Advances and issues in developing salt-concentrated ba

Nature Energy 4, 269-280 DOI: 10.1038/s41560-019-0336-z

Citation Report

#	Article	IF	CITATIONS
1	Design of S-Substituted Fluorinated Aryl Sulfonamide-Tagged (S-FAST) Anions To Enable New Solvate Ionic Liquids for Battery Applications. Chemistry of Materials, 2019, 31, 7558-7564.	3.2	11
2	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
3	A small-molecule organic cathode with fast charge–discharge capability for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20127-20131.	5.2	51
4	Concentrated LiODFB Electrolyte for Lithium Metal Batteries. Frontiers in Chemistry, 2019, 7, 494.	1.8	12
5	Concentrated Ionicâ€Liquidâ€Based Electrolytes for Highâ€Voltage Lithium Batteries with Improved Performance at Room Temperature. ChemSusChem, 2019, 12, 4185-4193.	3.6	57
6	Recent research progresses in ether―and esterâ€based electrolytes for sodiumâ€ion batteries. InformaÄnÃ- Materiály, 2019, 1, 376-389.	8.5	183
7	Lipophilic Additives for Highly Concentrated Electrolytes in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A2570-A2573.	1.3	4
8	Glyme–Li salt equimolar molten solvates with iodide/triiodide redox anions. RSC Advances, 2019, 9, 22668-22675.	1.7	5
9	A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. Journal of Materials Chemistry A, 2019, 7, 17420-17425.	5.2	111
10	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	7.3	66
11	Formation of a Solid Electrolyte Interphase in Hydrate-Melt Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 45554-45560.	4.0	42
12	Transport in Superconcentrated LiPF ₆ and LiBF ₄ /Propylene Carbonate Electrolytes. ACS Energy Letters, 2019, 4, 2843-2849.	8.8	71
13	A Comprehensive Analysis of the Interphasial and Structural Evolution over Longâ€Term Cycling of Ultrahighâ€Nickel Cathodes in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1902731.	10.2	131
14	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661.	11.7	432
15	Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases. ACS Energy Letters, 2019, 4, 2529-2534.	8.8	112
16	Salt-concentrated electrolytes for graphite anode in potassium ion battery. Solid State Ionics, 2019, 341, 115050.	1.3	33
17	Microscopic Origin of the Solid Electrolyte Interphase Formation in Fire-Extinguishing Electrolyte: Formation of Pure Inorganic Layer in High Salt Concentration. Journal of Physical Chemistry Letters, 2019, 10, 5949-5955.	2.1	15
18	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135

#	Article	IF	CITATIONS
19	Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. ACS Applied Materials & Interfaces, 2019, 11, 25833-25843.	4.0	72
20	Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. Journal of Materials Chemistry A, 2019, 7, 12993-12996.	5.2	49
21	Understanding the Impact of a Nonafluorinated Ether-Based Electrolyte on Li-S Battery. Journal of the Electrochemical Society, 2019, 166, A3653-A3659.	1.3	6
22	Correlation between Microstructure and Potassium Storage Behavior in Reduced Graphene Oxide Materials. ACS Applied Materials & Interfaces, 2019, 11, 45578-45585.	4.0	34
23	Localized high concentration electrolyte behavior near a lithium–metal anode surface. Journal of Materials Chemistry A, 2019, 7, 25047-25055.	5.2	81
24	Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nature Communications, 2019, 10, 5374.	5.8	573
25	Formulierung von Elektrolyten mit gemischten Lithiumsalzen für Lithiumâ€Batterien. Angewandte Chemie, 2020, 132, 3426-3442.	1.6	16
26	Formulation of Blendedâ€Lithiumâ€Salt Electrolytes for Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3400-3415.	7.2	129
27	Water-in-salt electrolytes: An interfacial perspective. Current Opinion in Colloid and Interface Science, 2020, 47, 99-110.	3.4	44
28	Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. Journal of Materials Chemistry A, 2020, 8, 412-421.	5.2	28
29	The Electrolyte Frontier: A Manifesto. Joule, 2020, 4, 281-285.	11.7	26
30	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75
31	An "interaction-mediating―strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries. Nano Energy, 2020, 69, 104464.	8.2	29
32	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
33	<i>In situ</i> observation of the potential-dependent structure of an electrolyte/electrode interface by heterodyne-detected vibrational sum frequency generation. Physical Chemistry Chemical Physics, 2020, 22, 2580-2589.	1.3	23
34	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3638-3644.	7.2	211
35	Mechanistic Insights on Concentrated Lithium Salt/Nitroalkane Electrolyte Based on Analogy with Fluorinated Alcohols. European Journal of Organic Chemistry, 2020, 2020, 570-574.	1.2	24
36	Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 200-207.	2.5	67

#	Article	IF	CITATIONS
37	Concentrated Battery Electrolytes: Developing New Functions by Manipulating the Coordination States. Bulletin of the Chemical Society of Japan, 2020, 93, 109-118.	2.0	29
38	Highly Concentrated KTFSI : Glyme Electrolytes for K/Bilayeredâ€V ₂ O ₅ Batteri Batteries and Supercaps, 2020, 3, 261-267.	es. 2.4	25
39	Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chemical Communications, 2020, 56, 14570-14584.	2.2	79
40	An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Materials, 2020, 33, 283-289.	9.5	103
41	Application-oriented modeling and optimization of tailored Li-ion batteries using the concept of Diffusion Limited C-rate. Journal of Power Sources, 2020, 479, 228704.	4.0	15
42	Addition of Chloroform in a Solvent-in-Salt Electrolyte: Outcomes in the Microscopic Dynamics in Bulk and Confinement. Journal of Physical Chemistry C, 2020, 124, 22366-22375.	1.5	7
43	Advances and issues in developing metal-iodine batteries. Materials Today Energy, 2020, 18, 100534.	2.5	35
44	<i>In Situ</i> Construction of an Ultrarobust and Lithiophilic Li-Enriched Li–N Nanoshield for High-Performance Ge-Based Anode Materials. ACS Energy Letters, 2020, 5, 3490-3497.	8.8	29
45	Insights into the Dynamic Catalytic Effect of Metal Sulfides with Prominent Lithiation Process in the Application of Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 11131-11141.	2.5	3
46	Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators. Sustainable Energy and Fuels, 2020, 4, 5783-5794.	2.5	8
47	Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11, 5100.	5.8	133
48	Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 2020, 7, 2002212.	5.6	95
49	Mobility-viscosity decoupling and cation transport in water-in-salt lithium electrolytes. Electrochimica Acta, 2020, 359, 136915.	2.6	18
50	Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochimica Acta, 2020, 363, 137198.	2.6	17
51	Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nature Communications, 2020, 11, 3629.	5.8	137
52	High Voltage Stable Li Metal Batteries Enabled by Ether-Based Highly Concentrated Electrolytes at Elevated Temperatures. Journal of the Electrochemical Society, 2020, 167, 110543.	1.3	13
53	A renaissance of <i>N</i> , <i>N</i> -dimethylacetamide-based electrolytes to promote the cycling stability of Li–O ₂ batteries. Energy and Environmental Science, 2020, 13, 3075-3081.	15.6	68
54	Effects of Lithium Bis(fluorosulfonyl)imide Concentration on Performances of Lithium-ion Batteries Containing Sulfolane-based Electrolytes. Journal of the Electrochemical Society, 2020, 167, 110553.	1.3	10

\mathbf{c}	ON	DEDO	DT
	ON	Repo	ן או

#	Article	IF	CITATIONS
55	Effect of salt concentration profiles on protrusion growth in lithium-polymerâ€ʻlithium cells. Solid State Ionics, 2020, 358, 115517.	1.3	13
56	A review on recent approaches for designing the SEI layer on sodium metal anodes. Materials Advances, 2020, 1, 3143-3166.	2.6	42
57	The Mystery of Electrolyte Concentration: From Superhigh to Ultralow. ACS Energy Letters, 2020, 5, 3633-3636.	8.8	96
58	In-Built Polymer-in-Solvent and Solvent-in-Polymer Electrolytes for High-Voltage Lithium Metal Batteries. Cell Reports Physical Science, 2020, 1, 100146.	2.8	10
59	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	23.0	393
60	Water-free Localization of Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube. Cell Reports Physical Science, 2020, 1, 100246.	2.8	4
61	Shielding Polysulfide Intermediates by an Organosulfur ontaining Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003012.	11.1	108
62	Pathways towards high energy aqueous rechargeable batteries. Coordination Chemistry Reviews, 2020, 424, 213521.	9.5	50
63	Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Materials, 2020, 32, 425-447.	9.5	127
64	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule, 2020, 4, 1776-1789.	11.7	146
65	Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020, 32, 386-401.	9.5	136
66	Potential-Dependent Layering in the Electrochemical Double Layer of Water-in-Salt Electrolytes. ACS Applied Energy Materials, 2020, 3, 8086-8094.	2.5	28
67	Uniformizing the electric field distribution and ion migration during zinc plating/stripping <i>via</i> a binary polymer blend artificial interphase. Journal of Materials Chemistry A, 2020, 8, 17725-17731.	5.2	71
68	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
69	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	9.5	126
70	Hopping in High Concentration Electrolytes - Long Time Bulk and Single-Particle Signatures, Free Energy Barriers, and Structural Insights. Journal of Physical Chemistry Letters, 2020, 11, 9613-9620.	2.1	12
71	Moderate-Concentration Fluorinated Electrolyte for High-Energy-Density Si//LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 16252-16261.	3.2	10
72	Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. Accounts of Chemical Research, 2020, 53, 1992-2002.	7.6	171

#	Article	IF	CITATIONS
73	Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithiumâ€lon Batteries for Electric Vehicles. Energy Technology, 2020, 8, 2000580.	1.8	48
74	Solid electrolyte interphase (SEI) in potassium ion batteries. Energy and Environmental Science, 2020, 13, 4583-4608.	15.6	187
75	Solid Electrolyte Interphases on Sodium Metal Anodes. Advanced Functional Materials, 2020, 30, 2004891.	7.8	154
76	Beyond the concentrated electrolyte: further depleting solvent molecules within a Li ⁺ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy and Environmental Science, 2020, 13, 4122-4131.	15.6	122
77	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 22194-22201.	7.2	219
78	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 22378-22385.	1.6	60
79	Pursuing graphite-based K-ion O ₂ batteries: a lesson from Li-ion batteries. Energy and Environmental Science, 2020, 13, 3656-3662.	15.6	31
80	Ion transport in small-molecule and polymer electrolytes. Journal of Chemical Physics, 2020, 153, 100903.	1.2	53
81	Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Letters, 2020, 5, 3212-3220.	8.8	97
82	Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nature Communications, 2020, 11, 4463.	5.8	431
83	Engineering Solvation Complex–Membrane Interaction to Suppress Cation Crossover in 3 V Cuâ€Al Battery. Small, 2020, 16, 2003438.	5.2	11
84	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	5.8	226
85	Improved ion dissociation and amorphous region of PEO based solid polymer electrolyte by incorporating tetracyanoethylene. Materials Today: Proceedings, 2020, , .	0.9	3
86	Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28603-28613.	3.3	191
87	Probing the electrode–solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. Journal of Chemical Physics, 2020, 153, 170902.	1.2	27
88	Effect of the electrolyte on K-metal batteries. Chemical Communications, 2020, 56, 14673-14676.	2.2	20
89	Twoâ€Plateau Li‣e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie - International Edition, 2020, 59, 13908-13914.	7.2	26
90	Dual-Cation Electrolytes for High-Power and High-Energy LTO//AC Hybrid Capacitors. Journal of Physical Chemistry C, 2020, 124, 12230-12238.	1.5	10

#	Article	IF	CITATIONS
91	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737.	5.2	44
92	Phosphorene as Cathode Material for Highâ€Voltage, Antiâ€Selfâ€Discharge Zinc Ion Hybrid Capacitors. Advanced Energy Materials, 2020, 10, 2001024.	10.2	149
93	Modeling and Simulation of Concentrated Aqueous Solutions of LiTFSI for Battery Applications. Journal of Physical Chemistry C, 2020, 124, 11790-11799.	1.5	35
94	Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nature Communications, 2020, 11, 2278.	5.8	71
95	Twoâ€Plateau Li‧e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie, 2020, 132, 14012-14018.	1.6	9
96	A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020, 49, 3806-3833.	18.7	323
97	Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from â~35 to +65 °C. ACS Applied Materials & Interfaces, 2020, 12, 29181-29193.	4.0	10
98	Reliable liquid electrolytes for lithium metal batteries. Energy Storage Materials, 2020, 30, 113-129.	9.5	92
99	Assessing the Oxidation Behavior of EC:DMC Based Electrolyte on Non-Catalytically Active Surface. Journal of the Electrochemical Society, 2020, 167, 080530.	1.3	24
100	A fluorine-substituted pyrrolidinium-based ionic liquid for high-voltage Li-ion batteries. Chemical Communications, 2020, 56, 7317-7320.	2.2	14
101	Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Materials, 2020, 30, 228-237.	9.5	61
102	Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20, 5391-5399.	4.5	93
103	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	19.8	642
104	Effect of cation size on alkali acetate-based â€~water-in-bisalt' electrolyte and its application in aqueous rechargeable lithium battery. Applied Materials Today, 2020, 20, 100728.	2.3	10
105	A novel approach to ligand-exchange rates applied to lithium-ion battery and sodium-ion battery electrolytes. Journal of Chemical Physics, 2020, 152, 234104.	1.2	19
106	Design of Highly Reversible Zinc Anodes for Aqueous Batteries Using Preferentially Oriented Electrolytic Zinc. Batteries and Supercaps, 2020, 3, 1220-1232.	2.4	7
107	Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 2020, 28, 205-215.	9.5	136
108	Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem, 2020, 2, 100031.	10.1	37

#	Article	IF	CITATIONS
109	Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chemical Reviews, 2020, 120, 6490-6557.	23.0	517
110	Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728.	8.2	78
111	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. Journal of the American Chemical Society, 2020, 142, 7393-7403.	6.6	225
112	Basic knowledge in battery research bridging the gap between academia and industry. Materials Horizons, 2020, 7, 1937-1954.	6.4	94
113	Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nature Communications, 2020, 11, 1611.	5.8	31
114	Featured properties of Li ⁺ -based battery anode: Li ₄ Ti ₅ O ₁₂ . RSC Advances, 2020, 10, 14071-14079.	1.7	14
115	Potassiumâ€sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	6.8	41
116	Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions. Chinese Physics B, 2020, 29, 087804.	0.7	2
117	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
118	Localized High Concentration Electrolytes for High Voltage Lithium–Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability. Chemistry of Materials, 2020, 32, 5973-5984.	3.2	97
119	Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical Highâ€Energy Liâ€5 Batteries. Angewandte Chemie - International Edition, 2020, 59, 17634-17640.	7.2	67
120	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	9.5	74
121	Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical Highâ€Energy Liâ€5 Batteries. Angewandte Chemie, 2020, 132, 17787-17793.	1.6	10
122	Supersaturated "water-in-salt―hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. Journal of Power Sources, 2020, 472, 228558.	4.0	26
123	Stable cycling of small molecular organic electrode materials enabled by high concentration electrolytes. Energy Storage Materials, 2020, 31, 318-327.	9.5	56
124	Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes. Journal of Power Sources, 2020, 471, 228455.	4.0	17
125	Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Materials, 2020, 31, 328-343.	9.5	68
126	Influence of the Electrolyte Salt Concentration on the Rate Capability of Ultraâ€Thick NCM 622 Electrodes. Batteries and Supercaps, 2020, 3, 1172-1182.	2.4	25

ARTICLE IF CITATIONS # A new approach to both high safety and high performance of lithium-ion batteries. Science Advances, 127 4.7 83 2020, 6, eaay7633. A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nature Energy, 2020, 5, 291-298. 19.8 Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese 129 0.7 26 Physics B, 2020, 29, 048201. Perchlorate Based "Oversaturated Gel Electrolyte―for an Aqueous Rechargeable Hybrid Zn–Li Battery. ACS Applied Energy Materials, 2020, 3, 2526-2536. Electrolyte Design for Fast-Charging Li-Ion Batteries. Trends in Chemistry, 2020, 2, 354-366. 131 4.4 177 Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€State Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629. 11.1 Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical 133 18.7 1,326 Society Reviews, 2020, 49, 1569-1614. Dualâ€6trategy to Construct Aqueousâ€Based Symmetric Supercapacitors with High Volumetric Energy 1.7 134 9 Density. ChemElectroChem, 2020, 7, 838-845. Toward Highâ€Energyâ€Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic 135 11.1 154 Electrolytes. Advanced Materials, 2020, 32, e1905219. An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte 1.6 Chemie, 2020, 132, 3667-3673. Goldilocks and the three glymes: How Na+ solvation controls Na–O2 battery cycling. Energy Storage 137 9.5 21 Materials, 2020, 29, 235-245. Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based 138 4.0 Electrolyte. ACS Applied Materials & amp; Interfaces, 2020, 12, 22901-22909. Printable Solid Electrolyte Interphase Mimic for Antioxidative Lithium Metal Electrodes. Advanced 139 7.8 16 Functional Materials, 2020, 30, 2000792. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 22862-22872. 140 4.0 Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Advanced Functional 141 7.8 251 Materials, 2020, 30, 1909887. Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. 142 2.4 38 Batteries and Supercaps, 2020, 3, 828-859. Critical Role of Anionâ€"Solvent Interactions for Dynamics of Solvent-in-Salt Solutions. Journal of 143 1.532 Physical Chemistry C, 2020, 124, 8457-8466. Realizing Dendrite-Free Lithium Deposition with a Composite Separator. Nano Letters, 2020, 20, 144 4.5 3798-3807.

# 145	ARTICLE Boosting Potassium Storage Performance of the Cu ₂ S Anode <i>via</i> Morphology Engineering and Electrolyte Chemistry. ACS Nano, 2020, 14, 6024-6033.	IF 7.3	CITATIONS
146	Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. National Science Review, 2020, 7, 1367-1386.	4.6	31
147	Stabilized Electrode/Electrolyte Interphase by a Saturated Ionic Liquid Electrolyte for High-Voltage NMC532/Si-Graphite Cells. ACS Applied Materials & Interfaces, 2020, 12, 23035-23045.	4.0	26
148	Interactions and Transport in Highly Concentrated LiTFSlâ€based Electrolytes. ChemPhysChem, 2020, 21, 1166-1176.	1.0	25
149	Molecular crowding electrolytes for high-voltage aqueous batteries. Nature Materials, 2020, 19, 1006-1011.	13.3	431
150	Nonflammable LiTFSI-Ethylene Carbonate/1,2-Dimethoxyethane Electrolyte for High-Safety Li-ion Batteries. Journal of the Electrochemical Society, 2020, 167, 090520.	1.3	16
151	Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 154-160.	7.1	53
152	Challenges and Strategies for Highâ€Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 598-616.	7.2	272
153	WÃærige Hochleistungsbatterien: Herausforderungen und Strategien. Angewandte Chemie, 2021, 133, 608-626.	1.6	14
154	Materials Design for Highâ€Safety Sodiumâ€Ion Battery. Advanced Energy Materials, 2021, 11, 2000974.	10.2	282
155	Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 2021, 55, 80-91.	7.1	57
156	Boosting the Energy Density of Aqueous Batteries via Facile Grotthuss Proton Transport. Angewandte Chemie, 2021, 133, 4215-4220.	1.6	27
157	Recent Insights into Rate Performance Limitations of Liâ€ion Batteries. Batteries and Supercaps, 2021, 4, 268-285.	2.4	55
158	Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. Journal of Materials Science and Technology, 2021, 67, 156-164.	5.6	41
159	Architecting robust interphase on high voltage cathodes via aromatic polyamide. Chemical Engineering Journal, 2021, 403, 126366.	6.6	15
160	Polyimide separators for rechargeable batteries. Journal of Energy Chemistry, 2021, 58, 170-197.	7.1	82
161	Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Materials, 2021, 34, 76-84.	9.5	65
162	Emerging calcium batteries. Journal of Power Sources, 2021, 482, 228875.	4.0	48

ARTICLE IF CITATIONS # Fluorobenzene, A Lowâ€Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical 163 7.8 121 Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, . Regulating Interfacial Chemistry in Lithiumâ€Ion Batteries by a Weakly Solvating Electrolyte**. 164 1.6 74 Angewandte Chemie, 2021, 133, 4136-4143. Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 165 8.2 111 80, 105516. lonic liquids for high performance lithium metal batteries. Journal of Energy Chemistry, 2021, 59, 320-333. A Selfâ€Sodiophilic Carbon Host Promotes the Cyclability of Sodium Anode. Advanced Functional 167 7.8 30 Materials, 2021, 31, 2007556. Highly efficient lithium utilization in lithium metal full-cell by simulated missile guidance and confinement systems. Science China Materials, 2021, 64, 830-839. 3.5 Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy 169 10.2 64 Materials, 2021, 11, 2002869. Mesoporous design of ultrathin NiO nanosheet-coated vertically aligned hexagonal CoS nanoplate core–shell array for flexible all-solid-state supercapacitors. Journal of Alloys and Compounds, 2021, 2.8 863, 158064. Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. 171 90 2021, 3, 18-41. Mixed lithium fluoride-nitride ionic conducting interphase for dendrite-free lithium metal anode. 3.1 Applied Surface Science, 2021, 541, 148294. Competitive Solid-Electrolyte Interphase Formation on Working Lithium Anodes. Trends in Chemistry, 173 4.4 34 2021, 3, 5-14. The Insights of Lithium Metal Plating/Stripping in Porous Hosts: Progress and Perspectives. Energy 174 1.8 38 Technology, 2021, 9, 2000700. TiO2@LiTi2(PO4)3 enabling fast and stable lithium storage for high voltage aqueous lithium-ion 175 4.0 13 batteries. Journal of Power Sources, 2021, 484, 229255. Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg^{$\hat{a} \in 1}$ Lithium Metal Battery. ACS Energy Letters, 2021, 6, 115-123. 8.8 Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. 177 7.8 127 Advanced Functional Materials, 2021, 31, 2008644. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443. Recent development of Na metal anodes: Interphase engineering chemistries determine the 179 6.6 38 electrochemical performance. Chemical Engineering Journal, 2021, 409, 127943. Boosting the Energy Density of Aqueous Batteries via Facile Grotthuss Proton Transport. Angewandte Chemie - International Edition, 2021, 60, 4169-4174.

#	Article	IF	CITATIONS
181	Inhibiting Solvent Coâ€Intercalation in a Graphite Anode by a Localized High oncentration Electrolyte in Fastâ€Charging Batteries. Angewandte Chemie, 2021, 133, 3444-3448.	1.6	44
182	Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries. Journal of Materials Science and Technology, 2021, 74, 119-127.	5.6	14
183	The Applications of Waterâ€inâ€Salt Electrolytes in Electrochemical Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2006749.	7.8	111
184	Inhibiting Solvent Coâ€Intercalation in a Graphite Anode by a Localized Highâ€Concentration Electrolyte in Fastâ€Charging Batteries. Angewandte Chemie - International Edition, 2021, 60, 3402-3406.	7.2	238
185	Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Materials, 2021, 35, 19-46.	9.5	212
186	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie - International Edition, 2021, 60, 4090-4097.	7.2	373
187	Concentrated Electrolytes for Lithium Metal Negative Electrodes. , 2021, , 37-45.		0
188	Advanced liquid electrolytes enable practical applications of high-voltage lithium–metal full batteries. Chemical Communications, 2021, 57, 840-858.	2.2	27
189	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	15.6	257
190	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	1.3	32
191	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
192	Recent advances in separator engineering for effective dendrite suppression of Liâ€metal anodes. Nano Select, 2021, 2, 993-1010.	1.9	22
193	Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook. Journal of Materials Chemistry A, 2021, 9, 8279-8302.	5.2	113
194	Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy and Environmental Science, 2021, 14, 5788-5800.	15.6	39
195	Insoluble small-molecule organic cathodes for highly efficient pure-organic Li-ion batteries. Green Chemistry, 2021, 23, 6090-6100.	4.6	19
196	Improving high rate cycling limitations of thick sintered battery electrodes by mitigating molecular transport limitations through modifying electrode microstructure and electrolyte conductivity. Molecular Systems Design and Engineering, 2021, 6, 708-712.	1.7	16
197	Electrolytes for Lithium-Ion and Lithium Metal Batteries. , 2021, , .		0
198	High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy and Environmental Science, 2021, 14, 1420-1428.	15.6	23

#	Article	IF	CITATIONS
199	From â^'20 °C to 150 °C: a lithium secondary battery with a wide temperature window obtained <i>via</i> manipulated competitive decomposition in electrolyte solution. Journal of Materials Chemistry A, 2021, 9, 9307-9318.	5.2	40
200	A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chemistry, 2021, 23, 3400-3409.	4.6	80
201	Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters, 2021, 6, 387-394.	8.8	58
202	Experimental considerations to study Li-excess disordered rock salt cathode materials. Journal of Materials Chemistry A, 2021, 9, 1720-1732.	5.2	19
203	The Underlying Mechanism for Reduction Stability of Organic Electrolytes in Lithium Secondary Batteries. Chemical Science, 2021, 12, 9037-9041.	3.7	22
204	Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li ⁺ interactions and Li ⁺ transport mechanism. Journal of Materials Chemistry A, 2021, 9, 17459-17473.	5.2	28
205	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	15.6	314
206	Importance of multimodal characterization and influence of residual Li ₂ S impurity in amorphous Li ₃ PS ₄ inorganic electrolytes. Journal of Materials Chemistry A, 2021, 9, 19637-19648.	5.2	15
207	Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy and Environmental Science, 2021, 14, 4463-4473.	15.6	203
208	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
209	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	2.6	27
210	Impedance Modeling of Solid-State Electrolytes: Influence of the Contacted Space Charge Layer. ACS Applied Materials & Interfaces, 2021, 13, 5895-5906.	4.0	15
211	Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy and Environmental Science, 2021, 14, 3757-3795.	15.6	62
212	How Does External Pressure Shape Li Dendrites in Li Metal Batteries?. Advanced Energy Materials, 2021, 11, 2003416.	10.2	141
213	Perspective on Highâ€Concentration Electrolytes for Lithium Metal Batteries. Small Structures, 2021, 2, 2000122.	6.9	81
214	Organic electrode materials for fast-rate, high-power battery applications. Materials Reports Energy, 2021, 1, 100008.	1.7	43
215	Chelating Ligands as Electrolyte Solvent for Rechargeable Zinc-Ion Batteries. Chemistry of Materials, 2021, 33, 1330-1340.	3.2	37
216	Impact of Carbon Porosity on Sulfur Conversion in Liâ^'S Battery Cathodes in a Sparingly Polysulfide Solvating Electrolyte. Batteries and Supercaps, 2021, 4, 823-833.	2.4	22

#	Article	IF	CITATIONS
217	Synergistic Effects on Lithium Metal Batteries by Preferential Ionic Interactions in Concentrated Bisalt Electrolytes. Advanced Energy Materials, 2021, 11, 2003520.	10.2	33
218	Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration. Nano Letters, 2021, 21, 2304-2309.	4.5	9
219	Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	131
220	Lowâ€Cost Regulating Lithium Deposition Behaviors by Transition Metal Oxide Coating on Separator. Advanced Functional Materials, 2021, 31, 2007255.	7.8	28
221	Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces. Accounts of Chemical Research, 2021, 54, 1034-1042.	7.6	21
222	Roomâ€Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials, 2021, 11, 2003493.	10.2	114
223	Localized high concentration electrolytes decomposition under electron-rich environments. Journal of Chemical Physics, 2021, 154, 104702.	1.2	11
224	Solid electrolyte membranes prepared from poly(arylene ether sulfone)-g-poly(ethylene glycol) with various functional end groups for lithium-ion battery. Journal of Membrane Science, 2021, 621, 119023.	4.1	16
225	Nucleation and Growth Mechanism of Anionâ€Đerived Solid Electrolyte Interphase in Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 8521-8525.	7.2	77
226	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	7.8	208
227	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	10.1	74
228	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Electrochemical Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. Advanced Energy Materials, 2021, 11, 2003905.	10.2	68
229	Intrinsically Nonflammable Ionic Liquidâ€Based Localized Highly Concentrated Electrolytes Enable Highâ€Performance Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2003752.	10.2	85
230	Nucleation and Growth Mechanism of Anionâ€Derived Solid Electrolyte Interphase in Rechargeable Batteries. Angewandte Chemie, 2021, 133, 8602-8606.	1.6	16
231	An overlooked issue for high-voltage Li-ion batteries: Suppressing the intercalation of anions into conductive carbon. Joule, 2021, 5, 998-1009.	11.7	44
232	Current and future lithium-ion battery manufacturing. IScience, 2021, 24, 102332.	1.9	236
233	Recent advances of vanadium-based cathode materials for zinc-ion batteries. Chinese Chemical Letters, 2021, 32, 3753-3761.	4.8	27
234	Comprehensive analysis and correlation of ionic liquid conductivity data for energy applications. Energy, 2021, 220, 119761.	4.5	23

#	Article	IF	CITATIONS
235	Synergistic Effect of Temperature and Electrolyte Concentration on Solid‣tate Interphase for Highâ€Performance Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100010.	2.8	2
236	Dynamical SEI Reinforced by Openâ€Architecture MOF Film with Stereoscopic Lithiophilic Sites for Highâ€Performance Lithium–Metal Batteries. Advanced Functional Materials, 2021, 31, 2101034.	7.8	59
237	Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. Small, 2021, 17, e2100133.	5.2	59
238	Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 2021, 36, 147-170.	9.5	344
239	Highly Concentrated Electrolytes: Electrochemical and Physicochemical Characteristics of LiPF ₆ in Propylene Carbonate Solutions. Journal of the Electrochemical Society, 2021, 168, 050521.	1.3	23
240	Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode. ACS Energy Letters, 2021, 6, 2054-2063.	8.8	79
241	High Oxidation Potential â‰^6.0ÂV of Concentrated Electrolyte toward Highâ€Performance Dualâ€lon Battery. Advanced Energy Materials, 2021, 11, 2100151.	10.2	44
242	Neural Network Analysis of Electron Microscopy Video Data Reveals the Temperatureâ€Driven Microphase Dynamics in the Ions/Water System. Small, 2021, 17, e2007726.	5.2	8
243	The Boundary of Lithium Plating in Graphite Electrode for Safe Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 13007-13012.	7.2	120
244	Ion Clusters and Networks in Water-in-Salt Electrolytes. Journal of the Electrochemical Society, 2021, 168, 050514.	1.3	31
245	Dynamics of Emim ⁺ in [Emim][TFSI]/LiTFSI Solutions as Bulk and under Confinement in a Quasi-liquid Solid Electrolyte. Journal of Physical Chemistry B, 2021, 125, 5443-5450.	1.2	8
246	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
247	Establishing the Preferential Adsorption of Anionâ€Dominated Solvation Structures in the Electrolytes for Highâ€Energyâ€Density Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2011109.	7.8	37
248	Formulating a Non-Flammable Highly Concentrated Dual-Salt Electrolyte for Wide Temperature High-Nickel Lithium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 050511.	1.3	15
249	The Boundary of Lithium Plating in Graphite Electrode for Safe Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 13117-13122.	1.6	17
250	Benefits of Fast Battery Formation in a Model System. Journal of the Electrochemical Society, 2021, 168, 050543.	1.3	8
251	New Insights on the Good Compatibility of Ether-Based Localized High-Concentration Electrolyte with Lithium Metal. , 2021, 3, 838-844.		50
252	Nitrate-based â€~oversaturated gel electrolyte' for high-voltage and high-stability aqueous lithium batteries. Energy Storage Materials, 2021, 37, 598-608.	9.5	19

#	Article	IF	CITATIONS
253	Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.	9.5	78
254	Interfacial Effects on Transport Coefficient Measurements in Li-ion Battery Electrolytes. Journal of the Electrochemical Society, 2021, 168, 060543.	1.3	16
255	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy, 2021, 6, 653-662.	19.8	175
256	Hybrid polyion complex micelles enabling high-performance lithium-metal batteries with universal carbonates. Energy Storage Materials, 2021, 38, 509-519.	9.5	10
257	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie, 2021, 133, 16623-16627.	1.6	0
258	Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material. Applied Materials Today, 2021, 23, 101032.	2.3	11
259	CHAMPION : Chalmers hierarchical atomic, molecular, polymeric and ionic analysis toolkit. Journal of Computational Chemistry, 2021, 42, 1632-1642.	1.5	3
260	Nonflammable pseudoconcentrated electrolytes for batteries. Current Opinion in Electrochemistry, 2021, 30, 100783.	2.5	4
261	Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. Journal of the American Chemical Society, 2021, 143, 10301-10308.	6.6	83
262	Enhanced Li ⁺ Transport in Ionic Liquidâ€Based Electrolytes Aided by Fluorinated Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability. Small Methods, 2021, 5, e2100168.	4.6	34
263	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie - International Edition, 2021, 60, 16487-16491.	7.2	29
264	Fast Charging of Energy-Dense Lithium Metal Batteries in Localized Ether-Based Highly Concentrated Electrolytes. Journal of the Electrochemical Society, 2021, 168, 060548.	1.3	8
265	Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nature Energy, 2021, 6, 723-732.	19.8	285
266	Effect of temperature on concentrated electrolytes for advanced lithium ion batteries. Journal of Chemical Physics, 2021, 154, 214503.	1.2	9
267	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost Molecular Sieve. Angewandte Chemie - International Edition, 2021, 60, 15572-15581.	7.2	43
268	Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries. Energy Storage Materials, 2021, 38, 30-49.	9.5	72
269	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost Molecular Sieve. Angewandte Chemie, 2021, 133, 15700-15709.	1.6	2
270	Localized Waterâ€Inâ€Salt Electrolyte for Aqueous Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 20118-20126.	1.6	6

#	Article	IF	CITATIONS
271	Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor. Chinese Chemical Letters, 2021, 32, 2217-2221.	4.8	6
272	Dual-salt effect on polyethylene oxide/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte for solid-state lithium metal batteries with superior electrochemical performance. Composites Science and Technology, 2021, 210, 108837.	3.8	13
273	Degradation in lithium ion battery current collectors. JPhys Energy, 2021, 3, 032015.	2.3	32
274	Extending insertion electrochemistry to soluble layered halides with superconcentrated electrolytes. Nature Materials, 2021, 20, 1545-1550.	13.3	25
275	Advanced Nonflammable Localized Highâ€Concentration Electrolyte For High Energy Density Lithium Battery. Energy and Environmental Materials, 2022, 5, 1294-1302.	7.3	24
276	Complex Growth Behavior of Li Dendrites in Al ₂ O ₃ Nanoparticlesâ€Driven Viscoelastic Electrolytes for Lithium Metal Batteries: Dynamic versus Quasistatic Rheology. Advanced Materials Interfaces, 2021, 8, 2100687.	1.9	5
277	Enabling high-performance aqueous rechargeable Li-ion batteries through systematic optimization of TiS2/LiFePO4 full cell. Applied Surface Science, 2021, 553, 149496.	3.1	6
278	Effect of Building Block Connectivity and Ion Solvation on Electrochemical Stability and Ionic Conductivity in Novel Fluoroether Electrolytes. ACS Central Science, 2021, 7, 1232-1244.	5.3	34
279	Ion–solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes. Fundamental Research, 2021, 1, 393-398.	1.6	50
280	Highâ€Performance Cathode Materials for Potassiumâ€lon Batteries: Structural Design and Electrochemical Properties. Advanced Materials, 2021, 33, e2100409.	11.1	48
281	Concentrated Electrolytes Widen the Operating Temperature Range of Lithiumâ€lon Batteries. Advanced Science, 2021, 8, e2101646.	5.6	54
282	Localized Waterâ€Inâ€Salt Electrolyte for Aqueous Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 19965-19973.	7.2	107
283	A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries. Journal of Electrochemical Science and Technology, 2022, 13, 78-89.	0.9	10
284	An Atomic Insight into the Chemical Origin and Variation of the Dielectric Constant in Liquid Electrolytes. Angewandte Chemie, 2021, 133, 21643-21648.	1.6	9
285	Fabrication and characterization of magnesium—ion-conducting flexible polymer electrolyte membranes based on a nanocomposite of poly(ethylene oxide) and potato starch nanocrystals. Journal of Solid State Electrochemistry, 2021, 25, 2409-2428.	1.2	8
286	High-Performance Lithium Metal Batteries with a Wide Operating Temperature Range in Carbonate Electrolyte by Manipulating Interfacial Chemistry. ACS Energy Letters, 2021, 6, 3170-3179.	8.8	71
287	Deciphering the Effect of Electrical Conductivity of Hosts on Lithium Deposition in Composite Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2101654.	10.2	49
288	Revisiting the degradation of solid/electrolyte interfaces of magnesium metal anodes: Decisive role of interfacial composition. Nano Energy, 2021, 86, 106087.	8.2	55

#	Article	IF	Citations
" 289	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced	5.6	27
209	Cathode for Metal–Sulfur Batteries. Ádvanced Science, 2021, 8, e2101123.	5.0	21
290	A phosphorus integrated strategy for supercapacitor: 2D black phosphorus–doped and phosphorus-doped materials. Materials Today Chemistry, 2021, 21, 100480.	1.7	18
291	Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism. Advanced Materials, 2021, 33, e2100574.	11.1	65
292	Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39271-39281.	4.0	16
293	How Can the Electrode Influence the Formation of the Solid Electrolyte Interface?. ACS Energy Letters, 2021, 6, 3307-3320.	8.8	60
294	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
295	Pencil lead powder as a cost-effective and high-performance graphite-silica composite anode for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 872, 159719.	2.8	12
296	An Atomic Insight into the Chemical Origin and Variation of the Dielectric Constant in Liquid Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 21473-21478.	7.2	74
297	Solvent-Assisted Li-Ion Transport and Structural Heterogeneity in Fluorinated Battery Electrolytes. Journal of Physical Chemistry B, 2021, 125, 10551-10561.	1.2	4
298	Lowâ€Temperature Electrolyte Design for Lithiumâ€Ion Batteries: Prospect and Challenges. Chemistry - A European Journal, 2021, 27, 15842-15865.	1.7	106
299	Nonflammable functional electrolytes with all-fluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode. Journal of Power Sources, 2021, 505, 230055.	4.0	37
300	Stable Anionâ€Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 22865-22869.	1.6	32
301	Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4ÂV aqueous supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 58-66.	2.7	6
302	Development of high performing polymer electrolytes based on superconcentrated solutions. Journal of Power Sources, 2021, 506, 230220.	4.0	15
303	Preparation and Properties of an Ultrahigh-Energy-Density Aqueous Supercapacitor with a Superconcentrated Electrolyte and a Sr-Modified Lanthanum Zirconate Flexible Electrode. ACS Omega, 2021, 6, 24720-24730.	1.6	2
304	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 44, 360-369.	9.5	14
305	Circumneutral concentrated ammonium acetate solution as water-in-salt electrolyte. Electrochimica Acta, 2021, 389, 138653.	2.6	14
306	2.4ÂV high performance supercapacitors enabled by polymer-strengthened 3Âm aqueous electrolyte. Journal of Power Sources, 2021, 505, 230078.	4.0	14

#	Article	IF	CITATIONS
307	Electrolyte solutions design for lithium-sulfur batteries. Joule, 2021, 5, 2323-2364.	11.7	199
308	A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 597, 334-344.	5.0	39
309	1,3-Dimethyl-2-imidazolidinone: an ideal electrolyte solvent for high-performance Li–O2 battery with pretreated Li anode. Science Bulletin, 2022, 67, 141-150.	4.3	8
310	Highly transparent conductive ionohydrogel for all-climate wireless human-motion sensor. Chemical Engineering Journal, 2021, 420, 129865.	6.6	47
311	<i>N</i> , <i>N</i> -Dimethylacetamide-Diluted Nitrate Electrolyte for Aqueous Zn//LiMn ₂ O ₄ Hybrid Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46634-46643.	4.0	14
312	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102134.	11.1	91
313	Enabling Atomicâ€Scale Imaging of Sensitive Potassium Metal and Related Solid Electrolyte Interphases Using Ultralowâ€Dose Cryoâ€TEM. Advanced Materials, 2021, 33, e2102666.	11.1	19
314	High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 44844-44859.	4.0	22
315	Thermodynamics of the Hydrolysis of Lithium Salts: Pathways to the Precipitation of Inorganic SEI Components in Li-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 100514.	1.3	11
316	A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nature Communications, 2021, 12, 5746.	5.8	89
317	High safety and cycling stability of ultrahigh energy lithium ion batteries. Cell Reports Physical Science, 2021, 2, 100584.	2.8	12
318	Critical effects of electrolyte recipes for Li and Na metal batteries. CheM, 2021, 7, 2312-2346.	5.8	144
319	Stable Anionâ€Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22683-22687.	7.2	125
320	Tuning the solution structure of electrolyte for optimal solid-electrolyte-interphase formation in high-voltage lithium metal batteries. Journal of Energy Chemistry, 2021, 60, 178-185.	7.1	36
321	Fluorobenzene-based diluted highly concentrated carbonate electrolyte for practical high-voltage lithium metal batteries. Journal of Power Sources, 2021, 506, 230086.	4.0	20
322	Thermalâ€Responsive and Fireâ€Resistant Materials for Highâ€Safety Lithiumâ€Ion Batteries. Small, 2021, 17, e2103679.	5.2	35
323	Zwitterionic polymer coupled with high concentrated electrolytes to achieve high ionic conductivity and wide electrochemical window for supreme specific energy aqueous supercapacitors. Journal of Energy Storage, 2021, 42, 103060.	3.9	6
324	Decoupling the degradation factors of Ni-rich NMC/Li metal batteries using concentrated electrolytes. Energy Storage Materials, 2021, 41, 222-229.	9.5	16

#	Article	IF	CITATIONS
325	Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy, 2021, 89, 106489.	8.2	43
326	Acetate-based â€~oversaturated gel electrolyte' enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Materials, 2021, 42, 240-251.	9.5	25
327	An all-climate CFx/Li battery with mechanism-guided electrolyte. Energy Storage Materials, 2021, 42, 477-483.	9.5	40
328	Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Materials, 2021, 42, 645-678.	9.5	36
329	In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage Materials, 2021, 43, 248-257.	9.5	49
330	Nonflammable nonaqueous electrolytes for lithium batteries. Current Opinion in Electrochemistry, 2021, 30, 100781.	2.5	3
331	Conversion-type fluoride cathodes: Current state of the art. Current Opinion in Electrochemistry, 2021, 30, 100779.	2.5	19
332	11,11,12,12-tetracyano-9,10-anthraquinonedimethane as a high potential and sustainable cathode for organic potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 1173-1179.	5.0	7
333	Highly Concentrated NaN(SO ₂ F) ₂ /3-Methylsulfolane Electrolyte Solution Showing High Na-Ion Transference Number under Anion-Blocking Conditions. Electrochemistry, 2021, 89, 590-596.	0.6	3
334	Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy and Environmental Science, 2021, 14, 3029-3034.	15.6	44
335	Advanced Highâ€Performance Potassium–Chalcogen (S, Se, Te) Batteries. Small, 2021, 17, e2004369.	5.2	45
336	Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chemical Science, 2021, 12, 2345-2356.	3.7	43
337	Enabling highly reversible sodium metal cycling across a wide temperature range with dual-salt electrolytes. Journal of Materials Chemistry A, 2021, 9, 10992-11000.	5.2	27
338	Ionic conductivity and dielectric properties of bulk SPP-PEG hydrogels as Na ⁺ ion-based SPE materials for energy storage applications. Materials Chemistry Frontiers, 2021, 5, 5857-5866.	3.2	16
339	Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.	3.2	21
340	Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances, 2021, 2021, .	4.7	179
341	A Halogenâ€Free and Flameâ€Retardant Sodium Electrolyte Compatible with Hard Carbon Anodes. Advanced Materials Interfaces, 2021, 8, .	1.9	9
342	Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003092.	10.2	271

# 343	ARTICLE Achieving Highâ€Performance Metal Phosphide Anode for Potassium Ion Batteries via Concentrated	IF 10.2	CITATIONS
344	Electrolyte Chemistry. Advanced Energy Materials, 2021, 11, 2003346. Design aspects of electrolytes for fast charge of Liâ€ion batteries. InformaÄnÃ-MateriÃ;ly, 2021, 3, 125-130.	8.5	54
345	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	23.0	554
346	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	4.0	31
347	Theoretically predicting the feasibility of highly-fluorinated ethers as promising diluents for non-flammable concentrated electrolytes. Scientific Reports, 2020, 10, 21966.	1.6	6
348	Ion Transport Mechanisms via Time-Dependent Local Structure and Dynamics in Highly Concentrated Electrolytes. Journal of the Electrochemical Society, 2020, 167, 140537.	1.3	19
349	Recent progress in tackling Zn anode challenges for Zn ion batteries. Journal of Materials Chemistry A, 2021, 9, 25750-25772.	5.2	29
350	High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Applied Materials & Interfaces, 2021, 13, 48889-48900.	4.0	21
351	The preparation of high-performance aqueous supercapacitor with high-entropy pyrochlore-type electrode and super-concentrated electrolyte. Ceramics International, 2022, 48, 2660-2669.	2.3	10
352	High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Scientific Reports, 2021, 11, 20180.	1.6	33
353	Energetics of Li+ Coordination with Asymmetric Anions in Ionic Liquids by Density Functional Theory. Frontiers in Energy Research, 2021, 9, .	1.2	5
354	Design of a LiFâ€Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI–THF Electrolyte for Stable Lithium Metal Batteries. Small, 2021, 17, e2103375.	5.2	42
355	Smallâ€Dipoleâ€Moleculeâ€Containing Electrolytes for Highâ€Voltage Aqueous Rechargeable Batteries. Advanced Materials, 2022, 34, e2106180.	11.1	58
356	Dual‣alt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganeseâ€Rich Cathode Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100140.	2.8	9
357	Supramolecular-induced 2.40ÂV 130°C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. Journal of Colloid and Interface Science, 2022, 608, 1162-1172.	5.0	12
358	Ion Transport in Super-Concentrated Aqueous Electrolytes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 23622-23633.	1.5	8
359	Hybrid Electrolyte with Dualâ€Anionâ€Aggregated Solvation Sheath for Stabilizing Highâ€Voltage Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2007945.	11.1	130
360	Unveiling the Reversibility and Stability Origin of the Aqueous V ₂ O ₅ –Zn Batteries with a ZnCl ₂ "Waterâ€inâ€5alt―Electrolyte. Advanced Science, 2021, 8, e2102053.	5.6	60

#	Article	IF	CITATIONS
361	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie, 2021, 133, 27292-27300.	1.6	17
362	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 27086-27094.	7.2	63
363	Preparation of Graphene Oxide/La ₂ Ti ₂ O ₇ Composites with Enhanced Electrochemical Performances for Supercapacitors. ACS Omega, 2021, 6, 27994-28003.	1.6	9
364	In Situ Growth of Ni–Zn–Fe Layered Double Hydroxide on Graphene Aerogel: An Advanced Twoâ€inâ€One Material for Both the Anode and Cathode of Supercapacitors. Energy Technology, 2021, 9, 2100645.	1.8	5
365	Highly Reversible Zn Metal Anode Stabilized by Dense and Anionâ€Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, 2103959.	7.8	48
366	Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries. Energy Storage Materials, 2022, 44, 370-378.	9.5	31
367	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
368	Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Materials, 2022, 44, 48-56.	9.5	29
369	Brief overview of microscopic physical image of ion transport in electrolytes. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226601.	0.2	27
370	Diluted Ionic Liquid Electrolyteâ€Assisted Stable Cycling of Small Molecular Organics. ChemElectroChem, 2021, 8, 4625-4632.	1.7	4
371	Liquid Structure of a Water-in-Salt Electrolyte with a Remarkably Asymmetric Anion. Journal of Physical Chemistry B, 2021, 125, 12500-12517.	1.2	11
372	Challenges and development of lithium-ion batteries for low temperature environments. ETransportation, 2022, 11, 100145.	6.8	108
373	Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries. Chemical Physics Reviews, 2021, 2, .	2.6	11
374	Passivation Behavior of Aluminum in a Carbonate-Free Electrolyte Based on Lithium Bis(fluorosulfonyl)imide and Sulfolane. Journal of the Electrochemical Society, 2020, 167, 140534.	1.3	6
375	The Functions and Applications of Fluorinated Interface Engineering in Liâ€Based Secondary Batteries. Small Science, 2021, 1, 2100066.	5.8	21
376	Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule. ACS Energy Letters, 2021, 6, 4282-4290.	8.8	60
377	Tailor-made organic polymers towards high voltage aqueous ammonium/potassium-ion asymmetric supercapacitors. Applied Surface Science, 2022, 577, 151918.	3.1	14
378	New State-Diagram of Aqueous Solutions Unveiling Ionic Hydration, Antiplasticization, and Structural Heterogeneities in LiTFSI–H ₂ O. Journal of Physical Chemistry B, 2021, 125, 13041-13048.	1.2	2

#	Article	IF	CITATIONS
380	Improving Cycling Stability of Vanadium Sulfide (VS ₄) as a Li Battery Cathode Material Using a Localized High-Concentration Carbonate-Based Electrolyte. ACS Applied Energy Materials, 2021, 4, 13627-13635.	2.5	15
381	Oxygen Vacancy Modulated TiP ₂ O _{7â€y} with Enhanced Highâ€rate Capabilities and Longâ€term Cyclability used as Anode Material for Lithiumâ€ion Batteries. ChemistrySelect, 2021, 6, 12677-12684.	0.7	6
382	Thermal risk evaluation of concentrated electrolytes for Li-ion batteries. Journal of Power Sources Advances, 2021, 12, 100079.	2.6	2
383	Antioxidation Mechanism of Highly Concentrated Electrolytes at High Voltage. ACS Applied Materials & Interfaces, 2021, 13, 59580-59590.	4.0	20
384	Low concentration electrolyte with non-solvating cosolvent enabling high-voltage lithium metal batteries. IScience, 2022, 25, 103490.	1.9	17
385	Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. Journal of Energy Chemistry, 2022, 68, 27-34.	7.1	63
386	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	1.6	9
387	Electrolyte Additives for Improving the High-Temperature Storage Performance of Li-Ion Battery NCM523â^¥Graphite with Overcharge Protection. ACS Applied Materials & Interfaces, 2022, 14, 4759-4766.	4.0	12
388	Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Materials, 2022, 45, 618-646.	9.5	125
389	Synthesis of a hydrophobic association polymer with an inner salt structure for fracture fluid with ultra-high-salinity water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128062.	2.3	11
390	A 1.9-V all-organic battery-supercapacitor hybrid device with high rate capability and wide temperature tolerance in a metal-free water-in-salt electrolyte. Journal of Colloid and Interface Science, 2022, 612, 76-87.	5.0	18
391	Beyond Simple Dilution: Superior Conductivities from Cosolvation of Acetonitrile/LiTFSI Concentrated Solution with Acetone. Journal of Physical Chemistry C, 2022, 126, 2788-2796.	1.5	6
392	Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives. Energy and Environmental Materials, 2023, 6, .	7.3	19
393	Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification. ACS Energy Letters, 2022, 7, 675-682.	8.8	15
394	A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries. Sustainable Energy and Fuels, 2022, 6, 1281-1288.	2.5	11
395	Highly safe and stable lithium–metal batteries based on a quasi-solid-state electrolyte. Journal of Materials Chemistry A, 2022, 10, 651-663.	5.2	32
396	Tale of a "Non-interacting―Additive in a Lithium-Ion Electrolyte: Effect on Ionic Speciation and Electrochemical Properties. Journal of Physical Chemistry C, 2022, 126, 2141-2150.	1.5	3
397	Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping. Science Advances, 2022, 8, eabj3019.	4.7	38

#	Article	IF	CITATIONS
398	Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration. Aggregate, 2022, 3, .	5.2	37
399	Stabilizing Microsized Sn Anodes for Na-Ion Batteries with Extended Ether Electrolyte Chemistry. ACS Applied Energy Materials, 2022, 5, 2252-2259.	2.5	7
400	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	7.2	38
401	Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	31
402	Additives to propylene carbonate-based electrolytes for lithium-ion capacitors. Rare Metals, 2022, 41, 1304-1313.	3.6	13
403	Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy and Fuels, 2022, 6, 954-970.	2.5	11
404	Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule, 2022, 6, 399-417.	11.7	50
405	Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive. Science Bulletin, 2022, 67, 725-732.	4.3	33
406	Diluted High oncentration Electrolyte Based on Phosphate for Highâ€Performance Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	12
407	Reduction Mechanism of Solid Electrolyte Interphase Formation on Lithium Metal Anode: Fluorine-Rich Electrolyte. Journal of the Electrochemical Society, 2022, 169, 010503.	1.3	5
408	Deep Eutectic Solvents as Nonflammable Electrolytes for Durable Sodiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	12
409	Predictive Characterization of SEI Formed on Graphite Negative Electrodes for Efficiently Designing Effective Electrolyte Solutions. ACS Applied Energy Materials, 2022, 5, 1085-1094.	2.5	4
410	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	19.8	336
411	Nonvolatile and Nonflammable Sulfolane-Based Electrolyte Achieving Effective and Safe Operation of the Li–O ₂ Battery in Open O ₂ Environment. Nano Letters, 2022, 22, 815-821.	4.5	16
412	Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule, 2022, 6, 53-91.	11.7	38
413	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	13.3	155
414	A Self-Supporting Covalent Organic Framework Separator with Desolvation Effect for High Energy Density Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 885-896.	8.8	76
415	Physical properties and compatibility with graphite and lithium metal anodes of non-flammable deep eutectic solvent as a safe electrolyte for high temperature Li-ion batteries. Electrochimica Acta, 2022, 408, 139944.	2.6	14

#	Article	IF	CITATIONS
416	Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Materials, 2022, 46, 243-251.	9.5	31
417	Non-collapsing 3D solid-electrolyte interphase for high-rate rechargeable sodium metal batteries. Nano Energy, 2022, 94, 106947.	8.2	15
418	Robust interphase on both anode and cathode enables stable aqueous lithium-ion battery with coulombic efficiency exceeding 99%. Energy Storage Materials, 2022, 46, 577-582.	9.5	14
419	A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. Journal of Energy Chemistry, 2022, 68, 603-611.	7.1	26
420	Green electrolyte-based organic electronic devices. , 2022, , 281-295.		5
421	Role of lithium salt in reducing the internal heating of a lithium ion battery during fast charging. Journal of Applied Electrochemistry, 2022, 52, 941-951.	1.5	6
422	An Allâ€Fluorinated Electrolyte Toward High Voltage and Long Cycle Performance Dualâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	27
423	Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 7972-7979.	4.0	10
424	A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Materials, 2022, 47, 262-270.	9.5	66
425	Cement-based batteries design and performance. A review. Environmental Chemistry Letters, 2022, 20, 1671-1694.	8.3	7
426	Probing Mechanical Properties of Solid-Electrolyte Interphases on Li Nuclei by In Situ AFM. Journal of the Electrochemical Society, 2022, 169, 020563.	1.3	9
427	Salt-in-Ionic-Liquid Electrolytes: Ion Network Formation and Negative Effective Charges of Alkali Metal Cations. Journal of Physical Chemistry B, 2021, 125, 13752-13766.	1.2	21
428	Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1, 506-536.	7.8	93
429	Regulating Solvation Shells and Interfacial Chemistry in Zinc-Ion Batteries by Glutaronitrile Based Electrolyte. SSRN Electronic Journal, 0, , .	0.4	0
430	Reducing Intrinsic Property Issues of Ni-Rich NMC811 with Novel Coating Concept of Quasi-Solid Materials Towards High-Safety Li-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
431	Regulating Interfacial Structure Enables High-Voltage Dilute Ether Electrolytes. SSRN Electronic Journal, O, , .	0.4	0
432	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	15.6	71
433	New nonflammable tributyl phosphate based localized high concentration electrolytes for lithium metal batteries. Sustainable Energy and Fuels, 2022, 6, 2198-2206.	2.5	7

CITATION REPORT IF CITATIONS Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane 5.2 18 as a diluent. Journal of Materials Chemistry A, 2022, 10, 9001-9009. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy and Environmental Science, 2022, 15, 1647-1658. 15.6 A localized high concentration electrolyte for 4 V-class potassium metal batteries. Energy Advances, 1.4 9 Achieving Ultralong Cycle Life Graphite Binary Intercalation in Intermediate-Concentration Ether-Based Electrolyte for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , . A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn 10.2 155 Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium–Oxygen Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 10327-10336. 4.0

7.2

43

441	Low Currentâ€Density Stable Zincâ€Metal Batteries Via Aqueous/Organic Hybrid Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	42
442	Advances and issues in developing intercalation graphite cathodes for aqueous batteries. Materials Today, 2022, 53, 162-172.	8.3	7
443	A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nature Communications, 2022, 13, 1297.	5.8	56
444	Challenge and Strategies in Room Temperature Sodium–Sulfur Batteries: A Comparison with Lithium–Sulfur Batteries. Small, 2022, 18, e2107368.	5.2	32
445	Constructing Interfacial Nanolayer Stabilizes 4.3 V Highâ€Voltage Allâ€Solidâ€State Lithium Batteries with PEOâ€Based Solidâ€State Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	23
446	Soluble and Perfluorinated Polyelectrolyte for Safe and Highâ€Performance Liâ^'O ₂ Batteries. Angewandte Chemie, 2022, 134, .	1.6	4
447	Challenges and prospects of lithium–CO ₂ batteries. , 2022, 1, e9120001.		99
448	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	5.2	40
449	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie, 2022, 134, .	1.6	15
450	Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 1558-1565.	8.8	15
451	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium	7.9	49

Nitrile Electrolyte Strategy for 4.9 <scp>Vâ€Class Lithiumâ€Metal</scp> Batteries Operating in Flame. Energy and Environmental Materials, 2023, 6, .

Batteries. Angewandte Chemie - International Edition, 2022, 61, .

451

ARTICLE

2022, 1, 191-196.

Storage. Advanced Energy Materials, 2022, 12, .

434

436

#	Article	IF	CITATIONS
453	Ethylene Carbonateâ€Free Electrolytes for Stable, Safer Highâ€Nickel Lithiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	27
454	A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at â^25°C. Cell Reports Physical Science, 2022, 3, 100805.	2.8	10
455	Anion–Diluent Pairing for Stable High-Energy Li Metal Batteries. ACS Energy Letters, 2022, 7, 1338-1347.	8.8	108
456	Soluble and Perfluorinated Polyelectrolyte for Safe and Highâ€Performance Liâ^'O ₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116635.	7.2	28
457	2.5 V high performance aqueous and semiâ€solidâ€state symmetric supercapacitors enabled by 3 m sulfolaneâ€saturated aqueous electrolytes. Energy Technology, 0, , .	1.8	2
458	A Binary Hydrateâ€Melt Electrolyte with Acetateâ€Oriented Crossâ€Linking Solvation Shells for Stable Zinc Anodes. Advanced Materials, 2022, 34, e2201744.	11.1	90
459	Stable Lithium Metal Plating/Stripping in a Localized High-Concentration Cyclic Carbonate-Based Electrolyte. Electrochemistry, 2022, 90, 047001-047001.	0.6	5
460	Review—Advances in Rechargeable Li-S Full Cells. Journal of the Electrochemical Society, 2022, 169, 040525.	1.3	11
461	High-performance lithium metal battery realized by regulating Li+ flux distribution on artificial-solid-electrolyte-interphase functionalized 3D carbon framework-Li anode. Materials Today Physics, 2022, 24, 100672.	2.9	3
462	Regulating interfacial desolvation via a weakly coordinating solvent molecule enhances Li-ion storage at subzero temperatures. Chemical Engineering Science, 2022, 254, 117633.	1.9	3
463	1,3,5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery. Energy Storage Materials, 2022, 48, 393-402.	9.5	34
464	Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Materials, 2022, 48, 244-262.	9.5	166
465	Stretchable polymer composite film based on pseudo-high carbon-filler loadings for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106937.	3.8	12
466	A lightweight localized high-concentration ether electrolyte for high-voltage Li-Ion and Li-metal batteries. Nano Energy, 2022, 96, 107102.	8.2	52
467	Suppressing water decomposition for controllable exfoliation of graphite in water-in-salt electrolyte. Applied Surface Science, 2022, 591, 153109.	3.1	3
468	A fluorinated electrolyte stabilizing high-voltage graphite/NCM811 batteries with an inorganic-rich electrolyte interface. Chemical Engineering Journal, 2022, 440, 135939.	6.6	19
469	An odyssey of lithium metal anode in liquid lithium–sulfur batteries. Chinese Chemical Letters, 2022, 33, 4421-4427.	4.8	37
470	Stable and Efficient Lithium Metal Anode Cycling through Understanding the Effects of Electrolyte Composition and Electrode Preconditioning. Chemistry of Materials, 2022, 34, 165-177.	3.2	22

#	Article	IF	CITATIONS
471	Interface engineering toward <scp>highâ€efficiency</scp> alloy anode for nextâ€generation energy storage device. EcoMat, 2021, 3, .	6.8	29
472	Dynamic Water Promotes Lithium-Ion Transport in Superconcentrated and Eutectic Aqueous Electrolytes. ACS Energy Letters, 2022, 7, 189-196.	8.8	17
473	Anion-Containing Solvation Structure Reconfiguration Enables Wide-Temperature Electrolyte for High-Energy-Density Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 19056-19066.	4.0	18
474	Engineering a passivating electric double layer for high performance lithium metal batteries. Nature Communications, 2022, 13, 2029.	5.8	113
475	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	11.1	66
476	Electrolyte chemistry for lithium metal batteries. Science China Chemistry, 2022, 65, 840-857.	4.2	25
477	Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442, 136351.	6.6	23
479	Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
480	Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?. Journal of the American Chemical Society, 2022, 144, 8591-8604.	6.6	18
481	Organic electrolyte design for practical potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19090-19106.	5.2	30
482	Enhanced performances of lithium metal batteries by synergistic effect of low concentration bisalt electrolyte. Journal of Materials Chemistry A, 2022, 10, 12035-12046.	5.2	16
483	A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li NCM811 cells with a wide temperature range of 100 °C. Energy and Environmental Science, 2022, 15, 2435-2444.	15.6	104
484	Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 917-924.	2.4	11
485	Giant Thermoelectric Properties of Ionogels with Cationic Doping. Advanced Energy Materials, 2022, 12, .	10.2	43
486	Quinone Electrodes for Alkali–Acid Hybrid Batteries. Journal of the American Chemical Society, 2022, 144, 8066-8072.	6.6	23
487	Probing the Electrode–Electrolyte Interface of a Model K-Ion Battery Electrode─The Origin of Rate Capability Discrepancy between Aqueous and Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 20835-20847.	4.0	4
488	Anionâ€Reinforced Solvation for a Gradient Inorganicâ€Rich Interphase Enables Highâ€Rate and Stable Sodium Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
489	Drastic Effect of Salt Concentration in Ionic Liquid on Performance of Lithium Sulfur Battery. Journal of the Electrochemical Society, 2022, 169, 050515.	1.3	8

#	Article	IF	CITATIONS
490	Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angewandte Chemie, 2022, 134, .	1.6	2
491	Separatorâ€Wetted, Acid―and Waterâ€Scavenged Electrolyte with Optimized Liâ€Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexaâ€Functional Additive. Advanced Science, 2022, 9, e2201297.	5.6	25
492	Rational Electrolyte Design toward Cyclability Remedy for Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
493	Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nature Communications, 2022, 13, 2575.	5.8	147
494	Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassiumâ€lon Battery Anode. Advanced Science, 2022, 9, e2200683.	5.6	53
495	Anionâ€Reinforced Solvation for a Gradient Inorganicâ€Rich Interphase Enables Highâ€Rate and Stable Sodium Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	66
496	Fast evaluation technique for the shear viscosity and ionic conductivity of electrolyte solutions. Scientific Reports, 2022, 12, 7291.	1.6	1
497	Rational Electrolyte Design toward Cyclability Remedy for Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
498	Layered Oxide Cathodeâ€Electrolyte Interface towards Naâ€ion Batteries: Advances and Perspectives. Chemistry - an Asian Journal, 2022, 17, e202200213.	1.7	7
499	Metal carbodiimides-derived organic-inorganic interface protective layer for practical high energy lithium metal batteries. Journal of Power Sources, 2022, 536, 231479.	4.0	7
500	Achieving ultralong cycle life graphite binary intercalation in intermediate-concentration ether-based electrolyte for potassium-ion batteries. Carbon, 2022, 196, 229-235.	5.4	8
501	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	23.0	138
502	In-Situ Electrodeposition of Nanostructured Carbon Strengthened Interface for Stabilizing Lithium Metal Anode. ACS Nano, 2022, 16, 9883-9893.	7.3	34
503	Solid–Electrolyte Interphase of Molecular Crowding Electrolytes. Chemistry of Materials, 2022, 34, 5176-5183.	3.2	14
504	Dendrite-free alkali metal electrodeposition from contact-ion-pair state induced by mixing alkaline earth cation. Cell Reports Physical Science, 2022, 3, 100907.	2.8	4
505	Regulating solvation shells and interfacial chemistry in zinc-ion batteries using glutaronitrile based electrolyte. Journal of Materials Chemistry A, 2022, 10, 14345-14354.	5.2	3
506	Polymer Organic Cathodes Enable Efficient Desolvation for Highly Stable Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
507	Li ⁺ transference number and dynamic ion correlations in glyme-Li salt solvate ionic liquids diluted with molecular solvents. Physical Chemistry Chemical Physics, 2022, 24, 14269-14276.	1.3	10

#	Article	IF	CITATIONS
508	Effects of the Electrolyte Concentration on the Nature of the Li Electrode Sei. SSRN Electronic Journal, 0, , .	0.4	0
509	Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?. , 2022, 1, e9120012.		83
510	Electrolytes with Micelle-Assisted Formation of Directional Ion Transport Channels for Aqueous Rechargeable Batteries with Impressive Performance. Nanomaterials, 2022, 12, 1920.	1.9	3
511	Electrolyte Solvation Structure Design for Sodium Ion Batteries. Advanced Science, 2022, 9, .	5.6	138
512	Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Reports Physical Science, 2022, 3, 100919.	2.8	12
513	A rechargeable Li–CO ₂ battery based on the preservation of dimethyl sulfoxide. Journal of Materials Chemistry A, 2022, 10, 13821-13828.	5.2	13
514	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
515	Effects of Carbonate Solvents and Lithium Salts in High-Concentration Electrolytes on Lithium Anode. Journal of the Electrochemical Society, 2022, 169, 060548.	1.3	5
516	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	43
517	Controlling the Ion Transport Number in Solvent-in-Salt Solutions. Journal of Physical Chemistry B, 2022, 126, 4572-4583.	1.2	5
518	Toward Emerging Sodiumâ€Based Energy Storage Technologies: From Performance to Sustainability. Advanced Energy Materials, 2022, 12, .	10.2	33
519	Eutectic Electrolytes Composed of LiN(SO ₂ F) ₂ and Sulfones for Li-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 10024-10034.	1.5	18
520	Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27873-27881.	4.0	23
521	A reaction-dissolution strategy for designing solid electrolyte interphases with stable energetics for lithium metal anodes. Cell Reports Physical Science, 2022, 3, 100948.	2.8	8
522	Intercalation-deposition mechanism induced by aligned carbon fiber toward dendrite-free metallic potassium batteries. Energy Storage Materials, 2022, 51, 122-129.	9.5	17
523	Stable Solvent-Derived Inorganic-Rich Solid Electrolyte Interphase (SEI) for High-Voltage Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 28014-28020.	4.0	14
524	Strong ion pairing at the origin of modified Li-cation solvation and improved performances of dual-salt electrolytes. Journal of Power Sources, 2022, 541, 231644.	4.0	5
525	Generation of a highly conductive and stable solid electrolyte interphase at lithium anode under additional electric filed. Chemical Engineering Journal, 2022, 446, 137435.	6.6	5

#	Article	IF	CITATIONS
526	Study on Fundamental Properties of Solvate Electrolytes and Their Application in Batteries. Electrochemistry, 2022, , .	0.6	2
527	Targeted Stabilization of Solid Electrolyte Interphase and Cathode Electrolyte Interphase in High-Voltage Lithium-Metal Batteries by an Asymmetric Sustained-Release Strategy. SSRN Electronic Journal, 0, , .	0.4	0
528	Electrosynthesis Governed by Electrolyte: Case Studies that Give Some Hints for the Rational Design of Electrolyte. Electrochemistry, 2022, , .	0.6	2
529	Applications of metal-organic frameworks for lithium-sulfur batteries. , 2022, , 49-119.		Ο
530	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
531	Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes. , 2022, , 235-260.		0
532	Galliumâ€based liquid metals for lithiumâ€ion batteries. , 2022, 1, 354-372.		39
533	Decoupled aqueous batteries using pH-decoupling electrolytes. Nature Reviews Chemistry, 2022, 6, 505-517.	13.8	44
534	Review and prospects for room-temperature sodium-sulfur batteries. Materials Research Letters, 2022, 10, 691-719.	4.1	19
535	Ionic Conductivity, Na Plating–Stripping, and Battery Performance of Solid Polymer Na Ion Electrolyte Based on Poly(vinylidene fluoride) and Poly(vinyl pyrrolidone). ACS Applied Energy Materials, 2022, 5, 8812-8822.	2.5	4
536	Pseudo-concentrated electrolytes for lithium metal batteries. EScience, 2022, 2, 557-565.	25.0	51
537	Bioâ€Based Solid Electrolytes Bearing Cyclic Carbonates for Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	9
538	Highly Dispersed Antimony–Bismuth Alloy Encapsulated in Carbon Nanofibers for Ultrastable K-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6587-6596.	2.1	7
539	Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
540	Porous Electrode Modeling and its Applications to Liâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	50
541	Pathways towards Highâ€Performance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
542	Alloyâ€ T ype Anodes for Highâ€Performance Rechargeable Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
543	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122, 13043-13107.	23.0	59

#	Article	IF	CITATIONS
544	Threeâ€Component Solid Polymer Electrolytes Based on Liâ€Ion Exchanged Microporous Silicates and an Ionic Liquid for Solidâ€State Batteries. Advanced Engineering Materials, 2023, 25, .	1.6	5
545	Electrochemical Protocols to Assess the Effects of Dissolved Transition Metal in Graphite/LiNiO ₂ Cells Performance. Journal of the Electrochemical Society, 2022, 169, 070506.	1.3	6
546	Alloyâ€Type Anodes for Highâ€Performance Rechargeable Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
547	Enabling Highâ€Voltage "Superconcentrated Ionogelâ€inâ€Ceramic†Hybrid Electrolyte with Ultrahigh Ionic Conductivity and Single Li ⁺ â€Ion Transference Number. Advanced Materials, 2022, 34, .	11.1	50
548	Bridging Database and Experimental Analysis to Reveal Super-hydrodynamic Conductivity Scaling Regimes in Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 6039-6051.	1.2	7
549	Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule, 2022, 6, 2122-2137.	11.7	30
550	Controlling the Phase Separation of Dimethyl Carbonate Solvents Using a Dual-Cation System: Applications in High-Power Lithium Ion-Based Hybrid Capacitors. Journal of Physical Chemistry C, 2022, 126, 14389-14398.	1.5	4
551	Solvation Structures in Aqueous Metalâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	50
552	Nonâ€Flammable Ester Electrolyte with Boosted Stability Against Li for Highâ€Performance Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
553	Progress Towards Extended Cycle Life Si-based Anodes: Investigation of Fluorinated Local High Concentration Electrolytes. Journal of the Electrochemical Society, 2022, 169, 090501.	1.3	4
554	Recent strategies for improving the performance of ionic liquids as battery electrolytes. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100676.	3.2	1
555	Lithium-Ion Solvation Structure in Organic Carbonate Electrolytes at Low Temperatures. Journal of Physical Chemistry Letters, 2022, 13, 7881-7888.	2.1	9
556	Key Factor Determining the Cyclic Stability of the Graphite Anode in Potassium-Ion Batteries. ACS Nano, 2022, 16, 12511-12519.	7.3	25
557	Constructing Lowâ€6olvation Electrolytes for Nextâ€Generation Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	5
558	Nonâ€Flammable Ester Electrolyte with Boosted Stability Against Li for Highâ€Performance Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
559	Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nature Communications, 2022, 13, .	5.8	35
560	A High-Voltage Gel Electrolyte with a Low Salt Concentration for Quasi-Solid-State Flexible Supercapacitors. Energy & Fuels, 2022, 36, 9295-9302.	2.5	2
561	Polymer organic cathodes enable efficient desolvation for highly stable sodium-ion batteries. Journal of Power Sources, 2022, 546, 231962.	4.0	2

#	Article	IF	CITATIONS
562	Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52, 355-364.	9.5	46
563	Ultra-stable Li LiFePO4 batteries via advanced designing of localized high concentration electrolyte. Journal of Colloid and Interface Science, 2022, 628, 14-23.	5.0	11
564	An Electricâ€Fieldâ€Reinforced Hydrophobic Cationic Sieve Lowers the Concentration Threshold of Waterâ€Inâ€Salt Electrolytes. Advanced Materials, 2022, 34, .	11.1	15
565	Tripleâ€Function Electrolyte Regulation toward Advanced Aqueous Znâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	118
566	Ion Dynamics and Nanostructures of Diluted Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2022, 126, 16262-16271.	1.5	6
567	Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Research, 2023, 16, 8072-8081.	5.8	14
568	Rational design of electrolyte solvation structure for stable cycling and fast charging lithium metal batteries. Journal of Power Sources, 2022, 548, 232106.	4.0	9
569	Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548, 232045.	4.0	3
570	A Sulfolane-Based High-Voltage Electrolyte with Dispersed Aggregates for 5 V Batteries. SSRN Electronic Journal, 0, , .	0.4	0
571	Potassium-Enriched Graphite for Use as Stable Hybrid Anodes in High-Efficiency Potassium Batteries. SSRN Electronic Journal, 0, , .	0.4	0
572	Eco-friendly electrolytes <i>via</i> a robust bond design for high-energy Li metal batteries. Energy and Environmental Science, 2022, 15, 4349-4361.	15.6	53
573	Solid electrolytes for solid-state Li/Na–metal batteries: inorganic, composite and polymeric materials. Chemical Communications, 2022, 58, 12035-12045.	2.2	10
574	Unraveling the origin of reductive stability of super-concentrated electrolytes from first principles and unsupervised machine learning. Chemical Science, 2022, 13, 11570-11576.	3.7	6
575	Theoretical Consideration of Side Reactions between the VS ₄ Electrode and Carbonate Solvents in Lithium–metal Polysulfide Batteries. Electrochemistry, 2022, 90, 107002-107002.	0.6	2
576	Significance of Antisolvents on Solvation Structures Enhancing Interfacial Chemistry in Localized High-Concentration Electrolytes. ACS Central Science, 2022, 8, 1290-1298.	5.3	24
577	Controlling Interfacial Structural Evolution in Aqueous Electrolyte via Antiâ€Electrolytic Zwitterionic Waterproofing. Advanced Functional Materials, 2022, 32, .	7.8	7
578	Establish an Advanced Electrolyte/Graphite Interphase by an Ionic Liquid-Based Localized Highly Concentrated Electrolyte for Low-Temperature and Rapid-Charging Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 12023-12029.	3.2	8
579	Ionic Liquid-Type Additive for Lithium Metal Batteries Operated in LiPF ₆ Based-Electrolyte Containing 2500 ppm H ₂ O. ACS Applied Materials & Interfaces, 2022, 14, 41103-41113.	4.0	9

#	ARTICLE High Formability Bromide Solid Electrolyte with Improved Ionic Conductivity for Bulk-Type	IF 2.5	Citations 2
581	All-Solid-State Lithium–Metal Batteriés. ACS Applied Energy Materials, 2022, 5, 10604-10610. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Research, 2023, 16, 8055-8071.	5.8	2
582	Ion Dynamics in Concentrated Electrolyte Solutions: Relating Equilibrium Fluctuations of the Ions to Transport Properties in Battery Cells. Energy and Environmental Materials, 2024, 7, .	7.3	3
583	Rational Design of Functional Electrolytes Towards Commercial Dual″on Batteries. ChemSusChem, 2023, 16, .	3.6	7
584	"Waterâ€Saltâ€inâ€Deep Eutectic Solvent―Method to Optimize Conductivity, Viscosity and Freeze Resistar for Eutectic Electrolytes. Batteries and Supercaps, 2022, 5, .	^{1C} 2.4	1
585	Selfâ€Healing of Prussian Blue Analogues with Electrochemically Driven Morphological Rejuvenation. Advanced Materials, 2022, 34, .	11.1	20
586	Ion–Solvent Interplay in Concentrated Electrolytes Enables Subzero Temperature Li-Ion Battery Operations. ACS Applied Materials & Interfaces, 2022, 14, 41934-41944.	4.0	7
587	Thermal Runaway of Nonflammable Localized Highâ€Concentration Electrolytes for Practical LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Graphiteâ€SiO Pouch Cells. Advanced Science, 2022, 9, .	5.6	15
588	Local Volume Conservation in Concentrated Electrolytes Is Governing Charge Transport in Electric Fields. Journal of Physical Chemistry Letters, 2022, 13, 8761-8767.	2.1	15
589	Ion slippage through Li ⁺ -centered G-quadruplex. Science Advances, 2022, 8, .	4.7	1
590	Probing the Functionality of LiFSI Structural Derivatives as Additives for Li Metal Anodes. ACS Energy Letters, 2022, 7, 3378-3385.	8.8	12
591	50C Fastâ€Charge Liâ€lon Batteries using a Graphite Anode. Advanced Materials, 2022, 34, .	11.1	82
592	High-Voltage and Intrinsically Safe Sodium Metal Batteries Enabled by Nonflammable Fluorinated Phosphate Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 43387-43396.	4.0	7
593	Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries. Chinese Chemical Letters, 2023, 34, 107852.	4.8	7
594	Lithiumâ€Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Structures, 2022, 3, .	6.9	26
595	Insight mechanism of nano iron difluoride cathode material for high-energy lithium-ion batteries: a review. Journal of Solid State Electrochemistry, 2022, 26, 2601-2626.	1.2	2
596	Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44470-44478.	4.0	21
597	Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nature Communications, 2022, 13, .	5.8	27

#	Article	IF	CITATIONS
598	A novel scheme to improve the stability of conventional oncentration electrolyte at high voltage. Batteries and Supercaps, 0, , .	2.4	1
599	Constructing Stable Anionâ€Tuned Electrode/Electrolyte Interphase on Highâ€Voltage Na ₃ V ₂ (PO ₄) ₂ F ₃ Cathode for Thermallyâ€Modulated Fastâ€Charging Batteries. Angewandte Chemie, 2022, 134, .	1.6	0
600	Ultralean Electrolyte Li-S Battery by Avoiding Gelation Catastrophe. ACS Applied Materials & Interfaces, 2022, 14, 46457-46470.	4.0	4
601	An ultra-low concentration electrolyte with fluorine-free bulky anions for stable potassium metal batteries. Nano Research, 2023, 16, 8290-8296.	5.8	5
602	Li+ attraction-repulsion synergy revealed by in-situ Raman spectroscopy for self-healing lithium metal anodes. Applied Surface Science, 2023, 608, 155205.	3.1	1
603	Constructing Stable Anionâ€Tuned Electrode/Electrolyte Interphase on Highâ€Voltage Na ₃ V ₂ (PO ₄) ₂ F ₃ Cathode for Thermallyâ€Modulated Fastâ€Charging Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
604	Rejuvenating Propylene Carbonateâ€based Electrolyte Through Nonsolvating Interactions for Wideâ€Temperature Liâ€ions Batteries. Advanced Energy Materials, 2022, 12, .	10.2	40
605	Reconfiguring Sodium Intercalation Process of TiS ₂ Electrode for Sodium-Ion Batteries by a Partial Solvent Cointercalation. ACS Energy Letters, 2022, 7, 3718-3726.	8.8	8
606	A low-concentration all-fluorinated electrolyte for stable lithium metal batteries. Chemical Communications, 2022, 58, 12463-12466.	2.2	5
607	Towards the Intercalation and Lithium Plating Mechanism for High Safety and Fast-Charging Lithium-ion Batteries: A Review. , 0, 1, .		1
608	Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chinese Chemical Letters, 2023, 34, 107947.	4.8	37
609	Covalent Organic Frameworks for Ion Conduction. , 0, , .		2
610	First-Principles-Based Optimized Design of Fluoride Electrolytes for Sodium-Ion Batteries. Molecules, 2022, 27, 6949.	1.7	1
611	The Anionic Chemistry in Regulating the Reductive Stability of Electrolytes for Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
612	A Sustainable NH ₄ ⁺ Ion Battery by Electrolyte Engineering. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
613	A Sustainable NH4+ Ion Battery by Electrolyte Engineering. Angewandte Chemie, 0, , .	1.6	4
614	The Anionic Chemistry in Regulating the Reductive Stability of Electrolytes for Lithium Metal Batteries. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
617	Solvating power regulation enabled low concentration electrolyte for lithium batteries. Science Bulletin, 2022, 67, 2235-2244.	4.3	11
618	Predicting Electrolyte Conductivity Directly from Molecular-Level Interactions. ACS Energy Letters, 2022, 7, 4061-4070.	8.8	3
619	Locking Active Li Metal through Localized Redistribution of Fluoride Enabling Stable Liâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	26
620	Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal batteryÂwith commercial mass loading highâ€nickel NMC and thin anodes. , 2023, 5, .		9
621	A dilute fluorine-free electrolyte design for high-voltage hybrid aqueous batteries. Journal of Energy Chemistry, 2023, 77, 180-190.	7.1	1
622	Locally Concentrated Ionic Liquid Electrolyte with Partially Solvating Diluent for Lithium/Sulfurized Polyacrylonitrile Batteries. Advanced Materials, 2022, 34, .	11.1	17
623	Electrolyte design for rechargeable anion shuttle batteries. EScience, 2022, 2, 573-590.	25.0	18
625	Sensitivity analysis methodology for battery degradation models. Electrochimica Acta, 2023, 439, 141430.	2.6	6
626	Temperature Dependency of Ion Transport in Highly Concentrated Li Salt/Sulfolane Electrolyte Solutions. Journal of Physical Chemistry C, 2022, 126, 19084-19090.	1.5	8
627	Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes. Nano Energy, 2022, 104, 107881.	8.2	33
628	Lithium salt-concentrated organogels prepared via one-step polymer network formation in acetonitrile-based solutions. Polymer, 2022, 262, 125426.	1.8	0
629	The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries. Journal of Electroanalytical Chemistry, 2022, 926, 116935.	1.9	16
630	Potassium-enriched graphite for use as stable hybrid anodes in high-efficiency potassium batteries. Carbon, 2023, 201, 1030-1037.	5.4	10
631	Electrochemical energy storage part II: hybrid and future systems. , 2023, , 595-617.		2
632	A solvent molecule reconstruction strategy enabling a high-voltage ether-based electrolyte. Energy and Environmental Science, 2022, 15, 5350-5361.	15.6	20
633	From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives. Energy and Environmental Science, 2023, 16, 11-52.	15.6	35
634	Enhancing the reversibility of Li deposition/dissolution in sulfur batteries using high-concentration electrolytes to develop anode-less batteries with lithium sulfide cathode. Journal of Power Sources, 2023, 554, 232323.	4.0	5
635	A sulfolane-based high-voltage electrolyte with dispersed aggregates for 5ÂV batteries. Energy Storage Materials, 2023, 54, 641-650.	9.5	8

#	Article	IF	CITATIONS
636	Sulfamate-Derived Solid Electrolyte Interphase for Reversible Aqueous Zinc Battery. ACS Energy Letters, 2022, 7, 4459-4468.	8.8	36
637	Hydrofluoroether Diluted Dualâ€Saltsâ€Based Electrolytes for Lithiumâ€Sulfur Batteries with Enhanced Lithium Anode Protection. Small, 2022, 18, .	5.2	6
638	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
639	Reducing Intrinsic Drawbacks of Ni-rich Layered Oxide Cathode Materials with a Dry Coating Concept of Quasi-solid Nanomaterials towards High-performance Cylindrical Li-ion Batteries. Journal of the Electrochemical Society, 2022, 169, 110532.	1.3	2
640	PEMODELAN BATERAI AIR GARAM DAN PENGUJIAN SALINITAS ELEKTROLIT BERBASIS PLC. Jurnal ELTIKOM, 2022, 6, 226-238.	0.1	0
641	Low-Cost and Scalable Synthesis of High-Purity Li ₂ S for Sulfide Solid Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 15365-15371.	3.2	6
642	Molecular/Ionic Designs in the Electrolyte and Interphases for Lithium Metal Anode. Batteries and Supercaps, 2023, 6, .	2.4	4
643	Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. Advanced Materials, 2023, 35, .	11.1	2
644	Regulating Solvation Structures Enabled by the Mesoporous Material MCM-41 for Rechargeable Lithium Metal Batteries. ACS Nano, 2022, 16, 20891-20901.	7.3	10
645	Effects of the electrolyte concentration on the nature of the SEI of a lithium metal electrode. Energy Technology, 0, , .	1.8	1
646	Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 689-712.	9.5	11
647	Nonflammable dual-salt localized high-concentration electrolyte for graphite/LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries: Li+ solvation structure and interphase. Journal of Power Sources, 2023, 555, 232392.	4.0	5
648	Enhanced ion conductivity of "water-in-salt―electrolytes by nanochannel membranes. Journal of Materials Chemistry A, 2023, 11, 1394-1402.	5.2	7
649	Modified lithium metal anode <i>via</i> anion-planting protection mechanisms for dendrite-free long-life lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 2754-2768.	5.2	7
650	Dipole–dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design. Energy and Environmental Science, 2023, 16, 546-556.	15.6	33
651	From sparingly solvating to weakly solvating: Fine electrolyte regulation for lean-electrolyte Li-SeS2 batteries. Energy Storage Materials, 2023, 55, 272-278.	9.5	6
652	The role of ion solvation in lithium mediated nitrogen reduction. Journal of Materials Chemistry A, 0, , .	5.2	17
653	Insight into poly(1,3-dioxolane)-based polymer electrolytes and their interfaces with lithium Metal: Effect of electrolyte compositions. Chemical Engineering Journal, 2023, 455, 140931.	6.6	2

#	Article	IF	CITATIONS
654	Ionic liquid crystal electrolytes: Fundamental, applications and prospects. Nano Energy, 2023, 106, 108087.	8.2	23
655	Molecular insight into nano-heterogeneity of localized high-concentration electrolyte: Correlation with lithium dynamics and solid-electrolyte interphase formation. Journal of Power Sources, 2023, 557, 232545.	4.0	3
656	An electrochemical evaluation of state-of-the-art non-flammable liquid electrolytes for high-voltage lithium-ion batteries. Journal of Power Sources, 2023, 556, 232412.	4.0	9
657	Clarifying the Relationship between the Lithium Deposition Coverage and Microstructure in Lithium Metal Batteries. Journal of the American Chemical Society, 2022, 144, 21961-21971.	6.6	21
658	Magnesium Bis(Oxalate)Borate as a Potential Electrolyte for Rechargeable Magnesium Ion Batteries. Journal of Electronic Materials, 2023, 52, 1250-1257.	1.0	6
659	Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. Journal of Energy Chemistry, 2023, 78, 71-79.	7.1	26
660	Is Nonflammability of Electrolyte Overrated in the Overall Safety Performance of Lithium Ion Batteries? A Sobering Revelation from a Completely Nonflammable Electrolyte. Advanced Energy Materials, 2023, 13, .	10.2	19
661	Solvent Reorganization and Additives Synergistically Enable High-Performance Na-Ion Batteries. ACS Energy Letters, 2023, 8, 477-485.	8.8	6
662	The Anion-Dominated Dynamic Coordination Field in the Electrolytes for High-Performance Lithium Metal Batteries. Energy Storage Materials, 2023, 55, 773-781.	9.5	17
663	Concentrated electrolytes for rechargeable lithium metal batteries. Materials Futures, 2023, 2, 012101.	3.1	18
664	Nonflammable Dual-Salt Electrolytes for Graphite/LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Lithium-Ion Batteries: Li ⁺ Solvation Structure and Electrode/Eelectrolyte Interphase. ACS Applied Energy Materials, 2022, 5, 15491-15501.	2.5	3
665	Tailored Solvation and Interface Structures by Tetrahydrofuranâ€Derived Electrolyte Facilitates Ultralow Temperature Lithium Metal Battery Operations. ChemSusChem, 2023, 16, .	3.6	5
666	Lithium polymer electrolytes for novel batteries application: the review perspective. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	14
667	Thiolate-Based Electrolytes with Anion-Dominated Solvation for Highly Stable Lithium Metal Batteries. Journal of Physical Chemistry C, 2022, 126, 21181-21187.	1.5	3
668	A strategic way of high-performance energy storage device development with environmentally viable "Water-in-salt―electrolytes. Journal of Energy Chemistry, 2023, 78, 350-373.	7.1	9
669	Lithiophilic Wetting Agent Inducing Interfacial Fluorination for Longâ€Lifespan Anodeâ€Free Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	15
670	Molecular-Resolution Imaging of Interfacial Solvation of Electrolytes for Lithium-Ion Batteries by Frequency Modulation Atomic Force Microscopy. Nano Letters, 2022, 22, 9907-9913.	4.5	1
671	Recent advances in urban green energy development towards carbon emissions neutrality. Energy, 2023, 267, 126502.	4.5	32

#	Article	IF	CITATIONS
672	Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes. Nature Nanotechnology, 2023, 18, 243-249.	15.6	27
673	High-donor electrolyte endows graphite with anion-derived interphase to achieve stable K-storage. Science China Materials, 2023, 66, 932-943.	3.5	1
674	Solvation Structures in Electrolyte and the Interfacial Chemistry for Na-Ion Batteries. ACS Energy Letters, 2022, 7, 4501-4503.	8.8	8
675	Deciphering the effects of electrolyte concentration on the performance of lithium batteries by correlative surface characterization. Journal of Chemical Physics, 2022, 157, 224203.	1.2	0
676	QC and MD Modelling for Predicting the Electrochemical Stability Window of Electrolytes: New Estimating Algorithm. Batteries, 2022, 8, 292.	2.1	3
677	A Liquid Crystal Ionomerâ€Type Electrolyte toward Orderingâ€Induced Regulation for Highly Reversible Zinc Ion Battery. Advanced Science, 2023, 10, .	5.6	11
678	Recent progress on lithium anode protection for lithium–sulfur batteries: Review and perspective. APL Materials, 2023, 11, .	2.2	9
679	A tailored electrolyte for safe and durable potassium ion batteries. Energy and Environmental Science, 2023, 16, 305-315.	15.6	90
680	Does Li-ion transport occur rapidly in localized high-concentration electrolytes?. Physical Chemistry Chemical Physics, 2023, 25, 3092-3099.	1.3	9
681	High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant. Chemical Science, 2023, 14, 1184-1193.	3.7	15
682	Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nature Communications, 2023, 14, .	5.8	47
683	From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries. Science China Chemistry, 2024, 67, 276-290.	4.2	2
684	Influence of Water on Gel Electrolytes for Zincâ€ion Batteries. Chemistry - an Asian Journal, 2023, 18, .	1.7	10
685	Suppressing the Shuttle Effects with FeCo/SPAN Cathodes and High-Concentration Electrolytes for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2023, 6, 795-801.	2.5	4
686	Studying δ-MnO2/reduced graphene oxide composite cathode in a low-temperature and high-voltage-tolerant hybrid electrolyte for aqueous Mg-ion batteries. 2D Materials, 0, , .	2.0	0
687	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
688	Durable semi-crystalline interphase engineering to stabilize high voltage Ni-rich cathode in dilute ether electrolyte. Journal of Energy Chemistry, 2023, 79, 110-117.	7.1	4
689	Hydrofluoric Acidâ€Removable Additive Optimizing Electrode Electrolyte Interphases with Li ⁺ Conductive Moieties for 4.5ÂV Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	20

	Cr	CITATION REPORT	
#	Article	IF	CITATIONS
690	Spatially resolved structural order in low-temperature liquid electrolyte. Science Advances, 2023, 9, .	4.7	12
691	Correlating the Formation Protocols of Solid Electrolyte Interphases with Practical Performance Metrics in Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 869-877.	8.8	14
692	A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Research, 2023, 2 8097-8138.	16, 5.8	36
693	Effect of a Weak Coordination Solvent on a Kinetically Favorable Electrode Reaction in Concentrated Lithium-Ion Battery Electrolytes. ACS Applied Energy Materials, 2023, 6, 989-996.	2.5	2
694	Long-cycling High-voltage lithium metal batteries enabled by Anion-concentrated plastic crystal electrolytes. Chemical Engineering Journal, 2023, 461, 141382.	6.6	1
695	Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Materials, 2023, 56, 141-154.	9.5	11
696	Non-concentrated electrolyte with weak anion coordination enables low Li-ion desolvation energy for low-temperature lithium batteries. Chemical Engineering Journal, 2023, 457, 141273.	6.6	5
697	High-performance lithium metal batteries enabled by fluorinated aromatic diluent assisted nonflammable localized high-concentration electrolytes. Journal of Power Sources, 2023, 559, 23263	1. 4.0	5
698	Structure–Dynamics Interrelation Governing Charge Transport in Cosolvated Acetonitrile/LiTFSI Solutions. Journal of Physical Chemistry B, 2023, 127, 308-320.	1.2	2
699	Revealing the Multifunctions of Li ₃ N in the Suspension Electrolyte for Lithium Metal Batteries. ACS Nano, 2023, 17, 3168-3180.	7.3	38
700	Urea-Based Deep Eutectic Solvent with Magnesium/Lithium Dual Ions as an Aqueous Electrolyte for High-Performance Battery-Supercapacitor Hybrid Devices. Batteries, 2023, 9, 69.	2.1	3
701	Unveiling the dynamic Li ⁺ –solvent interaction evolution in lithium metal batteries. Chemical Communications, 0, , .	2.2	0
702	Improved Cycling of Li NMC811 Batteries under Practical Conditions by a Localized High oncentration Electrolyte. Small, 2023, 19, .	5.2	2
703	Entropyâ€Ðriven Liquid Electrolytes for Lithium Batteries. Advanced Materials, 2023, 35, .	11.1	20
704	A comparative analysis of the influence of hydrofluoroethers as diluents on solvation structure and electrochemical performance in non-flammable electrolytes. Journal of Materials Chemistry A, 2023, 11, 4111-4125.	5.2	8
705	Enabling Highly Reversible Zn Anode by Multifunctional Synergistic Effects of Hybrid Solute Additives. ACS Energy Letters, 2023, 8, 1192-1200.	8.8	45
706	Anionic Effects on Li-Ion Activity and Li-Ion Intercalation Reaction Kinetics in Highly Concentrated Li Salt/Propylene Carbonate Solutions. Journal of Physical Chemistry C, 2023, 127, 3977-3987.	1.5	7
707	A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30

#	Article	IF	Citations
708	Unveiling the Critical Role of Ion Coordination Configuration of Ether Electrolytes for High Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
709	Stabilization strategies for high-capacity NCM materials targeting for safety and durability improvements. ETransportation, 2023, 16, 100233.	6.8	4
710	Identification of Potential Electrolyte Additives via Density Functional Theory Analysis. ChemistrySelect, 2023, 8, .	0.7	0
711	In-situ construction of high-mechanical-strength and fast-ion-conductivity interphase for anode-free Li battery. Journal of Energy Chemistry, 2023, 80, 207-214.	7.1	10
712	Boron nitride as an "all-in-one―gelator to immobilize concentrated sulfone electrolyte towards high performance lithium metal batteries. Energy Storage Materials, 2023, 59, 102753.	9.5	1
713	A nonflammable diethyl ethylphosphonate-based electrolyte improved by synergistic effect of lithium difluoro(oxalato)borate and fluoroethylene carbonate. Journal of Power Sources, 2023, 570, 233051.	4.0	0
714	Terminally fluorinated glycol ether electrolyte for lithium metal batteries. Nano Energy, 2023, 110, 108335.	8.2	4
715	Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5Mn1.5O4 cathode. Journal of Energy Chemistry, 2023, 81, 404-409.	7.1	4
716	Outstanding performances of graphite NMC622 pouch cells enabled by a non-inert diluent. Journal of Energy Chemistry, 2023, 81, 593-602.	7.1	7
717	Molecular Design of Asymmetric Cyclophosphamide as Electrolyte Additive for High-Voltage Lithium-Ion Batteries. ACS Energy Letters, 2023, 8, 2241-2251.	8.8	6
718	Strategies and practical approaches for stable and high energy density sodium-ion battery: a step closer to commercialization. Materials Today Sustainability, 2023, 22, 100385.	1.9	6
719	Chemical decomposition pathway of residual lithium carbonate of Li-ion battery cathodes. Journal of Power Sources, 2023, 560, 232699.	4.0	4
720	Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook. Advanced Energy Materials, 2023, 13, .	10.2	98
721	Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. Journal of Energy Chemistry, 2023, 79, 201-210.	7.1	7
722	Electrolytes for Batteries. , 2022, , 1-24.		0
723	Hybrid quantum-classical model of mechano-electrochemical effects on graphite-electrolyte interfaces in metal-ion batteries. Extreme Mechanics Letters, 2023, 59, 101971.	2.0	1
724	Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nature Reviews Chemistry, 2023, 7, 184-201.	13.8	15
725	Deciphering reduction stability of sulfone and fluorinated sulfone electrolytes:Insight from quantum chemical calculations. Chemical Physics, 2023, 568, 111840.	0.9	2

#	Article	IF	Citations
726	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	23.0	57
727	Achieving Highâ€Power and Dendriteâ€Free Lithium Metal Anodes via Interfacial Ionâ€Transportâ€Rectifying Pump. Advanced Energy Materials, 2023, 13, .	10.2	18
728	Suppressing Hydrogen Evolution via Anticatalytic Interfaces toward Highly Efficient Aqueous Zn-Ion Batteries. ACS Nano, 2023, 17, 3948-3957.	7.3	34
729	Opportunity for eutectic mixtures in metal-ion batteries. Trends in Chemistry, 2023, 5, 214-224.	4.4	10
730	Design Criteria of Dilute Ether Electrolytes toward Reversible and Fast Intercalation Chemistry of Graphite Anode in Li-Ion Batteries. ACS Energy Letters, 2023, 8, 1379-1389.	8.8	13
731	<i>In situ</i> formed uniform and elastic SEI for high-performance batteries. Energy and Environmental Science, 2023, 16, 1166-1175.	15.6	67
732	Recent progress in electrolyte design for advanced lithium metal batteries. SmartMat, 2023, 4, .	6.4	13
733	A localized high concentration carboxylic ester-based electrolyte for high-voltage and low temperature lithium batteries. Chemical Engineering Journal, 2023, 461, 141904.	6.6	7
734	Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nature Communications, 2023, 14, .	5.8	47
735	Enhanced Anionâ€Derived Inorganicâ€Dominated Solid Electrolyte Interphases for Highâ€Rate and Stable Sodium Storage. Energy and Environmental Materials, 2023, 6, .	7.3	2
736	Solvent versus Anion Chemistry: Unveiling the Structure-Dependent Reactivity in Tailoring Electrochemical Interphases for Lithium-Metal Batteries. Jacs Au, 2023, 3, 953-963.	3.6	14
737	Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery. Chemical Engineering Journal, 2023, 461, 141995.	6.6	7
738	(Localized) Highly Concentrated Electrolytes for Calcium Batteries. Batteries and Supercaps, 2023, 6, .	2.4	4
739	Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy Storage Materials, 2023, 57, 371-399.	9.5	12
740	Tailoring solvation chemistry in carbonate electrolytes for all-climate, high-voltage lithium-rich batteries. Energy Storage Materials, 2023, 57, 316-325.	9.5	13
741	Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nature Communications, 2023, 14, .	5.8	67
742	Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of Highâ€Energy Batteries. Advanced Energy Materials, 2023, 13, .	10.2	22
743	Data-driven electrolyte design for lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	21

#	Article	IF	CITATIONS
744	A perspective on the role of anions in highly concentrated aqueous electrolytes. Energy and Environmental Science, 2023, 16, 1480-1501.	15.6	37
745	An In-Situ Low Temperature-Mechanical Coupling Test System for Battery Materials. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-9.	2.4	3
746	Phase Behaviors and Ion Transport Properties of LiN(SO ₂ CF ₃) ₂ /Sulfone Binary Mixtures. Electrochemistry, 2023, 91, 037008-037008.	0.6	3
747	Atomic Insights into Advances and Issues in Lowâ€Temperature Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	22
748	Strongly Solvating Ether Electrolytes for High-Voltage Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 13155-13164.	4.0	5
749	Understanding the Electrochemical and Interfacial Behavior of Sulfolane based Electrolyte in LiNi _{0.5} Mn _{1.5} O ₄ â€Graphite Fullâ€Cells. Batteries and Supercaps, 2023, 6, .	2.4	2
750	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
751	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie, 2023, 135, .	1.6	2
752	Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nature Communications, 2023, 14, .	5.8	28
753	Design of Localized High-Concentration Electrolytes via Donor Number. ACS Energy Letters, 2023, 8, 1723-1734.	8.8	21
754	Li-metal anode of fixed volume located behind current collector for safe li storage. Journal of Energy Storage, 2023, 63, 107119.	3.9	0
755	The evolution of anionic nanoclusters at the electrode interface in water-in-salt electrolytes. Physical Chemistry Chemical Physics, 2023, 25, 10301-10312.	1.3	0
756	Challenges and strategies of formulating lowâ€ŧemperature electrolytes in lithiumâ€ion batteries. , 2023, 2, 308-336.		14
757	Distinct Differences in Li-Deposition/Dissolution Reversibility in Sulfolane-Based Electrolytes Depending on Li-Salt Species and Their Solvation Structures. Journal of Physical Chemistry C, 2023, 127, 5689-5701.	1.5	5
758	Cyclopentylmethyl Ether, a Nonâ€Fluorinated, Weakly Solvating and Wide Temperature Solvent for Highâ€Performance Lithium Metal Battery. Angewandte Chemie, 2023, 135, .	1.6	1
759	Unlocking the Polarization and Reversibility Limitations for Stable Lowâ€Temperature Lithium Metal Anodes. Small Structures, 2023, 4, .	6.9	10
760	Cyclopentylmethyl Ether, a Nonâ€Fluorinated, Weakly Solvating and Wide Temperature Solvent for Highâ€Performance Lithium Metal Battery. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
761	Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode. Particuology, 2024, 84, 89-97.	2.0	11

#	Article	IF	CITATIONS
762	Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochemical Energy Reviews, 2023, 6, .	13.1	25
763	Revealing Structural Insights of Solid Electrolyte Interphase in Highâ€Concentrated Nonâ€Flammable Electrolyte for Li Metal Batteries by Cryoâ€TEM. Small, 2023, 19, .	5.2	4
764	Hydrodynamic interactions in ion transport—Theory and simulation. Journal of Chemical Physics, 2023, 158, .	1.2	0
765	Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO ₂ chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
766	Electrolyte science, what's next?. , 2023, 1, 100014.		2
767	Anion type-dependent confinement effect on glass transitions of solutions of LiTFSI and LiFSI. Chinese Physics B, 0, , .	0.7	0
768	Unveiling the Critical Role of Ion Coordination Configuration of Ether Electrolytes for High Voltage Lithium Metal Batteries. Angewandte Chemie, 0, , .	1.6	0
769	Anomalous Inferior Zn Anode in Highâ€Concentration Electrolyte: Leveraging Solidâ€Electrolyteâ€Interface for Stabilized Cycling of Aqueous Znâ€Metal Batteries. ChemSusChem, 2023, 16, .	3.6	3
770	Competitive Solvation-Induced Interphases Enable Highly Reversible Zn Anodes. ACS Energy Letters, 2023, 8, 2086-2096.	8.8	34
771	Achieving Rapid Ultralow-Temperature Ion Transfer via Constructing Lithium–Anion Nanometric Aggregates to Eliminate Li ⁺ –Dipole Interactions. Nano Letters, 2023, 23, 3181-3188.	4.5	3
772	Ultrarapid Nanomanufacturing of Highâ€Quality Bimetallic Anode Library toward Stable Potassiumâ€lon Storage. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
773	Ultrarapid Nanomanufacturing of Highâ€Quality Bimetallic Anode Library toward Stable Potassiumâ€lon Storage. Angewandte Chemie, 2023, 135, .	1.6	1
774	Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nature Communications, 2023, 14, .	5.8	32
775	Highly Oxidationâ€Resistant Ether Gel Electrolytes for 4.7ÂV Highâ€Safety Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	7
776	Novel nanoarchitecture of 3D ion transfer channel containing nanocomposite solid polymer electrolyte membrane based on holey graphene oxide and chitosan biopolymer. Chemical Engineering Journal, 2023, 466, 143159.	6.6	5
806	Recent advances of structural/interfacial engineering for Na metal anode protection in liquid/solid-state electrolytes. Nanoscale, 0, , .	2.8	1
811	Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach. Chemical Reviews, 2023, 123, 8718-8735.	23.0	12
835	Recent progress in nonflammable electrolytes and cell design for safe Li-ion batteries. Journal of Materials Chemistry A, 2023, 11, 15576-15599.	5.2	3

		CITATION REPORT		
#	Article		IF	Citations
846	Anodic instability of carbon in non-alkaline Zn–air batteries. Chemical Communication	ıs, 0, , .	2.2	1
847	Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable Chemical Society Reviews, 2023, 52, 5255-5316.	e batteries.	18.7	24
871	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials A, 0, , .	Chemistry	5.2	0
872	Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chemical Science, 2023, 14, 9996-10024.	đ	3.7	6
873	lonic liquids in the scope of lithium-ion batteries: from current separator membranes to generation sustainable solid polymer electrolytes. Materials Chemistry Frontiers, 2023,	next 7, 5046-5062.	3.2	1
882	Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Na 2024, 17, 1441-1464.	ano Research,	5.8	3
891	Recent status, key strategies and challenging perspectives of fast-charging graphite and lithium-ion batteries. Energy and Environmental Science, 2023, 16, 4834-4871.	odes for	15.6	14
911	Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High Li-Ion Batteries. Nano-Micro Letters, 2024, 16, .	n-Performance	14.4	0
916	Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries. Letters, 2024, 16, .	Nano-Micro	14.4	7
919	From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Dev Nano-Micro Letters, 2024, 16, .	elopments.	14.4	1
929	Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries. Ele Energy Reviews, 2023, 6, .	ectrochemical	13.1	1
931	Fluorination in advanced battery design. Nature Reviews Materials, 2024, 9, 119-133.		23.3	2
972	A comprehensive review of various carbonaceous materials for anodes in lithium-ion bar Dalton Transactions, 2024, 53, 4900-4921.	teries.	1.6	0
978	Interfacial chemistry regulation using functional frameworks for stable metal batteries. Materials Chemistry A, 2024, 12, 5080-5099.	Journal of	5.2	0
986	Recent advances in electrolyte molecular design for alkali metal batteries. Chemical Scie 4238-4274.	ence, 2024, 15,	3.7	0
1008	High-concentration Electrolytes for Rechargeable Batteries. , 2024, , 293-328.			0
1009	Aqueous and Non-aqueous Electrolytes for Li-ion Batteries. , 2024, , 9-38.			0
1013	Lithium batteries - Secondary systems – Lithium-metal systems Electrolytes: Overvio	ew. , 2023, , .		0

ARTICLE

IF CITATIONS