Honey as a biomonitor for a changing world

Nature Sustainability 2, 223-232 DOI: 10.1038/s41893-019-0243-0

Citation Report

#	Article	IF	CITATIONS
1	Honey bees as bioindicators of changing global agricultural landscapes. Current Opinion in Insect Science, 2019, 35, 132-137.	4.4	41
2	Bees as biomarkers. Nature Sustainability, 2019, 2, 169-170.	23.7	6
3	Potential Risk to Pollinators from Nanotechnology-Based Pesticides. Molecules, 2019, 24, 4458.	3.8	22
4	Assessing lead sources in fishes of the northeast Pacific Ocean. Anthropocene, 2020, 29, 100234.	3.3	10
5	Effectiveness of Different Sample Treatments for the Elemental Characterization of Bees and Beehive Products. Molecules, 2020, 25, 4263.	3.8	25
6	Evaluating Spatiotemporal Resolution of Trace Element Concentrations and Pb Isotopic Compositions of Honeybees and Hive Products as Biomonitors for Urban Metal Distribution. GeoHealth, 2020, 4, e2020GH000264.	4.0	18
7	Honey Maps the Pb Fallout from the 2019 Fire at Notre-Dame Cathedral, Paris: A Geochemical Perspective. Environmental Science and Technology Letters, 2020, 7, 753-759.	8.7	25
8	Mineral and Trace Element Analysis of Australian/Queensland Apis mellifera Honey. International Journal of Environmental Research and Public Health, 2020, 17, 6304.	2.6	19
9	Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Scientific Reports, 2020, 10, 9279.	3.3	41
10	Vulnerability of honey bee queens to heat-induced loss of fertility. Nature Sustainability, 2020, 3, 367-376.	23.7	59
11	Pollutants and Their Interaction with Diseases of Social Hymenoptera. Insects, 2020, 11, 153.	2.2	44
12	Optimised approach for small mass sample preparation and elemental analysis of bees and bee products by inductively coupled plasma mass spectrometry. Talanta, 2020, 214, 120858.	5.5	13
13	Trace elements in Labrador Tea (Rhododendron groenlandicum): How predominant sources to the plants impact the chemical composition of hot water extracts. Environmental Research, 2020, 183, 109272.	7.5	13
14	Distinguishing between Natural and Industrial Lead in Consumer Products and Other Environmental Matrices. Journal of Agricultural and Food Chemistry, 2020, 68, 12810-12819.	5.2	4
15	New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution. GeoHealth, 2020, 4, e2018GH000167.	4.0	24
16	Urbanization effects on wild bee carbon and nitrogen stable isotope ratios in the Paris region. Acta Oecologica, 2020, 105, 103545.	1.1	2
17	Why bees are critical for achieving sustainable development. Ambio, 2021, 50, 49-59.	5.5	97
18	The urban lead (Pb) burden in humans, animals and the natural environment. Environmental Research, 2021, 193, 110377.	7.5	82

# 19	ARTICLE Difference in pesticides, trace metal(loid)s and drug residues between certified organic and conventional honeys from Croatia. Chemosphere, 2021, 266, 128954.	IF 8.2	CITATIONS 26
20	Sustainable beekeeping, community driven-development, and tri-sector solutions with impact. Corporate Governance (Bingley), 2021, 21, 359-372.	5.0	3
21	How and why beekeepers participate in the INSIGNIA citizen science honey bee environmental monitoring project. Environmental Science and Pollution Research, 2021, 28, 37995-38006.	5.3	11
22	Acute and chronic effects of Titanium dioxide (TiO2) PM1 on honey bee gut microbiota under laboratory conditions. Scientific Reports, 2021, 11, 5946.	3.3	12
23	Regional and global perspectives of honey as a record of lead in the environment. Environmental Research, 2021, 195, 110800.	7.5	8
24	Investigation of inorganic elemental content of honey from regions of North Island, New Zealand. Food Chemistry, 2021, 361, 130110.	8.2	15
26	Radiocaesium in Honey from KoÅjice and PreÅjov Regions in Eastern Slovakia. Folia Veterinaria, 2019, 63, 27-32.	0.1	3
27	Honeybees as a biomonitoring species to assess environmental airborne pollution in different socioeconomic city districts. Environmental Monitoring and Assessment, 2021, 193, 740.	2.7	3
28	Pilot study for environmental monitoring through beekeeping products of Pistoia territory. Journal of Apicultural Research, 0, , 1-9.	1.5	1
29	A strontium isoscape of Italy for provenance studies. Chemical Geology, 2022, 587, 120624.	3.3	23
30	Particulate Matter Contamination of Bee Pollen in an Industrial Area of the Po Valley (Italy). Applied Sciences (Switzerland), 2021, 11, 11390.	2.5	11
31	Determination of multi-pesticide residues in honey with a modified QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Journal of Apicultural Research, 2022, 61, 530-542.	1.5	11
32	Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecological Indicators, 2022, 134, 108457.	6.3	63
33	Biomonitoring of element contamination in bees and beehive products in the Rome province (Italy). Environmental Science and Pollution Research, 2022, 29, 36057-36074.	5.3	9
34	The Honey Bee Apis mellifera: An Insect at the Interface between Human and Ecosystem Health. Biology, 2022, 11, 233.	2.8	37
35	Stable Iron Isotopic Signature Reveals Multiple Sources of Magnetic Particulate Matter in the 2021 Beijing Sandstorms. Environmental Science and Technology Letters, 2022, 9, 299-305.	8.7	7
36	Metal and Pb isotope characterization of particulates encountered by foraging honeybees in Metro Vancouver. Science of the Total Environment, 2022, 826, 154181.	8.0	4
37	Lead isotopic fingerprinting of 250-years of industrial era pollution in Greenland ice. Anthropocene, 2022, 38, 100340.	3.3	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Lead poisoning of backyard chickens: Implications for urban gardening and food production. Environmental Pollution, 2022, 310, 119798.	7.5	10
39	Probiotics as a promising prophylactic tool to reduce levels of toxic or potentially toxic elements in bees. Chemosphere, 2022, 308, 136261.	8.2	2
40	A matter of the beehive sound: Can honey bees alert the pollution out of their hives?. Environmental Science and Pollution Research, 2023, 30, 16266-16276.	5.3	2
41	Honey Bee Genome Editing. , 2022, , 359-374.		0
42	Determining the geochemical fingerprint of the lead fallout from the Notre-Dame de Paris fire: Lessons for a better discrimination of chemical signatures. Science of the Total Environment, 2023, 864, 160676.	8.0	3
43	Honey Bees as Environmental Biomonitors and Effects of Climate Change on Their Population. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 174-205.	0.4	0
44	Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment. Sustainability, 2023, 15, 2764.	3.2	2
45	Potential of Beekeeping to Support the Livelihood, Economy, Society, and Environment of Indonesia. Forests, 2023, 14, 321.	2.1	4
47	Determination of metals and metalloids in traces in honey: Evaluation of different sample preparation methods and assay techniques. , 2023, 4, 100070.		0
49	Evaluation of the Pollination Ecosystem Service of the Honey Bee (Apis mellifera) Based on a Beekeeping Model in Hungary. Sustainability, 2023, 15, 9906.	3.2	2
50	Historical monuments and lead pollution: Lessons from the case of Notre-Dame de Paris and Sainte-Chapelle. Journal of Cultural Heritage, 2024, 65, 99-106.	3.3	0
51	Tracing the Sources and Prevalence of Class 1 Integrons, Antimicrobial Resistance, and Trace Elements Using European Honey Bees. Environmental Science & Technology, 2023, 57, 10582-10590.	10.0	2
52	Machine learning-based Sr isoscape of southern Sardinia: A tool for bio-geographic studies at the Phoenician-Punic site of Nora. PLoS ONE, 2023, 18, e0287787.	2.5	0
53	Tracing nickel smelter emissions using European honey bees. Environmental Pollution, 2023, 335, 122257.	7.5	3
54	Biomonitoring of honey metal(loid) pollution in Northwest England by citizen scientists. Environmental Advances, 2023, 13, 100406.	4.8	2
55	Evaluation of Honey Bees within the Scope of Sustainable Development Goals and Ecosystem Services. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 0, , 2397-2408.	0.7	0
56	Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. Environmental Science and Pollution Research, 0, , .	5.3	0
57	Determination of bisphenols in beeswax based on sugaring out–assisted liquid–liquid extraction: Method development and application in survey, recycling and degradation studies. Chemosphere, 2024, 351, 141274.	8.2	0

#	Article	IF	CITATIONS
58	Determination of Lead in Bee Products by Solid Surface Fluorescence Using Complexation and Coacervation at Room Temperature Processes. An Environmental Friendly Methodology. Journal of Fluorescence, 0, , .	2.5	0