<i>Candida auris</i> Isolates of the Southern Asian and Different Phenotypic and Antifungal Susceptibility Prot

Journal of Clinical Microbiology 57, DOI: 10.1128/jcm.02055-18

Citation Report

#	Article	IF	CITATIONS
1	Identification of Drug Resistant Candida auris. Frontiers in Microbiology, 2019, 10, 1918.	3.5	80
2	Combined Antifungal Resistance and Biofilm Tolerance: the Global Threat of Candida auris. MSphere, 2019, 4, .	2.9	87
3	Candida auris in Singapore: Genomic epidemiology, antifungal drug resistance, and identification using the updated 8.01 VITEKⓇ2 system. International Journal of Antimicrobial Agents, 2019, 54, 709-715.	2.5	17
4	Candida auris outbreak: Mortality, interventions and cost of sustaining control. Journal of Infection, 2019, 79, 601-611.	3.3	44
5	Molecular Diagnostics in the Times of Surveillance for Candida auris. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /	Overlock I	10 Tf 50 582
6	Candida auris exhibits resilient biofilm characteristics inÂvitro: implications for environmental persistence. Journal of Hospital Infection, 2019, 103, 92-96.	2.9	59
7	Candida auris: An Overview of How to Screen, Detect, Test and Control This Emerging Pathogen. Antibiotics, 2020, 9, 778.	3.7	34
8	Candida auris in the UK: Introduction, dissemination, and control. PLoS Pathogens, 2020, 16, e1008563.	4.7	16

9	Clade-specific variation in susceptibility of <i>Candida auris</i> to broad-spectrum ultraviolet C light (UV-C). Infection Control and Hospital Epidemiology, 2020, 41, 1384-1387.	1.8	14
10	Potent Synergistic Interactions between Lopinavir and Azole Antifungal Drugs against Emerging Multidrug-Resistant Candida auris. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	30
11	The <i>Galleria mellonella</i> infection model as a system to investigate the virulence of <i>Candida auris</i> strains. Pathogens and Disease, 2020, 78, .	2.0	28
12	Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections. MSphere, 2020, 5, .	2.9	19

13	Candida auris Bloodstream Infections in Russia. Antibiotics, 2020, 9, 557.	3.7	13
14	Echinocandins as Biotechnological Tools for Treating Candida auris Infections. Journal of Fungi (Basel, Switzerland), 2020, 6, 185.	3.5	12
15	Bismuth Nanoantibiotics Display Anticandidal Activity and Disrupt the Biofilm and Cell Morphology of the Emergent Pathogenic Yeast Candida auris. Antibiotics, 2020, 9, 461.	3.7	17
16	Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nature Microbiology, 2020, 5, 1516-1531.	13.3	75
17	A decade after the emergence of Candida auris: what do we know?. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1617-1627.	2.9	16
18	Comparison of <i>in vivo</i> pathogenicity of four <i>Candida auris</i> clades in a neutropenic bloodstream infection murine model. Emerging Microbes and Infections, 2020, 9, 1160-1169.	6.5	55

ARTICLE

19 Candida auris: A Decade of Understanding of an Enigmatic Pathogenic Yeast. Journal of Fungi (Basel,) Tj ETQq0 0 0.3gBT /Overlock 10 Tf

20	Silver Nanoantibiotics Display Strong Antifungal Activity Against the Emergent Multidrug-Resistant Yeast Candida auris Under Both Planktonic and Biofilm Growing Conditions. Frontiers in Microbiology, 2020, 11, 1673.	3.5	29
21	Candida auris Phenotypic Heterogeneity Determines Pathogenicity <i>In Vitro</i> . MSphere, 2020, 5, .	2.9	46
22	MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. Journal of Antimicrobial Chemotherapy, 2020, 75, 1194-1205.	3.0	40
23	Multidrug-resistant <i>Candida auris</i> : an epidemiological review. Expert Review of Anti-Infective Therapy, 2020, 18, 551-562.	4.4	38
24	What do we know about the biology of the emerging fungal pathogen of humans Candida auris?. Microbiological Research, 2021, 242, 126621.	5.3	38
25	Investigation of the Physiological, Biochemical and Antifungal Susceptibility Properties of Candida auris. Mycopathologia, 2021, 186, 189-198.	3.1	2
26	Filamentous growth is a general feature of <i>Candida auris</i> clinical isolates. Medical Mycology, 2021, 59, 734-740.	0.7	19
27	Clade distribution of <i>Candida auris</i> in South Africa using whole genome sequencing of clinical and environmental isolates. Emerging Microbes and Infections, 2021, 10, 1300-1308.	6.5	15
28	A biological and genomic comparison of a drug-resistant and a drug-susceptible strain of <i>Candida auris</i> isolated from Beijing, China. Virulence, 2021, 12, 1388-1399.	4.4	11
29	Virulence of <i>Candida auris</i> from different clinical origins in <i>Caenorhabditis elegans</i> and <i>Galleria mellonella</i> host models. Virulence, 2021, 12, 1063-1075.	4.4	25
30	Current and promising pharmacotherapeutic options for candidiasis. Expert Opinion on Pharmacotherapy, 2021, 22, 887-888.	1.8	12
31	First Candida auris Outbreak during a COVID-19 Pandemic in a Tertiary-Care Center in Lebanon. Pathogens, 2021, 10, 157.	2.8	80
32	On the emergence, spread and resistance of Candida auris: host, pathogen and environmental tipping points. Journal of Medical Microbiology, 2021, 70, .	1.8	51
34	Transcriptome Signatures Predict Phenotypic Variations of Candida auris. Frontiers in Cellular and Infection Microbiology, 2021, 11, 662563.	3.9	12
35	Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms, 2021, 9, 807.	3.6	81
36	Comparison of In Vitro Killing Activity of Rezafungin, Anidulafungin, Caspofungin, and Micafungin against Four Candida auris Clades in RPMI-1640 in the Absence and Presence of Human Serum. Microorganisms, 2021, 9, 863.	3.6	22
37	Antifungal Susceptibility Testing and Identification. Infectious Disease Clinics of North America, 2021, 35, 313-339.	5.1	14

	CITATION	Report	
# 38	ARTICLE Candida auris: Diagnostic Challenges and Emerging Opportunities for the Clinical Microbiology Laboratory. Current Fungal Infection Reports, 2021, 15, 116-126.	IF 2.6	Citations 24
39	In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris. Pharmaceutics, 2021, 13, 1333.	4.5	12
40	Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades. Pathogens, 2021, 10, 990.	2.8	6
41	Diagnostic Allele-Specific PCR for the Identification of Candida auris Clades. Journal of Fungi (Basel,) Tj ETQq1	1 0.784314 3.5	rg&T /Overlo
43	What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms, 2021, 9, 2177.	3.6	28
44	The Flo Adhesin Family. Pathogens, 2021, 10, 1397.	2.8	13
45	Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification. Frontiers in Microbiology, 2021, 12, 769597.	3.5	14
46	Overview about Candida auris: What's up 12 years after its first description?. Journal De Mycologie Medicale, 2022, 32, 101248.	1.5	16
47	Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nature Communications, 2021, 12, 7197.	12.8	32
48	ClaID: a Rapid Method of Clade-Level Identification of the Multidrug Resistant Human Fungal Pathogen Candida auris. Microbiology Spectrum, 2022, 10, e0063422.	3.0	7
49	Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms, 2022, 10, 758.	3.6	29
50	Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infection and Drug Resistance, 2021, Volume 14, 5543-5553.	2.7	37
51	Dissemination of Candida auris to deep organs in neonatal murine invasive candidiasis. Microbial Pathogenesis, 2021, 161, 105285.	2.9	2
56	In Vivo Efficacy of Amphotericin B against Four Candida auris Clades. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	4314 ₃ rgBT /(Dverlock 10
57	Identification of four compounds from the Pharmakon library with antifungal activity against <i>Candida auris</i> and species of <i>Cryptococcus</i> . Medical Mycology, 2022, 60, .	0.7	6
58	Drug repurposing against <i>Candida auris</i> : A systematic review. Mycoses, 2022, 65, 784-793.	4.0	10
59	The Use of Galleria mellonella Larvae to Study the Pathogenicity and Clonal Lineage-Specific Behaviors of the Emerging Fungal Pathogen Candida auris. Methods in Molecular Biology, 2022, , 287-298.	0.9	4
62	Isolation of Candida auris in Clinical Specimens. Methods in Molecular Biology, 2022, , 3-20.	0.9	2

CITATION REPORT

#	Article	IF	CITATIONS
63	The first invasive <i>Candida auris</i> infection in Taiwan. Emerging Microbes and Infections, 2022, 11, 1867-1875.	6.5	7
64	Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. MBio, 2022, 13, .	4.1	5
65	Surveillance diagnostic algorithm using real-time PCR assay and strain typing method development to assist with the control of C. auris amid COVID-19 pandemic. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	4
66	Raman Metabolomics of Candida auris Clades: Profiling and Barcode Identification. International Journal of Molecular Sciences, 2022, 23, 11736.	4.1	8
67	Synergistic Interaction of Caspofungin Combined with Posaconazole against FKS Wild-Type and Mutant Candida auris Planktonic Cells and Biofilms. Antibiotics, 2022, 11, 1601.	3.7	2
68	Candida auris in Austria—What Is New and What Is Different. Journal of Fungi (Basel, Switzerland), 2023, 9, 129.	3.5	4
69	Navigating the New Reality: A Review of the Epidemiological, Clinical, and Microbiological Characteristics of Candida auris, with a Focus on Children. Journal of Fungi (Basel, Switzerland), 2023, 9, 176.	3.5	6
70	A Culture Supernatant from an Actinomycete sp. Affects Biofilm Formation and Virulence Expression of <i>Candida auris</i> . Medical Mycology Journal, 2023, 64, 7-17.	1.4	0
71	Perspective on the origin, resistance, and spread of the emerging human fungal pathogen Candida auris. PLoS Pathogens, 2023, 19, e1011190.	4.7	9
74	Strain and temperature dependent aggregation of Candida auris is attenuated by inhibition of surface amyloid proteins. Cell Surface, 2023, 10, 100110.	3.0	7
75	Intra-clade Heterogeneity in Candida auris: Risk of Management. Current Microbiology, 2023, 80, .	2.2	0
76	<i>Candida auris</i> in skilled nursing facilities. Therapeutic Advances in Infectious Disease, 2023, 10, .	1.8	1
77	Protein Kinase A Controls the Melanization of Candida auris through the Alteration of Cell Wall Components. Antioxidants, 2023, 12, 1702.	5.1	0
78	Leveraging the MMV Pathogen Box to Engineer an Antifungal Compound with Improved Efficacy and Selectivity against <i>Candida auris</i> . ACS Infectious Diseases, 2023, 9, 1901-1917.	3.8	0
80	Native human and mouse skin infection models to study Candida auris-host interactions. Microbes and Infection, 2023, , 105234.	1.9	0
81	A Fungus for Our Time: Candida auris Emerges into the Anthropocene. Current Tropical Medicine Reports, 0, , .	3.7	1
82	Efficacy of the combination of amphotericin B and echinocandins against <i>Candida auris in vitro</i> and in the <i>Caenorhabditis elegans</i> host model. Microbiology Spectrum, 0, , .	3.0	0
83	First report of <i>Candida auris</i> in Guangdong, China: clinical and microbiological characteristics of 7 episodes of candidemia. Emerging Microbes and Infections, 2024, 13, .	6.5	0

CITATION REPORT

#	Article	IF	CITATIONS
84	Upc2-mediated mechanisms of azole resistance in <i>Candida auris</i> . Microbiology Spectrum, 2024, 12, .	3.0	0
85	<i>Candida auris</i> -associated hospitalizations and outbreaks, China, 2018–2023. Emerging Microbes and Infections, 2024, 13, .	6.5	0
87	Rapid evolution of an adaptive multicellular morphology of Candida auris during systemic infection. Nature Communications, 2024, 15, .	12.8	0
88	Candida auris undergoes adhesin-dependent and -independent cellular aggregation. PLoS Pathogens, 2024, 20, e1012076.	4.7	0
89	Evaluation of the Vitek 2 system for antifungal susceptibility testing of <i>Candida auris</i> using a representative international panel of clinical isolates: overestimation of amphotericin B resistance and underestimation of fluconazole resistance. Journal of Clinical Microbiology, 2024, 62, .	3.9	0