Inflammatory macrophage dependence on NAD+ salvag oxygen species–mediated DNA damage

Nature Immunology 20, 420-432 DOI: 10.1038/s41590-019-0336-y

Citation Report

#	Article	IF	CITATIONS
1	Regulation of Glucose Metabolism by NAD+ and ADP-Ribosylation. Cells, 2019, 8, 890.	1.8	53
2	Inflammatory and immunometabolic consequences of gut dysfunction in HIV: Parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine, 2019, 46, 522-531.	2.7	57
3	Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Scientific Reports, 2019, 9, 14906.	1.6	36
4	NLRP3 gain-of-function in CD4+ T lymphocytes ameliorates experimental autoimmune encephalomyelitis. Clinical Science, 2019, 133, 1901-1916.	1.8	22
5	Metabolic adaptations of tissue-resident immune cells. Nature Immunology, 2019, 20, 793-801.	7.0	115
6	NAD-biosynthetic pathways regulate innate immunity. Nature Immunology, 2019, 20, 380-382.	7.0	20
7	Toll-like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase. Immunity, 2019, 51, 997-1011.e7.	6.6	216
8	Essential Role of Nonessential Amino Acid Glutamine in Atherosclerotic Cardiovascular Disease. DNA and Cell Biology, 2020, 39, 8-15.	0.9	23
9	Metabolic Reprogramming in Mitochondria of Myeloid Cells. Cells, 2020, 9, 5.	1.8	56
10	NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduction and Targeted Therapy, 2020, 5, 227.	7.1	386
11	Itaconate: A Metabolite Regulates Inflammation Response and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	31
12	Triacylglycerol synthesis enhances macrophage inflammatory function. Nature Communications, 2020, 11, 4107.	5.8	127
13	Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283.	5.1	206
14	Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	76
15	BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages. Journal of Cell Science, 2020, 133, .	1.2	24
16	The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites, 2020, 10, 426.	1.3	11
17	Solute Carrier Family 37 Member 2 (SLC37A2) Negatively Regulates Murine Macrophage Inflammation by Controlling Glycolysis. IScience, 2020, 23, 101125.	1.9	12
18	Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy. Frontiers in Immunology, 2020, 11, 910.	2.2	58

TATION PEDO

#	Article	IF	CITATIONS
19	Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 4441.	1.8	20
20	Natural Nanocolloids Mediate the Phytotoxicity of Graphene Oxide. Environmental Science & Technology, 2020, 54, 4865-4875.	4.6	28
21	MiR-1587 Regulates DNA Damage Repair and the Radiosensitivity of CRC Cells via Targeting LIG4. Dose-Response, 2020, 18, 155932582093690.	0.7	11
22	Interplay between compartmentalized NAD ⁺ synthesis and consumption: a focus on the PARP family. Genes and Development, 2020, 34, 254-262.	2.7	64
23	PARPs and ADP-ribosylation: 60 years on. Genes and Development, 2020, 34, 251-253.	2.7	25
24	The impact of PARPs and ADP-ribosylation on inflammation and host–pathogen interactions. Genes and Development, 2020, 34, 341-359.	2.7	157
25	NAD+ homeostasis in health and disease. Nature Metabolism, 2020, 2, 9-31.	5.1	351
26	Metabolic regulation of epigenetic remodeling in immune cells. Current Opinion in Biotechnology, 2020, 63, 111-117.	3.3	21
27	Macrophage activation as an archetype of mitochondrial repurposing. Molecular Aspects of Medicine, 2020, 71, 100838.	2.7	18
28	Krebs Cycle Reborn in Macrophage Immunometabolism. Annual Review of Immunology, 2020, 38, 289-313.	9.5	244
29	HIF-1α (Hypoxia-Inducible Factor-1α) Promotes Macrophage Necroptosis by Regulating miR-210 and miR-383. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 583-596.	1.1	64
30	Cellâ€intrinsic metabolic regulation of mononuclear phagocyte activation: Findings from the tip of the iceberg. Immunological Reviews, 2020, 295, 54-67.	2.8	45
31	Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small, 2020, 16, e1907322.	5.2	85
32	Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.	1.6	27
33	Metabolic regulation of innate immune cell phenotypes during wound repair and regeneration. Current Opinion in Immunology, 2021, 68, 72-82.	2.4	9
34	Redox regulation of immunometabolism. Nature Reviews Immunology, 2021, 21, 363-381.	10.6	225
35	NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews Molecular Cell Biology, 2021, 22, 119-141.	16.1	593
36	The versatile biochemistry of iron in macrophage effector functions. FEBS Journal, 2021, 288, 6972-6989.	2.2	12

#	Article	IF	CITATIONS
38	Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocrine Reviews, 2021, 42, 407-435.	8.9	21
39	Immune profiles of male giant panda (Ailuropoda melanoleuca) during the breeding season. BMC Genomics, 2021, 22, 143.	1.2	3
40	Dietary Intervention Impacts Immune Cell Functions and Dynamics by Inducing Metabolic Rewiring. Frontiers in Immunology, 2020, 11, 623989.	2.2	32
41	Potential Efficacy of Nutrient Supplements for Treatment or Prevention of COVID-19. Journal of Dietary Supplements, 2022, 19, 336-365.	1.4	13
42	Nicotinamide pathways as the root cause of sepsis – an evolutionary perspective on macrophage energetic shifts. FEBS Journal, 2022, 289, 955-964.	2.2	7
43	Targeting immune cell metabolism in kidney diseases. Nature Reviews Nephrology, 2021, 17, 465-480.	4.1	31
44	Apolipoprotein-Al and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Molecular and Cellular Biochemistry, 2021, 476, 3065-3078.	1.4	7
45	Immunometabolism of Tissue-Resident Macrophages – An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Frontiers in Immunology, 2021, 12, 665782.	2.2	15
46	A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nature Communications, 2021, 12, 2620.	5.8	33
47	Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. British Journal of Pharmacology, 2022, 179, 1839-1856.	2.7	26
48	Mitohormesis reprogrammes macrophage metabolism to enforce tolerance. Nature Metabolism, 2021, 3, 618-635.	5.1	46
49	Metabolic Control of Smoldering Neuroinflammation. Frontiers in Immunology, 2021, 12, 705920.	2.2	19
50	Nuclear ADP-ribosylation drives IFNÎ ³ -dependent STAT1α enhancer formation in macrophages. Nature Communications, 2021, 12, 3931.	5.8	20
51	Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands. Scientific Reports, 2021, 11, 14081.	1.6	3
53	Perspectives on immunometabolism at the biomaterials interface. Molecular Aspects of Medicine, 2022, 83, 100992.	2.7	1
54	Mitochondrial metabolism regulates macrophage biology. Journal of Biological Chemistry, 2021, 297, 100904.	1.6	90
55	NAD+ Degrading Enzymes, Evidence for Roles During Infection. Frontiers in Molecular Biosciences, 2021, 8, 697359.	1.6	14
57	A genome-wide screen uncovers multiple roles for mitochondrial nucleoside diphosphate kinase D in inflammasome activation. Science Signaling, 2021, 14, .	1.6	13

#	Article	IF	CITATIONS
58	Inhibition of nicotinamide phosphoribosyltransferase protects against acute pancreatitis via modulating macrophage polarization and its related metabolites. Pancreatology, 2021, 21, 870-883.	0.5	11
59	Metabolic orchestration of the wound healing response. Cell Metabolism, 2021, 33, 1726-1743.	7.2	101
60	Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence. Aging Cell, 2021, 20, e13483.	3.0	8
61	The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene <i>Ppm1d</i> Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circulation Research, 2021, 129, 684-698.	2.0	42
62	Role of Multiomics Data to Understand Host–Pathogen Interactions in COVID-19 Pathogenesis. Journal of Proteome Research, 2021, 20, 1107-1132.	1.8	24
63	Immunometabolism of Macrophages in Bacterial Infections. Frontiers in Cellular and Infection Microbiology, 2020, 10, 607650.	1.8	32
64	Recent developments and future perspectives in aging and macrophage immunometabolism. AIMS Molecular Science, 2021, 8, 193-201.	0.3	2
65	Boosted photocatalytic activity induced NAMPT-Regulating therapy based on elemental bismuth-humic acids heterojunction for inhibiting tumor proliferation/migration/inflammation. Biomaterials, 2020, 254, 120140.	5.7	19
68	NAMPT/SIRT1 Attenuate Ang II-Induced Vascular Remodeling and Vulnerability to Hypertension by Inhibiting the ROS/MAPK Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-21.	1.9	24
69	Local Targeting of NAD+ Salvage Pathway Alters the Immune Tumor Microenvironment and Enhances Checkpoint Immunotherapy in Glioblastoma. Cancer Research, 2020, 80, 5024-5034.	0.4	28
70	Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. Immunometabolism, 2020, 2, e200026.	0.7	33
71	Impact of intracellular innate immune receptors on immunometabolism. Cellular and Molecular Immunology, 2022, 19, 337-351.	4.8	61
72	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
74	Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism, 2021, 33, 2398-2414.e9.	7.2	89
75	Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging, 2020, 12, 24504-24521.	1.4	26
76	Regulatory Non-coding RNAs in Atherosclerosis. Handbook of Experimental Pharmacology, 2020, , 463-492.	0.9	13
77	Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. ELife, 2021, 10, .	2.8	14
79	Extracellular Lactate Acts as a Metabolic Checkpoint and Shapes Monocyte Function Time Dependently. Frontiers in Immunology, 2021, 12, 729209.	2.2	7

		CITATION REPORT	
#	Article	IF	Citations
80	NAD+ Metabolism and Diseases with Motor Dysfunction. Genes, 2021, 12, 1776.	1.0	13
81	Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus mono Journal of Clinical Investigation, 2022, 132, .	cytes. 3.9	27
82	Mesenchymal stromal cells attenuate alveolar type 2 cells senescence through regulating NAMPT-mediated NAD metabolism. Stem Cell Research and Therapy, 2022, 13, 12.	2.4	11
83	NAMPT mitigates colitis severity by supporting redox-sensitive activation of phagocytosis in inflammatory macrophages. Redox Biology, 2022, 50, 102237.	3.9	15
84	A systems-approach to NAD+Ârestoration. Biochemical Pharmacology, 2022, 198, 114946.	2.0	16
85	Intracellular NAD+ Depletion Confers a Priming Signal for NLRP3 Inflammasome Activation. Frontie in Immunology, 2021, 12, 765477.	rs 2.2	9
86	Endogenous Metabolism in Endothelial and Immune Cells Is the Main Source of Tissue Levels of the Vitamin B ₃ Nicotinamide. SSRN Electronic Journal, O, , .	2 0.4	0
87	Dihydronicotinamide Riboside Is a Potent NAD+ Precursor Promoting a Pro-Inflammatory Phenotyp Macrophages. Frontiers in Immunology, 2022, 13, 840246.	e in 2.2	7
88	A matter of time: temporal structure and functional relevance of macrophage metabolic rewiring. Trends in Endocrinology and Metabolism, 2022, 33, 345-358.	3.1	8
89	CD14 regulates the metabolomic profiles of distinct macrophage subsets under steady and activat states. Immunobiology, 2022, 227, 152191.	ed 0.8	4
90	Circadian Control of Redox Reactions in the Macrophage Inflammatory Response. Antioxidants and Redox Signaling, 2022, 37, 664-678.	2.5	5
91	PTIP governs NAD+ metabolism by regulating CD38 expression to drive macrophage inflammation. Reports, 2022, 38, 110603.	Cell 2.9	4
92	Metabolism of tissue macrophages in homeostasis and pathology. Cellular and Molecular Immunology, 2022, 19, 384-408.	4.8	117
93	Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants, 2021, 10, 1939.	2.2	11
95	Cancer treatment-induced NAD+ depletion in premature senescence and late cardiovascular complications. , 2022, 3, 28.		5
96	Ex Vivo Lung Perfusion with β-Nicotinamide Adenine Dinucleotide (NAD+) Improves Ischemic Lung Function. Antioxidants, 2022, 11, 843.	2.2	5
97	IFNÎ ³ regulates NAD+ metabolism to promote the respiratory burst in human monocytes. Blood Advances, 2022, 6, 3821-3834.	2.5	8
98	Fueling genome maintenance: On the versatile roles of NAD+Âin preserving DNA integrity. Journal o Biological Chemistry, 2022, 298, 102037.	of 1.6	11

#	Article	IF	CITATIONS
99	NAD-catabolizing ectoenzymes of <i>Schistosoma mansoni</i> . Biochemical Journal, 2022, 479, 1165-1180.	1.7	5
100	Effects of the PARP Inhibitor Olaparib on the Response of Human Peripheral Blood Leukocytes to Bacterial Challenge or Oxidative Stress. Biomolecules, 2022, 12, 788.	1.8	5
101	NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nature Nanotechnology, 2022, 17, 880-890.	15.6	40
102	Reprogramming Mitochondrial Metabolism in Synovial Macrophages of Early Osteoarthritis by a Camouflaged Metaâ€Defensome. Advanced Materials, 2022, 34, .	11.1	25
103	Nicotinamide Mononucleotide Administration Triggers Macrophages Reprogramming and Alleviates Inflammation During Sepsis Induced by Experimental Peritonitis. Frontiers in Molecular Biosciences, 0, 9, .	1.6	7
105	NAD+ salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology, 2023, 78, 468-485.	3.6	12
106	Uncovering the source of mitochondrial superoxide in pro-inflammatory macrophages: Insights from immunometabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166481.	1.8	3
108	NAD ⁺ metabolism drives astrocyte proinflammatory reprogramming in central nervous system autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
110	Restoring tolerance to β-cells in Type 1 diabetes: Current and emerging strategies. Cellular Immunology, 2022, 380, 104593.	1.4	1
111	Itaconate controls its own synthesis via feedback-inhibition of reverse TCA cycle activity at IDH2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166530.	1.8	10
112	Comprehensive Analysis of the Significance of Ferroptosis-Related Genes in the Prognosis and Immunotherapy of Oral Squamous Cell Carcinoma. Bioinformatics and Biology Insights, 2022, 16, 117793222211155.	1.0	2
113	Schistosoma mansoni and the purinergic halo. Trends in Parasitology, 2022, 38, 1080-1088.	1.5	11
115	NAMPT is a metabolic checkpoint of IFNγ-producing CD4+ TÂcells in lupus nephritis. Molecular Therapy, 2023, 31, 193-210.	3.7	6
116	Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). IScience, 2022, 25, 105431.	1.9	3
117	Tryptophan metabolism and disposition in cancer biology and immunotherapy. Bioscience Reports, 2022, 42, .	1.1	9
118	Sympathectomy Ameliorates CFA-Induced Mechanical Allodynia via Modulating Phenotype of Macrophages in Sensory Ganglion in Mice. Journal of Inflammation Research, 0, Volume 15, 6263-6274.	1.6	0
120	NAMPT inhibition reduces macrophage inflammation through the NAD+/PARP1 pathway to attenuate liver ischemia–reperfusion injury. Chemico-Biological Interactions, 2023, 369, 110294.	1.7	1
121	Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Seminars in Cancer Biology, 2023, 88, 32-45.	4.3	12

#	Article	IF	CITATIONS
122	The role of NAD+ metabolism in macrophages in age-related macular degeneration. Mechanisms of Ageing and Development, 2023, 209, 111755.	2.2	2
123	The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Reports, 2022, 55, 519-527.	1.1	1
124	Mannose metabolism normalizes gut homeostasis by blocking the TNF-α-mediated proinflammatory circuit. , 2023, 20, 119-130.		19
125	Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	51
126	Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. Journal of Leukocyte Biology, 2023, 113, 164-190.	1.5	3
127	Investigation of antioxidant, anti-ulcer, and analgesic potential of a metal-curcumin complex. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 1043-1052.	1.4	4
128	Inflammatory stimulus worsens the effects of UV-A exposure on J774 cells. Journal of Photochemistry and Photobiology B: Biology, 2023, 239, 112647.	1.7	0
129	Divergent Metabolomic Signatures of TGFβ2 and TNFα in the Induction of Retinal Epithelial-Mesenchymal Transition. Metabolites, 2023, 13, 213.	1.3	0
130	Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD ⁺ Supplementation in Mammals. Journal of the American Chemical Society, 2023, 145, 3108-3120.	6.6	16
131	L-Ascorbic Acid 2-Phosphate Attenuates Methylmercury-Induced Apoptosis by Inhibiting Reactive Oxygen Species Accumulation and DNA Damage in Human SH-SY5Y Cells. Toxics, 2023, 11, 144.	1.6	1
132	After virus exposure, early bystander naÃ⁻ve CD8 T cell activation relies on NAD+ salvage metabolism. Frontiers in Immunology, 0, 13, .	2.2	0
133	IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annual Review of Immunology, 2023, 41, 229-254.	9.5	17
134	Transcription Factor ELF1 Modulates Cisplatin Sensitivity in Prostate Cancer by Targeting MEIS Homeobox 2. Chemical Research in Toxicology, 2023, 36, 360-368.	1.7	1
135	Kynurenine pathway metabolites modulated the comorbidity of IBD and depressive symptoms through the immune response. International Immunopharmacology, 2023, 117, 109840.	1.7	5
136	Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Frontiers in Immunology, 0, 14, .	2.2	1
137	GPAT3 regulates the synthesis of lipid intermediate LPA and exacerbates Kupffer cell inflammation mediated by the ERK signaling pathway. Cell Death and Disease, 2023, 14, .	2.7	3
138	Inhibitory Effects of Ginsenoside Compound K on Lipopolysaccharide-Stimulated Inflammatory Responses in Macrophages by Regulating Sirtuin 1 and Histone Deacetylase 4. Nutrients, 2023, 15, 1626.	1.7	7
139	Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. ISME Journal, 2023, 17, 1004-1014.	4.4	12

	Сітл	CITATION REPORT	
#	Article	IF	CITATIONS
147	Implications of immunometabolism for smouldering MS pathology and therapy. Nature Reviews Neurology, 0, , .	4.9	0
162	Role of inflammation, angiogenesis and oxidative stress in developing epilepsy. , 2024, , 293-322.		0