<i>BRCA2</i> in Ovarian Development and Function

New England Journal of Medicine 380, 1086-1087 DOI: 10.1056/nejmc1813800

Citation Report

#	Article	IF	CITATIONS
1	Rare variants in FANCA induce premature ovarian insufficiency. Human Genetics, 2019, 138, 1227-1236.	1.8	56
2	BRCA2 deficiency is a potential driver for human primary ovarian insufficiency. Cell Death and Disease, 2019, 10, 474.	2.7	28
3	A novel EIF4ENIF1 mutation associated with a diminished ovarian reserve and premature ovarian insufficiency identified by whole-exome sequencing. Journal of Ovarian Research, 2019, 12, 119.	1.3	27
4	A TOP6BL mutation abolishes meiotic DNA double-strand break formation and causes human infertility. Science Bulletin, 2020, 65, 2120-2129.	4.3	18
5	Variants in Homologous Recombination Genes <i>EXO1</i> and <i>RAD51</i> Related with Premature Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3566-e3574.	1.8	21
6	MicroRNAâ€127â€5p impairs function of granulosa cells via <i>HMGB2</i> gene in premature ovarian insufficiency. Journal of Cellular Physiology, 2020, 235, 8826-8838.	2.0	24
7	Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency. Fertility and Sterility, 2020, 113, 845-852.	0.5	24
8	Big data-driven precision medicine: Starting the custom-made era of iatrology. Biomedicine and Pharmacotherapy, 2020, 129, 110445.	2.5	19
9	<i>FANCL</i> gene mutations in premature ovarian insufficiency. Human Mutation, 2020, 41, 1033-1041.	1.1	32
10	Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. Journal of the Endocrine Society, 2020, 4, bvz037.	0.1	45
11	NOTCH2 variant D1853H is mutated in two non-syndromic premature ovarian insufficiency patients from a Chinese pedigree. Journal of Ovarian Research, 2020, 13, 41.	1.3	7
12	Homozygous hypomorphic <i>BRCA2</i> variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. Journal of Medical Genetics, 2021, 58, 125-134.	1.5	24
13	Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiency. Human Genetics, 2021, 140, 691-694.	1.8	2
14	Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans. American Journal of Human Genetics, 2021, 108, 324-336.	2.6	50
15	Genetic etiologic analysis in 74 Chinese Han women with idiopathic premature ovarian insufficiency by combined molecular genetic testing. Journal of Assisted Reproduction and Genetics, 2021, 38, 965-978.	1.2	9
16	Meiotic Recombination Defects and Premature Ovarian Insufficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 652407.	1.8	25
17	Haploinsufficiency in non-homologous end joining factor 1 induces ovarian dysfunction in humans and mice. Journal of Medical Genetics, 2022, 59, 579-588.	1.5	3
18	Fanconi Anemia Gene Variants in Patients with Gonadal Dysfunction. Reproductive Sciences, 2022, 29, 1408-1413.	1.1	6

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
19	A Preliminary Study on the Mechanism of Premature Ovarian Failure. Proceedings of Anticancer Research, 2021, 5, 34-39.	0.0	0
20	OB-Folds and Genome Maintenance: Targeting Protein–DNA Interactions for Cancer Therapy. Cancers, 2021, 13, 3346.	1.7	6
22	Should FANCL heterozygous pathogenic variants be considered as potentially causative of primary ovarian insufficiency?. Human Mutation, 2020, 41, 1697-1699.	1.1	2
23	lncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1. Molecular Therapy - Nucleic Acids, 2021, 26, 1092-1106.	2.3	12
24	Genetics of ovarian insufficiency and defects of folliculogenesis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2022, 36, 101594.	2.2	36
25	Effects of BRCA gene mutation on female reproductive potential: A systematic review. Maturitas, 2020, 137, 11-17.	1.0	5
26	Genetics of Primary Ovarian Insufficiency. Clinical Obstetrics and Gynecology, 2020, 63, 687-705.	0.6	4
27	Impairment of Pol β-related DNA base-excision repair leads to ovarian aging in mice. Aging, 2020, 12, 25207-25228.	1.4	7
28	Pathogenic Variations of Homologous Recombination Gene HSF2BP Identified in Sporadic Patients With Premature Ovarian Insufficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 768123.	1.8	7
29	Biâ€allelic <scp> <i>SPATA22</i> </scp> variants cause premature ovarian insufficiency and nonobstructive azoospermia due to meiotic arrest. Clinical Genetics, 2022, , .	1.0	7
30	Homozygous Variant in <i>KASH5</i> Causes Premature Ovarian Insufficiency by Disordered Meiotic Homologous Pairing. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2589-2597.	1.8	7
31	Progress in modern reproductive biology research in China. Biology of Reproduction, 0, , .	1.2	0
32	A novel cancer risk prediction score for the natural course of FA patients with biallelic <i>BRCA2/FANCD1</i> mutations. Human Molecular Genetics, 2023, 32, 1836-1849.	1.4	1
33	Landscape of pathogenic mutations in premature ovarian insufficiency. Nature Medicine, 2023, 29, 483-492.	15.2	34
34	Singleâ€cell transcriptome analysis of the mouse and primate ovaries reveals oocyteâ€specific expression patterns of risk genes in ovarian aging. MedComm, 2023, 4, .	3.1	0