2020, 160, 111678.	2.3	20
3	Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators, 2020, 119, 106624.	2.6	23
4	Effects of pollution on marine organisms. Water Environment Research, 2020, 92, 1510-1532.	1.3	17
5	Microplastics in corals: An emergent threat. Marine Pollution Bulletin, 2020, 161, 111810.	2.3	32
6	Towards a common approach to the assessment of the environmental status of deep-sea ecosystems in areas beyond national jurisdiction. Marine Policy, 2020, 121, 104182.	1.5	11
7	Public Perceptions of Deep-Sea Environment: Evidence From Scotland and Norway. Frontiers in Marine Science, 2020, 7 , .	1.2	24
8	Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach. Frontiers in Marine Science, 2020, 7, .	1.2	29
9	Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Communications Earth & Environment, 2021, 2, .	2.6	68
10	Eating Near the Dump: Identification of Nearby Plastic Hotspot as a Proxy for Potential Microplastic Contamination in the Norwegian Lobster (Nephrops norvegicus). Frontiers in Marine Science, 2021, 8, .	1.2	12
11	Microplastic pollution in Marine Protected Areas of Southern Sri Lanka. Marine Pollution Bulletin, 2021, 168, 112462.	2.3	24
12	Sensitivity of a coldâ€water coral reef to interannual variability in regional oceanography. Diversity and Distributions, 2021, 27, 1719-1731.	1.9	5
13	Modelling the distribution of fishing-related floating marine litter within the Bay of Biscay and its marine protected areas. Environmental Pollution, 2022, 292, 118216.	3.7	14
14	Modelling the Influence from Biota and Organic Matter on the Transport Dynamics of Microplastics in the Water Column and Bottom Sediments in the Oslo Fjord. Water (Switzerland), 2021, 13, 2690.	1.2	8
15	The modeled distribution of corals and sponges surrounding the Salas y $G\tilde{A}^3$ mez and Nazca ridges with implications for high seas conservation. Peerl, 2021, 9, e11972.	0.9	9
16	Microplastics pollution in the intertidal limpet, Nacella magellanica, from Beagle Channel (Argentina). Science of the Total Environment, 2021, 795, 148866.	3.9	15
17	Plastics: An Additional Threat for Coral Ecosystems. , 2020, , 469-485.		6
18	How well-protected are protected areas from anthropogenic microplastic contamination? Review of analytical methods, current trends, and prospects. Trends in Environmental Analytical Chemistry, 2021, 32, e00147.	5. 3	24

#	Article	IF	CITATIONS
19	First evidence of microplastics in the Marine Protected Area Namuncur \tilde{A}_i at Burdwood Bank, Argentina: a study on Henricia obesa and Odontaster penicillatus (Echinodermata: Asteroidea). Polar Biology, 2021, 44, 2277-2287.	0.5	6
20	Microplastics: impacts on corals and other reef organisms. Emerging Topics in Life Sciences, 2022, 6, 81-93.	1.1	12
21	Marine-protected areas and plastic pollution. , 2022, , 249-273.		O
22	Are tropical estuaries a source of or a sink for marine litter? Evidence from Sabaki Estuary, Kenya. Marine Pollution Bulletin, 2022, 176, 113397.	2.3	11
23	Emerging microplastics in the environment: Properties, distributions, and impacts. Chemosphere, 2022, 297, 134118.	4.2	43
28	Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate. Accounts of Chemical Research, 2022, 55, 1514-1523.	7.6	18
29	Accumulation of marine litter in cold-water coral habitats: A comparative study of two Irish Special Areas of Conservation, NE Atlantic. Marine Pollution Bulletin, 2022, 180, 113764.	2.3	3
30	Estimation of contamination level in microplastic-exposed crayfish by laser confocal micro-Raman imaging. Food Chemistry, 2022, 397, 133844.	4.2	8
31	Blanks and bias in microplastic research: Implications for future quality assurance. Trends in Environmental Analytical Chemistry, 2023, 38, e00203.	5.3	23
35	Waters of Ireland and the UK. Coral Reefs of the World, 2023, , 145-169.	0.3	O
36	Source Generation of Arsenic Species and Spatial Distribution in Benthic Ecosystem: A Review. Emerging Contaminants and Associated Treatment Technologies, 2024, , 65-80.	0.4	0