Structured crowdsourcing enables convolutional segme

Bioinformatics 35, 3461-3467 DOI: 10.1093/bioinformatics/btz083

Citation Report

#	Article	IF	CITATIONS
1	Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. Journal of Pathology, 2019, 249, 286-294.	2.1	263
2	Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagnostic Pathology, 2020, 15, 100.	0.9	35
3	High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients. Journal of Translational Medicine, 2020, 18, 334.	1.8	19
4	Al in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1837-1857.	3.9	215
5	Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group. Npj Breast Cancer, 2020, 6, 16.	2.3	90
6	Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data. JCO Clinical Cancer Informatics, 2020, 4, 480-490.	1.0	52
7	Reducing Annotation Burden Through Multimodal Learning. Frontiers in Big Data, 2020, 3, 19.	1.8	10
8	Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types. Scientific Data, 2020, 7, 185.	2.4	38
9	Classification of Kidney Cancer Data Using Cost-Sensitive Hybrid Deep Learning Approach. Symmetry, 2020, 12, 154.	1.1	26
10	Utilizing Automated Breast Cancer Detection to Identify Spatial Distributions of Tumor-Infiltrating Lymphocytes in Invasive Breast Cancer. American Journal of Pathology, 2020, 190, 1491-1504.	1.9	66
11	Artificial intelligence and the interplay between tumor and immunity. , 2021, , 211-235.		1
12	Deep neural network models for computational histopathology: A survey. Medical Image Analysis, 2021, 67, 101813.	7.0	331
13	Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples. Histopathology, 2021, 78, 791-804.	1.6	27
14	A distributed system improves inter-observer and Al concordance in annotating interstitial fibrosis and tubular atrophy. , 2021, 11603, .		0
15	Deep learning in histopathology: the path to the clinic. Nature Medicine, 2021, 27, 775-784.	15.2	355
16	Learning from crowds in digital pathology using scalable variational Gaussian processes. Scientific Reports, 2021, 11, 11612.	1.6	22
17	Automated Quantification of sTIL Density with H&E-Based Digital Image Analysis Has Prognostic Potential in Triple-Negative Breast Cancers. Cancers, 2021, 13, 3050.	1.7	21
19	A Computational Tumor-Infiltrating Lymphocyte Assessment Method Comparable with Visual Reporting Guidelines for Triple-Negative Breast Cancer. EBioMedicine, 2021, 70, 103492.	2.7	31

#	Article	IF	CITATIONS
20	Artificial intelligence in computational pathology – challenges and future directions. , 2021, 119, 103196.		25
22	Deep Learning of Histopathology Images at the Single Cell Level. Frontiers in Artificial Intelligence, 2021, 4, 754641.	2.0	26
23	Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Advanced Drug Delivery Reviews, 2021, 177, 113959.	6.6	7
24	An unsupervised method for histological image segmentation based on tissue cluster level graph cut. Computerized Medical Imaging and Graphics, 2021, 93, 101974.	3.5	13
25	Value of Public Challenges for the Development of Pathology Deep Learning Algorithms. Journal of Pathology Informatics, 2020, 11, 7.	0.8	26
26	Deep embeddings and logistic regression for rapid active learning in histopathological images. Computer Methods and Programs in Biomedicine, 2021, 212, 106464.	2.6	7
29	Reliable Identification and Quantification of Neural Cells in Microscopic Images of Neurospheres. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, , .	1.1	6
30	Artificial intelligence applied to breast pathology. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 480, 191-209.	1.4	29
31	The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. Npj Breast Cancer, 2021, 7, 150.	2.3	112
32	Breast histopathological image analysis using image processing techniques for diagnostic purposes: A methodological review. Journal of Medical Systems, 2022, 46, 7.	2.2	26
33	A Pathologist-Annotated Dataset for Validating Artificial Intelligence: A Project Description and Pilot Study. Journal of Pathology Informatics, 2021, 12, 45.	0.8	17
34	Probeable DARTS with Application to Computational Pathology. , 2021, , .		0
35	Robust Interactive Semantic Segmentation of Pathology Images with Minimal User Input. , 2021, , .		7
37	Automatic detection metastasis in breast histopathological images based on ensemble learning and color adjustment. Biomedical Signal Processing and Control, 2022, 75, 103564.	3.5	13
38	A method for balancing a multi-labeled biomedical dataset. Integrated Computer-Aided Engineering, 2022, 29, 209-225.	2.5	4
40	Assessing Representation Learning and Clustering Algorithms for Computer-Assisted Image Annotation—Simulating and Benchmarking MorphoCluster. Sensors, 2022, 22, 2775.	2.1	0
41	Display systems for digital pathology: what are proper luminance, contrast and resolution settings?. , 2022, , .		0
42	Perceptual Variation Stacking: Test Time Augmentations in Endoscopy Image Segmentation. , 2021, , .		0

#	Article	IF	CITATIONS
53	Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression. Cancers, 2022, 14, 2148.	1.7	22
54	Histokt: Cross Knowledge Transfer in Computational Pathology. , 2022, , .		7
55	Effective active learning in digital pathology: A case study in tumor infiltrating lymphocytes. Computer Methods and Programs in Biomedicine, 2022, 220, 106828.	2.6	7
56	NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer. GigaScience, 2022, 11, .	3.3	33
57	Robust High-Throughput Phenotyping with Deep Segmentation Enabled by a Web-Based Annotator. Plant Phenomics, 2022, 2022, .	2.5	2
58	Software tools and platforms in Digital Pathology: a review for clinicians and computer scientists. Journal of Pathology Informatics, 2022, 13, 100103.	0.8	8
59	EndoNuke: Nuclei Detection Dataset for Estrogen and Progesterone Stained IHC Endometrium Scans. Data, 2022, 7, 75.	1.2	3
60	Adaptive decoupling planning method for the product crowdsourcing design tasks based on knowledge reuse. Expert Systems With Applications, 2022, 206, 117525.	4.4	2
61	Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels. Medical Image Analysis, 2022, 80, 102487.	7.0	31
64	Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast. IEEE Transactions on Medical Imaging, 2022, 41, 3611-3623.	5.4	6
65	Fourier ViT: A Multi-scale Vision Transformer with Fourier Transform for Histopathological Image Classification. , 2022, , .		0
66	Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images. Sensors, 2022, 22, 6053.	2.1	2
67	A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology. Communications Medicine, 2022, 2, .	1.9	14
68	A framework for falsifiable explanations of machine learning models with an application in computational pathology. Medical Image Analysis, 2022, 82, 102594.	7.0	4
70	CS-Net: A Two-Step Epithelium Tissue Segmentation Regression Network with CS-Gate Attention on Histology Images. SSRN Electronic Journal, 0, , .	0.4	0
71	Usable Region Estimate forÂAssessing Practical Usability ofÂMedical Image Segmentation Models. Lecture Notes in Computer Science, 2022, , 173-182.	1.0	Ο
72	Identify Consistent Imaging Genomic Biomarkers for Characterizing the Survival-Associated Interactions Between Tumor-Infiltrating Lymphocytes and Tumors. Lecture Notes in Computer Science, 2022, , 222-231.	1.0	4
73	Multiple-Instance Learning with Efficient Transformer for Breast Tumor Image Classification in Bright Challenge. , 2022, , .		0

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
74	Multi-modality artificial intelligence in digital pathology. Briefings in Bioinformatics, 2022, 23, .	3.2	7
75	NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM. Bioengineering, 2022, 9, 475.	1.6	10
76	TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications Medicine, 2022, 2, .	1.9	23
77	Fast and scalable search of whole-slide images via self-supervised deep learning. Nature Biomedical Engineering, 2022, 6, 1420-1434.	11.6	32
78	Semi-Supervised Pixel Contrastive Learning Framework for Tissue Segmentation in Histopathological Image. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 97-108.	3.9	9
79	One model is all you need: Multi-task learning enables simultaneous histology image segmentation and classification. Medical Image Analysis, 2023, 83, 102685.	7.0	19
81	Shortcomings and areas for improvement in digital pathology image segmentation challenges. Computerized Medical Imaging and Graphics, 2023, 103, 102155.	3.5	3
82	Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation. Journal of Pathology Informatics, 2023, 14, 100160.	0.8	7
83	Expression site agnostic histopathology image segmentation framework by self supervised domain adaption. Computers in Biology and Medicine, 2023, 152, 106412.	3.9	3
84	MULTI-THREAD PARALLELIZING OF CELL CHARACTERISTICS OF BIOMEDICAL IMAGES. UkraÃ ⁻ nsʹkij žurn ìnformacìjnih Tehnologìj, 2022, 4, 40-44.	al 0.2	Ο
85	Leveraging image complexity in macro-level neural network design for medical image segmentation. Scientific Reports, 2022, 12, .	1.6	5
87	Improving Workflow Integration with xPath: Design and Evaluation of a Human-Al Diagnosis System in Pathology. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-37.	4.6	3
88	Application of Deep Learning in Histopathology Images of Breast Cancer: A Review. Micromachines, 2022, 13, 2197.	1.4	11
89	Deep Multi-Magnification Similarity Learning for Histopathological Image Classification. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 1535-1545.	3.9	5
90	Weakly supervised semantic segmentation of histological tissue via attention accumulation and pixel-level contrast learning. Physics in Medicine and Biology, 2023, 68, 045010.	1.6	1
91	Deep Gaussian Processes for Classification With Multiple Noisy Annotators. Application to Breast Cancer Tissue Classification. IEEE Access, 2023, 11, 6922-6934.	2.6	7
92	Enhanced Pathology Image Quality with Restore–Generative Adversarial Network. American Journal of Pathology, 2023, 193, 404-416.	1.9	3
93	Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images. Npj Precision Oncology, 2023, 7, .	2.3	18

#	Article	IF	CITATIONS
94	Multi-threaded Parallelization of Automatic Immunohistochemical Image Segmentation. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 266-275.	0.5	0
95	Handcrafted Histological Transformer (H2T): Unsupervised representation of whole slide images. Medical Image Analysis, 2023, 85, 102743.	7.0	7
96	Explainable synthetic image generation to improve risk assessment of rare pediatric heart transplant rejection. Journal of Biomedical Informatics, 2023, 139, 104303.	2.5	4
97	Restaining-based annotation for cancer histology segmentation to overcome annotation-related limitations among pathologists. Patterns, 2023, 4, 100688.	3.1	5
98	Machine learning for detection and classification of oral potentially malignant disorders: A conceptual review. Journal of Oral Pathology and Medicine, 2023, 52, 197-205.	1.4	7
99	A survey on recent trends in deep learning for nucleus segmentation from histopathology images. Evolving Systems, 2024, 15, 203-248.	2.4	8
100	Exploring Novel Innovation Strategies to Close a Technology Gap in Neurosurgery: HORAO Crowdsourcing Campaign. Journal of Medical Internet Research, 0, 25, e42723.	2.1	1
101	Effective and efficient active learning for deep learning-based tissue image analysis. Bioinformatics, 2023, 39, .	1.8	Ο
102	Tumor Cellularity Assessment of Breast Histopathological Slides via Instance Segmentation and Pathomic Features Explainability. Bioengineering, 2023, 10, 396.	1.6	3
103	An improved Hover-net for nuclear segmentation and classification in histopathology images. Neural Computing and Applications, 2023, 35, 14403-14417.	3.2	1
105	Malignant breast lesions detection in histopathological images based on the combination of bioinspired texture descriptors and deep features. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 1889-1896.	1.3	0
106	Interpretable machine learning text classification for clinical computed tomography reports – a case study of temporal bone fracture. Computer Methods and Programs in Biomedicine Update, 2023, 3, 100104.	2.3	0
107	ADS_UNet: A nested UNet for histopathology image segmentation. Expert Systems With Applications, 2023, 226, 120128.	4.4	5
111	Crowdsourcing Segmentation ofÂHistopathological Images Using Annotations Provided byÂMedical Students. Lecture Notes in Computer Science, 2023, , 245-249.	1.0	1
112	Human-Machine Interactive Tissue Prototype Learning forÂLabel-Efficient Histopathology Image Segmentation. Lecture Notes in Computer Science, 2023, , 679-691.	1.0	0
113	Precise Location Matching Improves Dense Contrastive Learning inÂDigital Pathology. Lecture Notes in Computer Science, 2023, , 783-794.	1.0	2
118	The Beauty or the Beast: Which Aspect of Synthetic Medical Images Deserves Our Focus?. , 2023, , .		0
126	Synthetic Biology: Fostering the Cyber-biological Revolution. , 2023, , 196-221.		О

#	Article	IF	CITATIONS
127	TPRO: Text-Prompting-Based Weakly Supervised Histopathology Tissue Segmentation. Lecture Notes in Computer Science, 2023, , 109-118.	1.0	0
134	Enhanced Deep Learning-Based CAD System for Breast Cancer Diagnosis from Histopathology Images: Whole Slide Approach. , 2023, , .		0
137	Convolution Neural Network Approaches for Cancer Cell Image Classification. Biotechnology and Bioprocess Engineering, 2023, 28, 707-719.	1.4	0
138	Bioinformatics, Digital Pathology, and Computational Pathology for Surgical Pathologists. , 2023, , 69-89.		0
141	SAM-Path: A Segment Anything Model forÂSemantic Segmentation inÂDigital Pathology. Lecture Notes in Computer Science, 2023, , 161-170.	1.0	1
142	A comparative analysis between two convolutional networks architectures for semantic segmentation of histopathology breast cancer images. , 2023, , .		0
143	CS-Net: A Stain Style Transfer Network for Histology Images with CS-Gate Attention. Communications in Computer and Information Science, 2024, , 19-32.	0.4	0
145	Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation. , 2023, , .		0
149	Advancing Tumor Cell Classification and Segmentation in Ki-67 Images: A Systematic Review of Deep Learning Approaches. Lecture Notes in Networks and Systems, 2024, , 94-112.	0.5	0