Polariton chemistry: Thinking inside the (photon) box

Proceedings of the National Academy of Sciences of the Unite 116, 5214-5216

DOI: 10.1073/pnas.1900795116

Citation Report

#	Article	IF	Citations
1	Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. Nano Letters, 2020, 20, 8711-8718.	4.5	21
2	Hybrid theoretical models for molecular nanoplasmonics. Journal of Chemical Physics, 2020, 153, 200901.	1.2	27
3	Strong Coupling beyond the Light-Line. ACS Photonics, 2020, 7, 2448-2459.	3.2	19
4	Exciton–phonon polaritons in organic microcavities: Testing a simple ansatz for treating a large number of chromophores. Journal of Chemical Physics, 2020, 152, 204113.	1.2	15
5	Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry–Pérot Microcavity. Journal of Physical Chemistry B, 2020, 124, 5709-5716.	1.2	19
6	Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2020, 11, 5948-5955.	2.1	24
7	Abundance of cavity-free polaritonic states in resonant materials and nanostructures. Journal of Chemical Physics, 2021, 154, 024701.	1.2	33
8	Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection. Nanoscale, 2021, 13, 5187-5201.	2.8	11
9	Reflected phonons reveal strong coupling. Nature Photonics, 2021, 15, 169-170.	15.6	9
10	Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quantum technology. Journal of Chemical Physics, 2021, 155, 050901.	1.2	36
10		3.2	36
	technology. Journal of Chemical Physics, 2021, 155, 050901.		
11	technology. Journal of Chemical Physics, 2021, 155, 050901. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 2021, 8, 2997-3003.	3.2	1
11 12	technology. Journal of Chemical Physics, 2021, 155, 050901. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 2021, 8, 2997-3003. Polariton panorama. Nanophotonics, 2020, 10, 549-577. Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular	3.2 2.9	1 155
11 12 14	technology. Journal of Chemical Physics, 2021, 155, 050901. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 2021, 8, 2997-3003. Polariton panorama. Nanophotonics, 2020, 10, 549-577. Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. Journal of Chemical Physics, 2021, 155, 134117. Probing Vibrational Strong Coupling of Molecules with Wavelengthâ€Modulated Raman Spectroscopy.	3.2 2.9 1.2	1 155 9
11 12 14	Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 2021, 8, 2997-3003. Polariton panorama. Nanophotonics, 2020, 10, 549-577. Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. Journal of Chemical Physics, 2021, 155, 134117. Probing Vibrational Strong Coupling of Molecules with Wavelengthâ€Modulated Raman Spectroscopy. Advanced Optical Materials, 2022, 10, . Isolating Polaritonic 2D-IR Transmission Spectra. Journal of Physical Chemistry Letters, 2021, 12,	3.2 2.9 1.2 3.6	1 155 9
11 12 14 15	technology. Journal of Chemical Physics, 2021, 155, 050901. Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 2021, 8, 2997-3003. Polariton panorama. Nanophotonics, 2020, 10, 549-577. Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. Journal of Chemical Physics, 2021, 155, 134117. Probing Vibrational Strong Coupling of Molecules with Wavelengthâ€Modulated Raman Spectroscopy. Advanced Optical Materials, 2022, 10, . Isolating Polaritonic 2D-IR Transmission Spectra. Journal of Physical Chemistry Letters, 2021, 12, 11406-11414. Quantum phase transition of light in the dissipative Rabi-Hubbard lattice: A dressed-master-equation	3.2 2.9 1.2 3.6 2.1	1 155 9 10

#	ARTICLE	IF	Citations
20	Molecular orbital theory in cavity QED environments. Nature Communications, 2022, 13, 1368.	5.8	27
21	Generalization of the Tavis–Cummings model for multi-level anharmonic systems: Insights on the second excitation manifold. Journal of Chemical Physics, 2022, 156, .	1.2	16
22	Coupling, lifetimes, and "strong coupling―maps for single molecules at plasmonic interfaces. Journal of Chemical Physics, 2022, 156, 154303.	1.2	4
23	Dissipation and spontaneous emission in quantum electrodynamical density functional theory based on optimized effective potential: A proof of concept study. Physical Review B, 2022, 105, .	1.1	2
24	<scp>Vibrationâ€induced</scp> symmetry breaking in hybrid <scp>lightâ€matter</scp> dimer states. Journal of the Chinese Chemical Society, 0, , .	0.8	1
25	Ultrafast Multidimensional Spectroscopy to Probe Molecular Vibrational Polariton Dynamics. ACS Symposium Series, 0, , 89-107.	0.5	3
26	On the characteristic features of ionization in QED environments. Journal of Chemical Physics, 2022, 156, .	1.2	15
27	Cavity-mediated level attraction and repulsion between magnons. Physical Review B, 2022, 105, .	1.1	7
28	Light–Matter Interactions in Hybrid Material Metasurfaces. Chemical Reviews, 2022, 122, 15177-15203.	23.0	42
29	Molecular Vibrational Polaritons Towards Quantum Technologies. Advanced Quantum Technologies, 2022, 5, .	1.8	4
30	Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. Journal of Physical Chemistry Letters, 2022, 13, 6905-6911.	2.1	23
31	Synthetic dimensions in optical cavities and their analogies to two-dimensional materials. Physical Review B, 2022, 106, .	1.1	1
32	Something from nothing: linking molecules with virtual light. Contemporary Physics, 2021, 62, 217-232.	0.8	17
33	Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. Journal of Chemical Physics, 2022, 157, .	1.2	10
34	Theoretical quantum model of two-dimensional propagating plexcitons. Journal of Chemical Physics, 2022, 157, .	1.2	3
35	Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics. Frontiers in Physics, 0, 10 , .	1.0	4
36	Cavity-Free Quantum-Electrodynamic Electron Transfer Reactions. Journal of Physical Chemistry Letters, 2022, 13, 9695-9702.	2.1	4
37	Quantum amplification of spin currents in cavity magnonics by a parametric drive induced long-lived mode. Physical Review B, 2022, 106, .	1.1	2

#	ARTICLE	IF	CITATION
38	Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system. Journal of Chemical Physics, 2022, 157, .	1.2	4
39	Enabling multiple intercavity polariton coherences by adding quantum confinement to cavity molecular polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
40	Polaritonic Huang–Rhys Factor: Basic Concepts and Quantifying Light–Matter Interactions in Media. Journal of Physical Chemistry Letters, 2023, 14, 2395-2401.	2.1	5
41	Control, Modulation, and Analytical Descriptions of Vibrational Strong Coupling. Chemical Reviews, 2023, 123, 5020-5048.	23.0	20