Sodium-based batteries: from critical materials to batte

Journal of Materials Chemistry A 7, 9406-9431 DOI: 10.1039/c8ta11999f

Citation Report

#	Article	IF	CITATIONS
1	Mechanochemical synthesis of fast sodium ion conductor Na ₁₁ Sn ₂ PSe ₁₂ enables first sodium–selenium all-solid-state battery. Journal of Materials Chemistry A, 2019, 7, 20790-20798.	5.2	29
2	Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. Journal of Materials Chemistry A, 2019, 7, 19668-19675.	5.2	138
3	Flexible Conductive Anodes Based on 3D Hierarchical Sn/NS-CNFs@rGO Network for Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 63.	14.4	59
4	Engineering Unique Ball-In-Ball Structured (Ni _{0.33} Co _{0.67}) ₉ S ₈ @C Nanospheres for Advanced Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 27805-27812.	4.0	22
5	Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 2019, 397, 138-167.	9.5	164
6	Antimony―and Bismuthâ€Based Chalcogenides for Sodiumâ€ŀon Batteries. Chemistry - an Asian Journal, 2019, 14, 2925-2937.	1.7	46
7	Fe1-S/reduced graphene oxide composite as anode material for aqueous rechargeable Ni/Fe batteries. Journal of Alloys and Compounds, 2019, 800, 99-106.	2.8	13
8	Electrospun VSe _{1.5} /CNF composite with excellent performance for alkali metal ion batteries. Nanoscale, 2019, 11, 16308-16316.	2.8	50
9	Design of meso/macro porous 2D Mn-vanadate as potential novel anode materials for sodium-ion storage. Journal of Energy Storage, 2019, 26, 100915.	3.9	13
10	Rambutan peel based hard carbons as anode materials for sodium ion battery. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 953-960.	1.0	18
11	NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage. Nano-Micro Letters, 2019, 11, 44.	14.4	100
12	Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor. Ultrasonics Sonochemistry, 2019, 58, 104617.	3.8	24
13	A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium–selenium batteries. Dalton Transactions, 2019, 48, 10191-10198.	1.6	17
14	Mesoporous Carbon oated Bismuth Nanorods as Anode for Potassiumâ€lon Batteries. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900209.	1.2	47
15	Galvanic Replacement Synthesis of Highly Uniform Sb Nanotubes: Reaction Mechanism and Enhanced Sodium Storage Performance. ACS Nano, 2019, 13, 5885-5892.	7.3	73
16	ReS ₂ -Based electrode materials for alkali-metal ion batteries. CrystEngComm, 2019, 21, 3755-3769.	1.3	58
17	Heterogeneous dual-wrapped architecture of hollow SiOx/MoS2-CNTs nanohybrids as anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 842, 50-58.	1.9	13
18	A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11976-11984.	5.2	78

#	Article	IF	CITATIONS
19	A novel Mo-based oxide β-SnMoO4 as anode for lithium ion battery. Chinese Chemical Letters, 2020, 31, 210-216.	4.8	17
20	Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Materials, 2020, 25, 903-911.	9.5	131
21	P2-type Na0.8(Li0.33Mn0.67-xTix)O2 doped by Ti as cathode materials for high performance sodium-ion batteries. Journal of Alloys and Compounds, 2020, 815, 152402.	2.8	14
22	Improving the electrochemical performance of Na3V2O2(PO4)2F cathode by using a defect-containing TiO2- coating for sodium ionÂbatteries. Journal of Alloys and Compounds, 2020, 814, 152270.	2.8	32
23	Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. Journal of Energy Chemistry, 2020, 43, 24-32.	7.1	148
24	Investigation of sodium content on the electrochemical performance of the Nax(Fe0.35Mn0.35Co0.3)O2 (x = 0.5, 0.6, 0.7, 0.8, 0.9) for sodium-ion batteries. Ionics, 2020, 26, 223-2	231 ² .	10
25	Deciphering an Abnormal Layeredâ€Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie, 2020, 132, 1507-1511.	1.6	17
26	Deciphering an Abnormal Layeredâ€Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 1491-1495.	7.2	78
27	Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. Journal of Energy Chemistry, 2020, 46, 71-77.	7.1	75
28	Stabilizing the Structure of Nickelâ€Rich Lithiated Oxides via Cr Doping as Cathode with Boosted Highâ€Voltage/Temperature Cycling Performance for Liâ€Ion Battery. Energy Technology, 2020, 8, 1900498.	1.8	20
29	Nanostructured metal chalcogenides confined in hollow structures for promoting energy storage. Nanoscale Advances, 2020, 2, 583-604.	2.2	18
30	Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase. Chemical Engineering Journal, 2020, 392, 123810.	6.6	18
31	Metal–CO ₂ Batteries at the Crossroad to Practical Energy Storage and CO ₂ Recycle. Advanced Functional Materials, 2020, 30, 1908285.	7.8	103
32	A Sodium Polysulfide Battery with Liquid/Solid Electrolyte: Improving Sulfur Utilization Using P ₂ S ₅ as Additive and Tetramethylurea as Catholyte Solvent. Energy Technology, 2020, 8, 1901200.	1.8	10
33	Nanoscale Al2O3 coating to stabilize selenium cathode for sodium–selenium batteries. Journal of Materials Research, 2020, 35, 747-755.	1.2	11
34	Twoâ€Dimensional Materialâ€Functionalized Separators for Highâ€Energyâ€Density Metal–Sulfur and Metalâ€Based Batteries. ChemSusChem, 2020, 13, 1366-1378.	3.6	20
35	Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. Ionics, 2020, 26, 5535-5542.	1.2	39
36	State-of-the-Art Electrode Materials for Sodium-Ion Batteries. Materials, 2020, 13, 3453.	1.3	37

ARTICLE IF CITATIONS Free-Standing N-Doped Carbon Nanotube Films with Tunable Defects as a High Capacity Anode for 37 4.0 68 Potassium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 37506-37514. Citrate-mediated synthesis of highly crystalline transition metal hexacyanoferrates and their Na ion 3.1 storage properties. Applied Surface Science, 2020, 531, 147336. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. Journal of Materials 39 5.282 Chemistry A, 2020, 8, 19843-19854. Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. Journal of Materials Chemistry A, 2020, 8, 22962-22968. Vanadium sulfide based materials: synthesis, energy storage and conversion. Journal of Materials 41 5.2 73 Chemistry A, 2020, 8, 20781-20802. Covalent Encapsulation of Sulfur in a MOFâ€Derived S, Nâ€Doped Porous Carbon Host Realized via the Vaporâ€Infiltration Method Results in Enhanced Sodium–Sulfur Battery Performance. Advanced Energy 10.2 118 Materials, 2020, 10, 2000931. P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density 43 and structural stability for sodium-ion batteries. Journal of Materials Science: Materials in 1.1 3 Electronics, 2020, 31, 9423-9429. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. 197 Energy Storage Materials, 2020, 30, 9-26. A flexible self-charging sodium-ion full battery for self-powered wearable electronics. Journal of 5.2 22 46 Materials Chemistry Å, 2020, 8, 13267-13276. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chemical Reviews, 2020, 120, 6490-6557. FeTiO 3 as Anode Material for Sodiumâ€lon Batteries: from Morphology Control to Decomposition. 48 9 1.7 ChemElectroChem, 2020, 7, 1713-1722. Decreasing the Ion Diffusion Pathways for the Intercalation of Multivalent Cations into One-Dimensional TiS₂ Nanobelt Arrays. ACS Applied Materials & amp; Interfaces, 2020, 12, 49 21788-21798. Topology and ferroelectricity in group-V monolayers*. Chinese Physics B, 2020, 29, 057304. 50 0.7 31 Hierarchical hollow microspheres Na₃V₂(PO₄)₂F₃C@rGO as 1.4 high-performance cathode materials for sodium ion batteries. New Journal of Chemistry, 2020, 44, 2985-12992 Electroanalytical methods and their hyphenated techniques for novel ion battery anode research. 52 15.6 29 Energy and Environmental Science, 2020, 13, 2618-2656. Electrospun N-doped carbon nanofibers confined Fe1-xS composite as superior anode material for 23 sodium-ion battery. Journal of Alloys and Compounds, 2020, 842, 155642. Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous Poly(ethylene oxide) for all-solid-state Na 54 4.0 34 battery. Journal of Power Sources, 2020, 454, 227949. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. Journal of Power Sources, 2020, 455, 227956.

#	Article	IF	CITATIONS
56	Preparation of benzoxazine-based N-doped mesoporous carbon material and its electrochemical behaviour as supercapacitor. Journal of Electroanalytical Chemistry, 2020, 868, 114196.	1.9	16
57	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
58	Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance. Nanoscale, 2020, 12, 10693-10702.	2.8	39
59	Combustion synthesis of defect-rich carbon nanotubes as anodes for sodium-ion batteries. Applied Surface Science, 2020, 520, 146317.	3.1	34
60	Towards high-performance anodes: Design and construction of cobalt-based sulfide materials for sodium-ion batteries. Journal of Energy Chemistry, 2021, 54, 680-698.	7.1	54
61	MXenes for Nonâ€Lithiumâ€lon (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2000681.	10.2	183
62	Vanadium diphosphide as a negative electrode material for sodium secondary batteries. Journal of Power Sources, 2021, 483, 229182.	4.0	14
63	Research Progress and Future Perspectives on Rechargeable Naâ€O ₂ and Naâ€CO ₂ Batteries. Energy and Environmental Materials, 2021, 4, 158-177.	7.3	25
64	Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2005581.	7.8	138
65	Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. Rare Metals, 2021, 40, 433-439.	3.6	24
66	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
67	A comprehensive review of the development of magnesium anodes for primary batteries. Journal of Materials Chemistry A, 2021, 9, 12367-12399.	5.2	72
68	Long-life Na-rich nickel hexacyanoferrate capable of working under stringent conditions. Journal of Materials Chemistry A, 2021, 9, 21228-21240.	5.2	21
69	Chemically Processed Transition Metal Oxides for Post-Lithium-Ion Battery Applications. , 2021, , 531-560.		0
70	Highly-dispersed Ge quantum dots in carbon frameworks for ultra-long-life sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 7778-7786.	3.2	16
71	A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode for sodium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 2491-2499.	1.3	12
72	Biomass Derived High Areal and Specific Capacity Hard Carbon Anodes for Sodium-Ion Batteries. Energy & Fuels, 2021, 35, 1820-1830.	2.5	18
73	Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries: synthesis, structures, and electrochemical properties. Journal of Solid State Electrochemistry, 2021, 25, 1271-1281.	1.2	6

ARTICLE IF CITATIONS Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. 15.6 177 74 Energy and Environmental Science, 2021, 14, 2244-2262. Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061. 18.7 108 Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries. Ionics, 2021, 76 1.2 5 27, 667-675. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal 24 batteries. Journal of Materials Chemistry A, 2021, 9, 18632-18643. CHAPTER 4. 3D Graphene-based Materials for Enhancing the Energy Density of Sodium Ion Batteries. 78 0.2 0 Chemistry in the Environment, 2021, , 86-114. Interlayer Spacing-Controlled Na_{0.71}Co_{0.96}O₂ with High Pseudocapacitance for Enhanced Sodium Storage. Energy & amp; Fuels, 2021, 35, 3479-3489. 79 2.5 Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando 80 1.0 4 x-ray absorption spectroscopy. Electronic Structure, 2021, 3, 013001. An Emerging Energy Storage System: Advanced Na–Se Batteries. ACS Nano, 2021, 15, 5876-5903. 56 Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materials Today, 2021, 82 8.3 21 50, 385-399. Physical and Chemical Properties of Sodium Perchlorate Solutions in Sulfolane. Russian Journal of 0.1 Physical Chemistry A, 2021, 95, 983-989. Interface Engineering of a Sandwich Flexible Electrode PAn@CoHCF Rooted in Carbon Cloth for 84 4.06 Enhanced Sodium-Ion Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 23794-23802. Graphite Anode for Potassium Ion Batteries: Current Status and Perspective. Energy and 44 Environmental Materials, 2022, 5, 458-469. Potential anodic applications of 2D MoS2 for K-ion batteries. Journal of Alloys and Compounds, 2021, 86 2.8 38 865, 158782. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 87 5.0 39 1768-1800. Nanostructured MoS₂â€, SnS₂â€, and WS₂â€Based Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries via Chemical Methods: A Review Article. Energy Technology, 88 9 1.8 2021, 9, 2100179. A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: An effective solution to capacity attenuation. Electrochimica Acta, 89 2021, 384, 138362. Two-Dimensional Protective Layers of MX₃ to Stabilize Lithium and Sodium Metal Anodes. 90 2.54 ACS Applied Energy Materials, 2021, 4, 8653-8659. Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes. Inorganic Chemistry, 2021, 60, 12526-12535.

#	Article	IF	CITATIONS
92	Matching Poly(vinylidene fluoride) and β″-Al ₂ O ₃ for Hybrid Electrolyte Membrane for Advanced Solid-State Sodium Batteries. Journal of the Electrochemical Society, 2021, 168, 080541.	1.3	4
93	Nitrogen-doped carbon decorated TiO2/Ti3C2T MXene composites as anode material for high-performance sodium-ion batteries. Surface and Coatings Technology, 2021, 422, 127568.	2.2	22
94	Interfacing 2D M2X (MÂ=ÂNa, K, Cs; XÂ=ÂO, S, Se, Te) monolayers for 2D excitonic and tandem solar cells. Applied Surface Science, 2021, 563, 150304.	3.1	18
95	Tailored amorphous titanium oxide and carbon composites for enhanced pseudocapacitive sodium storage. Journal of Energy Chemistry, 2022, 65, 127-132.	7.1	7
96	Revealing the Sodium Storage Behavior of Biomass-Derived Hard Carbon by Using Pure Lignin and Cellulose as Model Precursors. SSRN Electronic Journal, 0, , .	0.4	0
97	Co-construction of sulfur vacancies and carbon confinement in V ₅ S ₈ /CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale, 2021, 13, 5033-5044.	2.8	90
98	3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: A free-standing electrode for high-performance lithium/sodium-ion batteries. Chemical Engineering Journal, 2020, 398, 125592.	6.6	52
99	A review of π-conjugated polymer-based nanocomposites for metal-ion batteries and supercapacitors. Royal Society Open Science, 2021, 8, 210567.	1.1	24
100	Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder. Journal of Solid State Electrochemistry, 2022, 26, 375-388.	1.2	5
101	Artificial intelligence driven in-silico discovery of novel organic lithium-ion battery cathodes. Energy Storage Materials, 2022, 44, 313-325.	9.5	23
102	Recent Advances in Heterostructured Carbon Materials as Anodes for Sodiumâ€lon Batteries. Small Structures, 2021, 2, .	6.9	80
103	Encapsulation of Se in dual-wall hollow carbon spheres: Physical confinement and chemisorption for superior Na–Se and K–Se batteries. Carbon, 2022, 187, 354-364.	5.4	19
104	Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance. Nano Research, 2022, 15, 3273-3282.	5.8	26
105	Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Naâ€O ₂ Battery Performance. Advanced Energy Materials, 2022, 12, .	10.2	13
106	Screening for Stable Ternary-Metal MXenes as Promising Anode Materials for Sodium/Potassium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 26332-26338.	1.5	4
107	Carbon Nanofibres Confined SnS Nanostructure with High Flexibility and Enhanced Performance for Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
108	Sodium birnessite@graphene hierarchical structures for ultrafast sodium ion storage. Journal of Electroanalytical Chemistry, 2022, 906, 116007.	1.9	3
109	Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. Journal of Colloid and Interface Science, 2022, 611, 317-326.	5.0	22

	CITA	ATION REPORT	
#	Article	IF	Citations
110	Nanostructures of Carbon Nanofiber-Constrained Stannous Sulfide with High Flexibility and Enhanced Performance for Sodium-Ion Batteries. Energy & Fuels, 2022, 36, 2179-2188.	2.5	11
111	The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: a focused review. Journal of Materials Chemistry A, 2022, 10, 1022-1046.	5.2	26
112	Influence of R=Y, Gd, Sm on Crystallization and Sodium Ion Conductivity of Na5RSi4O12 Phase. Materials, 2022, 15, 1104.	1.3	5
113	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. Journal of Materials Science and Technology, 2022, 115, 156-165.	5.6	18
114	A Fast-Charging Cathode for Na-Ion Hybrid Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
115	Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. Journal of Materials Chemistry A, 2022, 10, 8047-8058.	5.2	5
116	Tessellated N-doped carbon/CoSe ₂ as trap-catalyst sulfur hosts for room-temperature sodium–sulfur batteries. Inorganic Chemistry Frontiers, 2022, 9, 1743-1751.	3.0	6
117	Mainstream Optimization Strategies for Cathode Materials of Sodiumâ€ion Batteries. Small Structures, 2022, 3, .	6.9	84
118	High frequency impedance measurements of sodium solid electrolytes. Journal of the European Ceramic Society, 2022, 42, 3939-3947.	2.8	3
119	Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors. Renewable Energy, 2022, 189, 630-638.	4.3	24
120	Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chemical Engineering Journal, 2022, 443, 136257.	6.6	23
121	Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Materials, 2022, 48, 192-204.	9.5	43
122	Cycling Na-O2 batteries via Li2O2 formation and Na deposition. Chinese Journal of Analytical Chemistry, 2022, 50, 100100.	0.9	1
123	Design of antimony nanocomposite for high areal capacity sodium battery anodes. Journal of Alloys and Compounds, 2022, 914, 165336.	2.8	3
124	Adjusting morphological properties of organic electrode material for efficient Sodium-ion batteries by isomers strategy. Journal of Colloid and Interface Science, 2022, 623, 637-645.	5.0	5
125	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
126	Organic Small Molecules with Electrochemicalâ€Active Phenolic Enolate Groups for Readyâ€toâ€Charge Organic Sodiumâ€lon Batteries. Small Methods, 2022, 6, .	e 4.6	15
127	Polypyrrole doped graphene nanocomposites as advanced positive electrodes for vanadium redox flow battery. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0

#	Article	IF	CITATIONS
128	Quasiâ€solidâ€state conversion cathode materials for roomâ€ŧemperature sodium–sulfur batteries. , 2022, 1, .		10
129	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie, 2022, 134, .	1.6	3
131	Rational Design of Wood‧tructured Thick Electrode for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	33
132	Correlation between the Cation Disorders of Fe ³⁺ and Li ⁺ in P3-Type Na _{0.67} [Li _{0.1} (Fe _{0.5} Mn _{0.5}) _{0.9}]O ₂ for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33120-33129.	4.0	10
133	Architecture design of MXene-based materials for sodium-chemistry based batteries. Nano Energy, 2022, 101, 107590.	8.2	13
134	Energy-efficient system and charge balancing topology for electric vehicle application. Sustainable Energy Technologies and Assessments, 2022, 53, 102516.	1.7	11
135	Enflurane Additive for Sodium Negative Electrodes. ACS Applied Materials & Interfaces, 2022, 14, 36551-36556.	4.0	3
136	Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2022, 58, 658-666.	0.3	1
137	Low-Cost, High-Energy Na-Ion Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering, 2022, 10, 10675-10684.	3.2	10
138	Na3V2(PO4)3/C cathode material with three-dimensional interconnected porous structure constructed using cotton soft tissue as carbon source. Inorganic Chemistry Communication, 2022, 144, 109881.	1.8	3
139	<i>In situ</i> fabrication of MXene/CuS hybrids with interfacial covalent bonding <i>via</i> Lewis acidic etching route for efficient sodium storage. Journal of Materials Chemistry A, 2022, 10, 22135-22144.	5.2	22
140	Highâ€Throughput Dataâ€Driven Prediction of Stable Highâ€Performance Naâ€Ion Sulfide Solid Electrolytes. Advanced Functional Materials, 2022, 32, .	7.8	4
141	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
142	Honeycomb structured nano MOF for high-performance sodium-ion hybrid capacitor. Chemical Engineering Journal, 2023, 452, 139585.	6.6	11
143	Understanding the tunable sodium storage performance in pillared MXenes: a first-principles study. Physical Chemistry Chemical Physics, 2022, 24, 27184-27194.	1.3	2
144	Progress and Prospects of Emerging Potassium–Sulfur Batteries. Advanced Energy Materials, 2022, 12,	10.2	11
145	Alkali (Na, K) doped SnO2: An investigation on the role of microstructure on electricity generation of oxide based ceramic hydroelectric cells. Inorganic Chemistry Communication, 2022, 146, 110115.	1.8	1
146	Cluster-Continuum Model as a Sanity Check of Sodium Ions' Gibbs Free Energies of Transfer. Inorganic Chemistry, 2022, 61, 18365-18379.	1.9	1

#	Article	IF	Citations
147	Complex Optical Investigation of Sodium Superoxide Loaded Phosphovanadate Glass System in Ultra-Violet and Visible Region. Trends in Sciences, 2022, 19, 2077.	0.2	0
148	Unveiling the electrochemistry effect on microsphere and nanorod morphology of NaSn2(PO4)3 anode for lithium/sodium batteries. Journal of Solid State Electrochemistry, 2023, 27, 427-438.	1.2	1
149	Physical and numerical aspects of sodium ion solvation free energies <i>via</i> the cluster-continuum model. Physical Chemistry Chemical Physics, 2022, 24, 29927-29939.	1.3	1
150	Enhanced Cycle Stability of Lowâ€Cost Naâ€Rich Metallic NaCl Electrode for Advanced Naâ€Ion Batteries. Advanced Functional Materials, 0, , 2210370.	7.8	0
151	Electrochemical energy storage and conversion: An overview. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	6
152	Structural stability of P2-Na0.67Fe0.5Mn0.5O2 by Mg doping. Ionics, 0, , .	1.2	0
153	Preparation, transport and Na-storage properties of monoclinic – Na2FeSiO4 for Na-ion batteries. Solid State Ionics, 2022, 388, 116084.	1.3	0
154	Stable fast-charging sodium-ion batteries achieved by a carbomethoxy-modified disodium organic material. Cell Reports Physical Science, 2023, , 101240.	2.8	2
155	Micropore engineering on hollow nanospheres for ultra-stable sodium-selenium batteries. Journal of Energy Chemistry, 2023, 80, 99-109.	7.1	5
156	Carbon confined GeO ₂ hollow spheres for stable rechargeable Na ion batteries. RSC Advances, 2023, 13, 9749-9755.	1.7	2
157	K+-doped P2-Na0.67Fe0.5Mn0.5O2 cathode for highly enhanced rate performance sodium-ion battery. Journal of Alloys and Compounds, 2023, 947, 169482.	2.8	7
158	X-ray absorption spectromicroscopy of Na0.67Fe0.25Mn0.75O2 and Na0.67Li0.2Fe0.2Mn0.6O2 primary particles for Na-ion batteries. Journal of Physics and Chemistry of Solids, 2023, 177, 111272.	1.9	1
159	Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. Carbon, 2023, 205, 353-364.	5.4	25
160	Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm ^{–2} . ACS Applied Energy Materials, 2023, 6, 2515-2523.	2.5	3
161	An overview of 2D metal sulfides and carbides as Na host materials for Na-ion batteries. Chemical Engineering Journal, 2023, 461, 141924.	6.6	15
162	Sustainable Biomass-Derived Carbon Electrodes for Potassium and Aluminum Batteries: Conceptualizing the Key Parameters for Improved Performance. Nanomaterials, 2023, 13, 765.	1.9	7
163	æ°¢é"®è‡ªç»"è£…æœ‰æœºæ¡†æž¶ææ–™åœ¨ç"µåŒ–å¦èf½æºå²å,ï和转æ¢äçš"ç"ç©¶èį›å±•. Chinese S	Science Bu	lleton, 2023,

164	Scalable Glass-Fiber-Polymer Composite Solid Electrolytes for Solid-State Sodium–Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 20946-20957.		4.0	2	
-----	--	--	-----	---	--

#	Article	IF	CITATIONS
166	Organic materials as charge hosts for pseudocapacitive energy storage. Sustainable Energy and Fuels, 2023, 7, 2802-2818.	2.5	1
175	Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chemical Society Reviews, 2023, 52, 4933-4995.	18.7	23
180	Fabrication and Characterization of Mesocarbon Anode for Sodium-Ion Batteries. , 2023, , 38-45.		0
186	Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy and Environmental Science, 2023, 16, 5688-5720.	15.6	6