A review on mercury in coal combustion process: Conte transformation, sampling methods, emission and contr

Progress in Energy and Combustion Science 73, 26-64 DOI: 10.1016/j.pecs.2019.02.001

Citation Report

#	Article	IF	CITATIONS
1	Investigation of Elemental Mercury Removal from Coal-Fired Boiler Flue Gas over MIL101-Cr. Energy & Fuels, 2019, 33, 8864-8875.	2.5	15
2	Emission and Migration Characteristics of Mercury in a 0.3 MWth CFB Boiler with Ammonium Bromide-Modified Rice Husk Char Injection into Flue. Energy & Fuels, 2019, 33, 7578-7586.	2.5	4
3	Insights into Efficient Removal of Gaseous Hg ⁰ using AglO ₃ -Modified BiOl/CoFe ₂ O ₄ Composites through Photocatalytic Oxidation. Energy & Fuels, 2019, 33, 12538-12548.	2.5	19
4	Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases. Mathematics, 2019, 7, 965.	1.1	45
5	Transformation and Migration of Mercury during Chemical-Looping Gasification of Coal. Industrial & Engineering Chemistry Research, 2019, 58, 20481-20490.	1.8	32
6	Using H2S plasma to modify activated carbon for elemental mercury removal. Fuel, 2019, 254, 115549.	3.4	44
7	Study of Mercury-Removal Performance of Mechanical–Chemical-Brominated Coal-Fired Fly Ash. Energy & Fuels, 2019, 33, 6670-6677.	2.5	27
8	Mercury in natural gas streams: A review of materials and processes for abatement and remediation. Journal of Hazardous Materials, 2020, 382, 121036.	6.5	49
9	In Situ Decoration of Selenide on Copper Foam for the Efficient Immobilization of Gaseous Elemental Mercury. Environmental Science & Technology, 2020, 54, 2022-2030.	4.6	96
10	A novel, anthracene-based naked eye probe for detecting Hg2+ ions in aqueous as well as solid state media. Microchemical Journal, 2020, 153, 104508.	2.3	17
11	Seawater-assisted synthesis of MnCe/zeolite-13X for removing elemental mercury from coal-fired flue gas. Fuel, 2020, 262, 116605.	3.4	37
12	Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China. Renewable and Sustainable Energy Reviews, 2020, 134, 110353.	8.2	14
13	Study on Preparation and Mercury Adsorption Characteristics of Columnar Sulfur-Impregnated Activated Petroleum Coke. Energy & Fuels, 2020, 34, 10740-10751.	2.5	17
14	Study on Mercury Species in Coal and Pyrolysis-Based Mercury Removal before Utilization. ACS Omega, 2020, 5, 20215-20223.	1.6	7
15	Review on Magnetic Adsorbents for Removal of Elemental Mercury from Flue Gas. Energy & Fuels, 2020, 34, 13473-13490.	2.5	51
16	Removal of Mercury from Simulated Natural Gas by SO ₂ Activated Petroleum Coke. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012126.	0.3	2
17	Effect of atmosphere of SO2 coexisted with oxidizing gas on mercury removal under oxy-fuel condition. Chemosphere, 2020, 259, 127525.	4.2	13
18	A comprehensive exploration of mercury adsorption sites on the carbonaceous surface: A DFT study. Fuel, 2020, 282, 118781.	3.4	34

#	Article	IF	CITATIONS
19	NH ₄ Br-Modified Biomass Char for Mercury Removal in a Simulated Oxy-fuel Atmosphere: Mechanism Analysis by X-ray Photoelectron Spectroscopy. Energy & Fuels, 2020, 34, 9872-9884.	2.5	11
20	Electrochemical removal of gaseous elemental mercury in liquid phase with a novel foam titanium-based DSA anode. Separation and Purification Technology, 2020, 250, 117162.	3.9	21
21	Continuous Generation of HgCl ₂ by DBD Nonthermal Plasma. Part I: Influences of the DBD Reactor Structure and Operational Parameters. Industrial & Engineering Chemistry Research, 2020, 59, 13396-13405.	1.8	9
22	Continuous Generation of HgCl2 by Dielectric Barrier Discharge Nonthermal Plasma. Part II: Influences of the Cl Source. Industrial & Engineering Chemistry Research, 2020, 59, 13406-13413.	1.8	2
23	Review on the Current Status of the Co-combustion Technology of Organic Solid Waste (OSW) and Coal in China. Energy & Fuels, 2020, 34, 15448-15487.	2.5	45
24	Flue Gas Hg ⁰ Removal by FeCl ₃ -Impregnated LTA and MFI Zeolites: Influences of Topology and Cation Sites. Energy & Fuels, 2020, 34, 9903-9913.	2.5	11
25	Nanosized Zn–In Spinel-Type Sorbents for Elemental Mercury Removal from Flue Gas. Energy & Fuels, 2020, 34, 12853-12859.	2.5	16
26	Advances in magnetically recyclable remediators for elemental mercury degradation in coal combustion flue gas. Journal of Materials Chemistry A, 2020, 8, 18624-18650.	5.2	10
27	Mercury Removal Based on Adsorption and Oxidation by Fly Ash: A Review. Energy & Fuels, 2020, 34, 11840-11866.	2.5	36
28	Effect of Mechanical–Chemical Modification Process on Mercury Removal of Bromine Modified Fly Ash. Energy & Fuels, 2020, 34, 9829-9839.	2.5	22
29	Determination of mercury thermospecies in South African coals in the enhancement of mercury removal by pre-combustion technologies. Scientific Reports, 2020, 10, 19282.	1.6	6
30	Experimental Investigation of the Hydrate-Based Gas Separation of Synthetic Flue Gas with 5A Zeolite. Energies, 2020, 13, 4556.	1.6	5
31	The Variability of Mercury Content in Bituminous Coal Seams in the Coal Basins in Poland. Resources, 2020, 9, 127.	1.6	2
32	An overview of mercury emissions in the energy industry - A step to mercury footprint assessment. Journal of Cleaner Production, 2020, 267, 122087.	4.6	43
33	Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas. Fuel Processing Technology, 2020, 206, 106467.	3.7	26
34	Mercury-bearing wastes: Sources, policies and treatment technologies for mercury recovery and safe disposal. Journal of Environmental Management, 2020, 270, 110945.	3.8	33
35	Ultra-low loading of Ag2CrO4 on BiOI/CoFe2O4 microsphere with p-n heterojunction: Highly improved photocatalytic performance for Hg0 removal and mechanism insight. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112543.	2.0	15
36	Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques. Molecules, 2020, 25, 2661.	1.7	32

#	Article	IF	CITATIONS
37	Controllable design of bismuth oxyiodides by in-situ self-template phase transformation and heterostructure construction for photocatalytic removal of gas-phase mercury. Materials Research Bulletin, 2020, 131, 110968.	2.7	18
38	High mercury emission (both forms: HgO and Hg2+) from the wet scrubber in a full-scale lignite-fired power plant. Fuel, 2020, 270, 117491.	3.4	19
40	Valorization Method for Hard Coal as Fuel for Nonindustrial Combustion Installations with Special Regard to Reduction of Mercury Content. Energy & Fuels, 2020, 34, 2980-2988.	2.5	7
41	Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant. Energies, 2020, 13, 1040.	1.6	8
42	Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel, 2020, 279, 118542.	3.4	37
43	Mercury Sorbents Made By Inverse Vulcanization of Sustainable Triglycerides: The Plant Oil Structure Influences the Rate of Mercury Removal from Water. Advanced Sustainable Systems, 2020, 4, 1900111.	2.7	75
44	The effect of mechanical-chemical-brominated modification on physicochemical properties and mercury removal performance of coal-fired by-product. Fuel, 2020, 266, 117041.	3.4	31
45	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash: Part 5. Industrial scale studies at a 50ÂMWth coal-fired power plant. Fuel, 2020, 266, 117052.	3.4	30
46	Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation. Fuel, 2020, 275, 117921.	3.4	32
47	Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Progress in Energy and Combustion Science, 2020, 79, 100844.	15.8	145
48	Determination of mercury binding forms in humic substances of lignite. Fuel, 2020, 274, 117800.	3.4	12
49	Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study. Molecular Catalysis, 2020, 488, 110901.	1.0	16
50	A mechanism study on effects of bromide ion on mercury re-emission in WFGD slurry. Chemical Engineering Journal, 2021, 406, 127010.	6.6	6
51	Charge-distribution modulation of copper ferrite spinel-type catalysts for highly efficient Hg0 oxidation. Journal of Hazardous Materials, 2021, 402, 123576.	6.5	49
52	Mechanistic investigation of elemental mercury adsorption over silver-modified vanadium silicate: A DFT study. Journal of Hazardous Materials, 2021, 404, 124108.	6.5	17
53	Mercury emission from three lignite-fired power plants in the Czech Republic. Fuel Processing Technology, 2021, 212, 106628.	3.7	12
54	An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Processing Technology, 2021, 213, 106657.	3.7	113
55	Elemental mercury captureÂfrom industrial gas emissions using sulfides and selenides: a review. Environmental Chemistry Letters, 2021, 19, 1395-1411.	8.3	26

#	Article	IF	CITATIONS
56	Reduction of mercury emissions from anthropogenic sources including coal combustion. Journal of Environmental Sciences, 2021, 100, 363-368.	3.2	11
57	The effect of different morphology of fluoride-mediated TiO2 based on Ostwald ripening on photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125702.	2.3	13
58	Synergistic effects of Fe-Mn binary oxide for gaseous arsenic removal in flue gas. Ecotoxicology and Environmental Safety, 2021, 207, 111491.	2.9	30
59	Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal. Chemosphere, 2021, 263, 127920.	4.2	35
60	γ-Fe2O3 decorated attapulgite composite modified with CuCl2 as magnetically separable sorbents for Hg0 removal from coal combustion flue gas. Chemical Engineering Journal, 2021, 408, 127888.	6.6	41
61	Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Journal of the Air and Waste Management Association, 2021, 71, 553-563.	0.9	4
62	Shell-thickness-induced spontaneous inward migration of mercury in porous ZnO@CuS for gaseous mercury immobilization. Chemical Engineering Journal, 2021, 420, 127592.	6.6	28
63	Elemental mercury removal from coal-fired flue gas using recyclable magnetic Mn-Fe based attapulgite sorbent. Chemical Engineering Journal, 2021, 407, 127182.	6.6	105
64	Cost-effective sulfurized sorbents derived from one-step pyrolysis of wood and scrap tire for elemental mercury removal from flue gas. Fuel, 2021, 285, 119221.	3.4	40
65	An experimental and DFT study on enhanced elemental mercury removal performance via cerium chloride modified carbon aerogel: A synergistic effect between chemical adsorption and thermal catalysis. Chemical Engineering Journal, 2021, 425, 127344.	6.6	12
66	Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas. Fuel, 2021, 285, 119131.	3.4	47
67	Impact of gas impurities on the HgO oxidation on high iron and calcium coal ash for chemical looping combustion. Environmental Science and Pollution Research, 2021, 28, 46130-46146.	2.7	9
69	Effects of CO and CO ₂ on the Removal of Elemental Mercury over Carbonaceous Surfaces. ACS Omega, 2021, 6, 2916-2924.	1.6	7
70	An Experimental Study on Oxidized Mercury Adsorption by Bromide Blended Coal Combustion Fly Ash. Energy Engineering: Journal of the Association of Energy Engineers, 2021, 118, 1277-1286.	0.3	Ο
71	SO ₂ Tolerance and Mechanism of Elemental Mercury Removal from Flue Gas by a Magnetic Recyclable Fe ₆ Mn _{0.8} Ce _{0.2} O <i>_y</i> Sorbent. Energy & Fuels, 2021, 35, 5101-5109.	2.5	25
72	Spatial distribution of harmful trace elements in Chinese coalfields: An application of WebGIS technology. Science of the Total Environment, 2021, 755, 142527.	3.9	20
73	Mercury Removal from Flue Gas by Noncarbon Sorbents. Energy & Fuels, 2021, 35, 3581-3610.	2.5	60
74	Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review. Environmental Science & Technology, 2021, 55, 2743-2766.	4.6	117

#	Article	IF	CITATIONS
75	Soil mercury pollution caused by typical anthropogenic sources in China: Evidence from stable mercury isotope measurement and receptor model analysis. Journal of Cleaner Production, 2021, 288, 125687.	4.6	29
76	Adsorption of Gaseous Mercury for Engineering Optimization: From Macrodynamics to Adsorption Kinetics and Thermodynamics. ACS ES&T Engineering, 2021, 1, 865-873.	3.7	17
77	Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas. Fuel, 2021, 290, 120049.	3.4	36
78	Highly efficient sorption and immobilization of gaseous arsenic from flue gas on MnO2/attapulgite composite with low secondary leaching risks. Journal of Cleaner Production, 2021, 292, 126003.	4.6	14
79	Simultaneous sulfur dioxide and mercury removal during low-rank coal combustion by natural zeolite. Heliyon, 2021, 7, e07052.	1.4	11
80	Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere, 2021, 271, 129502.	4.2	51
81	A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China. Energies, 2021, 14, 3119.	1.6	2
82	Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: A review. Chemical Engineering Research and Design, 2021, 150, 578-593.	2.7	19
83	Influence of Feâ€modified Mn–Ce–Fe–Co–O x /P84 catalytic filter materials for lowâ€ŧemperature NO removal synergistic Hg 0 oxidation. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2677.	0.8	5
84	Review on Removal of SO ₂ , NO _{<i>x</i>} , Mercury, and Arsenic from Flue Gas Using Green Oxidation Absorption Technology. Energy & Fuels, 2021, 35, 9775-9794.	2.5	34
85	Behavior of mercury in chemical looping with oxygen uncoupling of coal. Fuel Processing Technology, 2021, 216, 106747.	3.7	13
86	Study of Sheetlike BiOI/Rodlike Bi ₅ O ₇ I Composite Photocatalyst by In Situ Crystallization of BiOI with pH-Dependence for Hg ^O Removal. Energy & amp; Fuels, 2021, 35, 11415-11426.	2.5	17
87	Mercury cycling during acid rain recovery at the forested LesnÃ-potok catchment, Czech Republic. Hydrological Processes, 2021, 35, e14255.	1.1	5
88	Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent. Chemosphere, 2021, 274, 129637.	4.2	25
89	Experimental and Kinetic Analysis of H ₂ O on Hg ⁰ Removal by Sorbent Traps in Oxy-combustion Atmosphere. Industrial & Engineering Chemistry Research, 2021, 60, 12200-12209.	1.8	12
90	Heterogeneous Reaction Mechanisms and Functional Materials for Elemental Mercury Removal from Industrial Flue Gas. ACS ES&T Engineering, 2021, 1, 1383-1400.	3.7	27
91	Effects of metal ions on Hg0 re-emission under air and oxy-fuel combustion atmospheres in a WFGD system. Fuel, 2021, 299, 120881.	3.4	3
92	Effect of Sonochemical Treatment on Thermal Stability, Elemental Mercury (Hg ^O) Removal, and Regenerable Performance of Magnetic Tea Biochar. ACS Omega, 2021, 6, 23913-23923.	1.6	15

#	Article	IF	CITATIONS
93	Review of hazardous materials in condensable particulate matter. Fuel Processing Technology, 2021, 220, 106892.	3.7	22
94	Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: A review. Journal of Hazardous Materials, 2021, 418, 126280.	6.5	82
95	Molecular structural characteristics of late Jurassic Shengli lignite submacerals. Journal of Solid State Chemistry, 2021, 303, 122462.	1.4	4
96	Elemental mercury capture from flue gas by magnetic recyclable Fe6Mn1-xCexOy sorbent. Part 1. Performance evaluation and regeneration. Fuel, 2021, 304, 120723.	3.4	17
97	Atomic-level mechanism of the effects of NOx species on Pb adsorption over the Al2O3 sorbent surface. Applied Surface Science, 2021, 570, 151217.	3.1	6
98	Single-atom Co-N-C catalyst for efficient Hg0 oxidation at low temperature. Chemical Engineering Journal, 2022, 428, 132660.	6.6	18
99	Mechanistic studies of carbocycles on elemental mercury adsorption on carbonaceous surface. Fuel, 2022, 309, 122101.	3.4	8
100	Mechanochemical bromination of unburned carbon in fly ash and its mercury removal mechanism: DFT study. Journal of Hazardous Materials, 2022, 423, 127198.	6.5	19
101	Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of the Total Environment, 2022, 804, 149985.	3.9	75
102	Research progress on petroleum coke for mercury removal from coal-fired flue gas. Fuel, 2022, 309, 122084.	3.4	22
103	Influence of Mo doping on mercury capture and SO2 tolerance of MoxFe6Mn1-xOy magnetic sorbent. Fuel, 2022, 308, 121980.	3.4	14
104	Mercury removal from coal-fired flue gas of high-sulfur petroleum coke activated by pyrolysis and mechanochemical method. Chemical Engineering Journal, 2022, 429, 132154.	6.6	25
105	Determination of Hg(II) based on the inhibited catalytic growth of surface-enhanced Raman scattering-active gold nanoparticles on a patterned hydrophobic paper substrate. Microchemical Journal, 2020, 157, 104983.	2.3	7
106	Effects of Ultralow-Emission Retrofitting on Mercury Emission from a Coal-Fired Power Plant. Energy & Fuels, 2020, 34, 7502-7508.	2.5	15
107	Characteristics of Mercury Re-emission and Migration in a Lab-Scale Wet Flue Gas Desulfurization Scrubber under Simulated Air and Oxy-Fuel Combustion Atmospheres. Energy & Fuels, 2020, 34, 16356-16365.	2.5	7
108	Chemical multi-fingerprinting of exogenous ultrafine particles in human serum and pleural effusion. Nature Communications, 2020, 11, 2567.	5.8	88
109	Removal of elemental mercury from flue gas using the magnetic attapulgite by Mn-Cu oxides modification. Environmental Science and Pollution Research, 2022, 29, 14058-14069.	2.7	10
110	Effect of a Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash. Part 1. Ball Milling. Industrial & Engineering Chemistry Research, 2021, 60, 14737-14746.	1.8	6

#	Article	IF	Citations
111	Effect of the Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash, Part 2: Sulfur Additive. Industrial & Engineering Chemistry Research, 2021, 60, 15115-15124.	1.8	3
112	Rational fabrication flowerlike BiOBr with oxygen vacancy for enhancing photocatalytic performance to remove gaseous mercury. Chemical Physics Letters, 2021, 785, 139164.	1.2	6
114	Parameter Estimation for Industrial Robot Manipulators Using an Improved Particle Swarm Optimization Algorithm with Gaussian Mutation and Archived Elite Learning. Advances in Science, Technology and Engineering Systems, 2020, 5, 1436-1457.	0.4	0
115	Particulate matter emission during municipal solid waste combustion: Submicron particulates formation mechanism. Fuel, 2022, 310, 122271.	3.4	13
116	Experimental study on mercury removal from coal-fired flue gas by sulfur modified biomass coke with mechanochemical method. Fuel, 2022, 309, 122201.	3.4	24
117	Performance and mechanism of CuS-modified MWCNTs on mercury removal: Experimental and density functional theory study. Fuel, 2022, 309, 122238.	3.4	47
118	Numerical simulation of sorbent injection for mercury removal within an electrostatic precipitator: In-flight plus wall-bounded mechanism. Fuel, 2022, 309, 122142.	3.4	8
119	Mercury/oxygen reaction mechanism over CuFe2O4 catalyst. Journal of Hazardous Materials, 2022, 424, 127556.	6.5	20
120	Influence of Pyrolysis Conditions on the Mercury Removal Characteristics and Physicochemical Properties of Biomass Coke. SSRN Electronic Journal, 0, , .	0.4	0
121	Interference Effect of H ₂ O on Hg ⁰ Removal by a Mercury Sorbent in an Oxyfuel-Combustion Atmosphere. Industrial & Engineering Chemistry Research, 2021, 60, 17450-17457.	1.8	10
122	Experimental Study on the Mercury Removal of a H ₂ S-Modified Fe ₂ O ₃ Adsorbent. Industrial & Engineering Chemistry Research, 2021, 60, 17429-17438.	1.8	5
123	Mercury removal from coal-fired flue gas by the mechanochemical S/FeS modified high sulfur petroleum coke. Fuel Processing Technology, 2022, 227, 107105.	3.7	14
124	A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs). Journal of Hazardous Materials, 2022, 427, 128132.	6.5	58
125	Facile synthesis of phosphorus-doped porous biochars for efficient removal of elemental mercury from coal combustion flue gas. Chemical Engineering Journal, 2022, 432, 134440.	6.6	21
126	Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere, 2022, 292, 133102.	4.2	62
127	Influence of pyrolysis conditions on the mercury removal characteristics and physicochemical properties of biomass coke. Fuel, 2022, 313, 122979.	3.4	17
128	Effects of Wet Flue Gas Desulfurization and Wet Electrostatic Precipitator on Particulate Matter and Sulfur Oxide Emission in Coal-Fired Power Plants. Energy & Fuels, 2020, 34, 16423-16432.	2.5	12
129	Surface Characteristics of Innovative TiO ₂ {001} and CeO ₂ /TiO ₂ {001} Catalysts and Simultaneous Removal of Elemental Mercury and Nitric Oxide at High Temperatures. SSRN Electronic Journal, 0, , .	0.4	Ο

#	ARTICLE	IF	CITATIONS
130	HCl-Induced Hg0 Transformation over CuMn2O4 Sorbent. Energy Engineering: Journal of the Association of Energy Engineers, 2022, 119, 499-510.	0.3	0
131	Mercury release behaviors of Guizhou bituminous coal during co-pyrolysis: Influence of chlorella. Journal of Environmental Sciences, 2022, 119, 23-32.	3.2	4
132	Fly Ash as an Ingredient in the Contaminated Soil Stabilization Process. Energies, 2022, 15, 565.	1.6	4
133	Electrochemical enhancement of high-efficiency wet removal of mercury from flue gas. Environmental Science and Pollution Research, 2022, , 1.	2.7	0
134	Elemental mercury (Hg0) emission, hazards, and control: A brief review. Journal of Hazardous Materials Advances, 2022, 5, 100049.	1.2	14
135	Dual 2-dimensional CuSe/g-C3N4 nano-heterostructure for boosting immobilization of elemental mercury in flue gas. Chemical Engineering Journal, 2022, 435, 134696.	6.6	20
136	Promoting effect of Co-doped CeO2 nanorods activity and SO2 resistance for Hg0 removal. Fuel, 2022, 317, 123320.	3.4	26
137	Volatilization characteristics and relationship of arsenic and sulfur during coal pyrolysis. Fuel, 2022, 315, 123223.	3.4	8
138	Template Synthesis of Sulfur-Doped Mesoporous Carbon for Efficiently Removing Gas-Phase Elemental Mercury from Flue Gas. SSRN Electronic Journal, 0, , .	0.4	0
139	Complete catalytic reaction of mercury oxidation on CeO2/TiO2 (001) surface: A DFT study. Journal of Hazardous Materials, 2022, 430, 128434.	6.5	18
140	Distribution characteristics and environmental risk assessment of trace elements in desulfurization sludge from coal-fired power plants. Fuel, 2022, 314, 122771.	3.4	22
141	Mercury removal by the S2Cl2 modified biomass coke with mechanochemical versus impregnation method. Chemical Engineering Journal, 2022, 435, 135073.	6.6	18
142	Improving the electrostatic precipitation removal efficiency on fine particles by adding wetting agent during the chemical agglomeration process. Fuel Processing Technology, 2022, 230, 107202.	3.7	11
143	Improving the Electrostatic Precipitation Removal Efficiency on Fine Particles by Adding Wetting Agent During the Chemical Agglomeration Process. SSRN Electronic Journal, 0, , .	0.4	0
144	Combination of Vortex Agitation and Ultrasonic Irradiation for Mercury Removal from Sediment by Acid Extraction. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 1118-1123.	1.3	1
145	Molecular Structure Analysis and Mercury Adsorption Mechanism of Iron-Based Modified Biochar. Energy & Fuels, 2022, 36, 3184-3200.	2.5	15
146	Mercury distribution and emission reduction potentials of Chinese coal-fired industrial boilers. Air Quality, Atmosphere and Health, 2022, 15, 967-978.	1.5	7
147	The Legacy of Mercury Contamination from a Past Leather Manufacturer and Health Risk Assessment in an Urban Area (Pisa Municipality, Italy). Sustainability, 2022, 14, 4367.	1.6	3

#	Article	IF	CITATIONS
148	Graphitic Carbon Nitride for Gaseous Mercury Emission Control: A Review. Energy & Fuels, 2022, 36, 4297-4313.	2.5	15
149	Beneficiation of coal ash from ash silos of six Chinese power plants and its risk assessment of hazardous elements for land application. Chemical Engineering Research and Design, 2022, 160, 641-649.	2.7	12
150	A Sulfurâ€Tolerant MOFâ€Based Singleâ€Atom Fe Catalyst for Efficient Oxidation of NO and Hg ⁰ . Advanced Materials, 2022, 34, e2110123.	11.1	40
151	Electrochemical reduction and kinetic analysis of oxidized mercury in wastewater by choosing titanium plate as cathode. Separation and Purification Technology, 2022, 289, 120808.	3.9	4
152	Fate and distribution of mercury during the desulfurization wastewater evaporation process. Fuel, 2022, 318, 123609.	3.4	12
153	Surface characteristics of innovative TiO2{0Â0Â1} and CeO2/TiO2{0Â0Â1} catalysts and simultaneous removal of elemental mercury and nitric oxide at low temperatures. Fuel, 2022, 317, 123479.	3.4	7
154	Single-atom iron on penta-graphene assisted with non-bonding interaction as superior demercurizer: A DFT exploration. Applied Surface Science, 2022, 590, 153060.	3.1	8
155	Template synthesis of sulfur-doped mesoporous carbon for efficiently removing gas-phase elemental mercury from flue gas. Fuel, 2022, 321, 124112.	3.4	17
156	Charge distribution modulation and morphology controlling of copper selenide for an enhanced elemental mercury adsorption activity in flue gas. Chemical Engineering Journal, 2022, 442, 136145.	6.6	47
157	Coordinatively Unsaturated Selenides over CuFeSe ₂ toward Highly Efficient Mercury Immobilization. Environmental Science & Technology, 2022, 56, 575-584.	4.6	36
158	Limestone-based dual-loop wet flue gas desulfurization under oxygen-enriched combustion. Fuel, 2022, 322, 124161.	3.4	6
159	Computational study on the adsorption of arsenic pollutants on graphene-based single-atom iron adsorbents. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
160	High-temperature filtration demonstration applying Fe-Al intermetallic membrane for a 410Ât/h scale coal-fired power plants. Fuel Processing Technology, 2022, 233, 107312.	3.7	1
161	Reduction of HgCl2 to HgO in flue gas at high temperature. Part â: Influences of oxidative species. Fuel, 2022, 324, 124417.	3.4	7
162	Pilot-scale study of desulfurization wastewater evaporation: Emission and migration characteristics of mercury. Fuel, 2022, 324, 124443.	3.4	3
163	Mechanism and Kinetic Study of Cyclodextrin Use to Facilitate NO ₂ Absorption in Sulfite Solutions. Environmental Science & Technology, 2022, 56, 7696-7706.	4.6	4
164	Release characteristics of elemental mercury during low calorific value coal combustion. Royal Society Open Science, 2022, 9, .	1.1	1
165	Experimental and theoretical analysis of elemental mercury removal from syngas over Fe-Ti spinel. Fuel, 2022, 324, 124430.	3.4	10

#	Article	IF	CITATIONS
166	Novel Insight into Elemental Mercury Removal by Cobalt Sulfide Anchored Porous Carbon: Phase-Dependent Interfacial Activity and Mechanisms. SSRN Electronic Journal, 0, , .	0.4	0
167	Geochemistry of mercury in soils and water sediments. AIMS Environmental Science, 2022, 9, 277-297.	0.7	5
168	Effect of CEO 2 ÂAnd PtÂIntroduction on the Structure and Performance of Fe2o3ÂFor Hg0ÂRemoval. SSRN Electronic Journal, 0, , .	0.4	0
169	Synergetic Removal Characteristics of MercuryÂFor Ultra-Low Emission Coal-Fired Power Plant. SSRN Electronic Journal, 0, , .	0.4	0
170	The Effects of Physical-Chemical Evolution of High-Sulfur Petroleum Coke on HgO Removal from Coal-Fired Flue Gas and Exploration of Its Micro-Scale Mechanism. International Journal of Environmental Research and Public Health, 2022, 19, 7082.	1.2	0
171	Experimental and Mechanistic Study of Synergistic Removal of Hg by Evaporation from Desulfurization Wastewater. Energies, 2022, 15, 4541.	1.6	0
172	The state of the art of condensable particulate matter. Fuel, 2022, 325, 124807.	3.4	15
173	The Synthesis of FeCl3-Modified Char from Phoenix Tree Fruit and Its Application for HgO Adsorption in Flue Gas. Atmosphere, 2022, 13, 1093.	1.0	1
174	Fast and stable real time monitoring of gaseous mercury in its catalytic oxidation using a fully modified cold-vapor atomic absorption mercury analyzer. Measurement: Journal of the International Measurement Confederation, 2022, 200, 111614.	2.5	1
175	Recent advances on the adsorption and oxidation of mercury from coal-fired flue gas: A review. Journal of Cleaner Production, 2022, 367, 133111.	4.6	24
176	Flue gas mercury removal using WS2-doped carbon nitride via physical mixing. Chemical Physics, 2022, 562, 111643.	0.9	4
177	Effect of CeO2 and Pt introduction on the structure and performance of Fe2O3 for Hg0 removal. Fuel, 2022, 326, 125120.	3.4	4
178	Mercury removal from syngas by metal oxides based adsorbent: A review. Fuel, 2022, 327, 125057.	3.4	16
179	Role of CuFe2O4 in elemental mercury adsorption and oxidation on modified bentonite for coal gasification. Fuel, 2022, 328, 125231.	3.4	8
180	As2O3 removal from coal-fired flue gas by the carbon-based adsorbent: Effects of adsorption temperature and flue gas components. Chemical Engineering Journal, 2022, 450, 138023.	6.6	20
181	Leachability of mercury in coal fly ash from coal-fired power plants in southwest China. Frontiers in Environmental Science, 0, 10, .	1.5	2
182	Effects of Coal-Fired Flue Gas Components on Mercury Removal by the Mechanochemical S-Modified Petroleum Coke. ACS Omega, 2022, 7, 31205-31217.	1.6	2
183	Record of Middle Jurassic wildfire and its incidental mercury emissions in northern Qaidam Basin, China: Evidence from the inertinite and mercury anomalies in coal. International Journal of Coal Geology, 2022, 261, 104078.	1.9	9

CITATION REPORT		
	CITATIO	DODT
		L N() N

#	Article	IF	CITATIONS
184	The influence of the Miscanthus giganteus pyrolysis temperature on the application of obtained biochars as solid biofuels and precursors of high surface area activated carbons. Biomass and Bioenergy, 2022, 164, 106550.	2.9	9
185	Effect mechanism of SO2 on Hg0 adsorption over CuMn2O4 sorbent. Fuel, 2022, 329, 125399.	3.4	8
186	A kinetic study on mercury oxidation by HCl over typical Mn-based SCR catalysts. Fuel, 2022, 329, 125421.	3.4	2
187	Novel insight into elemental mercury removal by cobalt sulfide anchored porous carbon: Phase-dependent interfacial activity and mechanisms. Fuel, 2023, 331, 125740.	3.4	8
188	Gd-Mn-Ti composite oxides anchored on waste coal fly ash for the low-temperature catalytic reduction of nitrogen oxide. Separation and Purification Technology, 2022, 302, 122119.	3.9	14
189	Advances in rational design of catalysts for efficient Hg0 removal. Fuel, 2023, 331, 125922.	3.4	8
190	Elution of Hg-containing substances from CeO2-MnO2/TiO2 adsorbent in H2S atmosphere by CuCl2 solution. Fuel, 2023, 331, 125933.	3.4	3
191	Mechanochemical preparation of well-structured copper sulfide for elemental mercury sequestration from coal combustion flue gas. Chemical Engineering Journal, 2023, 452, 139278.	6.6	17
192	Ultra-sensitive determination of mercury by atmospheric pressure glow discharge atomic emission spectrometry coupled with cold vapor generation. Journal of Analytical Atomic Spectrometry, 0, , .	1.6	1
193	Synergetic removal characteristics of mercury for ultra-low emission coal-fired power plant. Fuel, 2023, 332, 126083.	3.4	1
194	Thermal desorption of mercury from lignite in a high-temperature furnace and in power plant mills. International Journal of Coal Science and Technology, 2022, 9, .	2.7	0
195	The Effect of Acid Gases on Elemental Hg Removal and Experimental Studies Accompanied by Quantum Chemical Calculations (DFT). Energy & Fuels, 2022, 36, 11040-11050.	2.5	6
196	Rational synthesis and characterization of highly water stable MOF@GO composite for efficient removal of mercury (Hg2+) from water. Heliyon, 2022, 8, e10936.	1.4	28
197	Emission and transformation behaviors of trace elements during combustion of Cd-rich coals from coal combustion related endemic fluorosis areas of Southwest, China. Ecotoxicology and Environmental Safety, 2022, 246, 114145.	2.9	2
198	Removal of As2O3 in coal-fired flue gas by metal oxides: Effects of adsorption temperature and flue gas components. Journal of Cleaner Production, 2022, 376, 134239.	4.6	14
199	The novel magnetic adsorbent derived from MIL-100 (Fe) loading with bimetallic Cu and Mn oxides for efficient Hg0 removal from flue gas. Journal of Cleaner Production, 2022, 377, 134384.	4.6	15
200	Purification Technologies for NOx Removal from Flue Gas: A Review. Separations, 2022, 9, 307.	1.1	10
201	The Release and Reduction of Mercury from Solid Fuels through Thermal Treatment Prior to Combustion. Energies, 2022, 15, 7987.	1.6	3

#	Article	IF	CITATIONS
202	Emission Characteristics of Gaseous and Particulate Mercury from a Subcritical Power Plant Co-Firing Coal and Sludge. Atmosphere, 2022, 13, 1656.	1.0	5
203	Vanadium-density-dependent reactivity for simultaneous removal of NOx and Hg0 over V2O5/TiO2 catalyst. Fuel, 2023, 332, 126189.	3.4	7
204	Enhanced elemental mercury removal in coal-fired flue gas by modified algal waste-derived biochar: Performance and mechanism. Journal of Environmental Management, 2023, 325, 116427.	3.8	9
205	Development of copper sulfide functionalized CeO2 nanoparticle for strengthened removal of gaseous elemental mercury from flue gas. Chemical Engineering Journal, 2023, 453, 139773.	6.6	16
206	A high efficiency and high capacity mercury adsorbent based on elemental selenium loaded SiO2 and its application in coal-fired flue gas. Chemical Engineering Journal, 2023, 453, 139946.	6.6	8
207	Regeneration mechanism of a novel high-performance biochar mercury adsorbent directionally modified by multimetal multilayer loading. Journal of Environmental Management, 2023, 326, 116790.	3.8	40
208	New frontiers in heterogeneous HgO oxidation by O2 over catalytic single-Fe site on boron-vacancy of h-BN: A density functional theory study. Fuel, 2023, 333, 126335.	3.4	8
209	Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas. Chemical Engineering Journal, 2023, 454, 140095.	6.6	2
210	Application of response surface methodology and box–behnken design for the optimization of mercury removal by Ulva sp Journal of Hazardous Materials, 2023, 445, 130405.	6.5	16
211	Effects of hydrophobic modified fly ash on resistance of chloride corrosion and water penetration of cement mortar in the early hydration stage. Journal of Building Engineering, 2023, 64, 105573.	1.6	2
212	Mercury removal from flue gas by a MoS2/H2O heterogeneous system based on its absorption kinetics. Environmental Science and Pollution Research, 0, , .	2.7	0
213	Recent progress of CeO2-based catalysts with special morphologies applied in air pollutants abatement: A review. Journal of Environmental Chemical Engineering, 2023, 11, 109136.	3.3	14
214	Revealing the influence of oxygen-containing functional groups on mercury adsorption via density functional theory and multiple linear regression analysis. Fuel, 2023, 335, 127040.	3.4	3
215	Elution behavior of mercury in desulfurization gypsum produced in a coal-fired power plant. Fuel, 2023, 334, 126761.	3.4	1
216	Influence of flue gas components on the mercury adsorption/oxidation by mechanochemical S2Cl2-modified sawdust coke. Fuel, 2023, 336, 127154.	3.4	4
217	Investigation on mechanochemically modified calciumâ€based adsorbent for flue gas HCl removal. Asia-Pacific Journal of Chemical Engineering, 0, , .	0.8	1
218	Mosses as bioindicators of atmospheric deposition of Tl, Hg and As in Kosovo. Chemistry and Ecology, 0, , 1-14.	0.6	1
219	Negative effect of SO2 on mercury removal over catalyst/sorbent from coal-fired flue gas and its coping strategies: A review. Chemical Engineering Journal, 2023, 455, 140751.	6.6	30

#	Article	IF	CITATIONS
220	Sm-modified Mn-Ce oxides supported on cordierite as monolithic catalyst for the low-temperature reduction of nitrogen oxides. Catalysis Today, 2023, 423, 113966.	2.2	1
221	Effect of hydrothermal pretreatment on mercury removal performance of modified biochar prepared from corn straw. Fuel, 2023, 339, 126958.	3.4	4
222	Mercury Exposure in Two Fish Trophic Guilds from Protected and ASGM-Impacted Reservoirs in Zimbabwe and Possible Risks to Human Health. Archives of Environmental Contamination and Toxicology, 2023, 84, 199-213.	2.1	1
223	Content and distribution of mercury in coal and its relation to depositional environment—A case study on coals from the Shanxi Formation in Huainan Coalfield. Frontiers in Earth Science, 0, 10, .	0.8	0
224	Mapping the research on desulfurization wastewater: Insights from a bibliometric review (1991–2021). Chemosphere, 2023, 314, 137678.	4.2	1
225	Copper selenide sensitized low-cost porous coordination polymers towards efficient capture trace gaseous elemental mercury. Chemical Engineering Journal, 2023, 457, 141288.	6.6	8
226	The effect of stress, pressure and temperature on CBM migration with elastic–plastic deformation. , 2023, 221, 211405.		1
227	Using the composite material of GO and g-C3N4 nanosheets as substrate to in-situ grow Co3O4 nanosheets for efficient HgO removal. Fuel, 2023, 340, 127413.	3.4	5
228	Unveiling the interfacial and coordinatively unsaturated effect in iron diselenide-based hierarchical heterojunction for enhanced HgO removal. Fuel, 2023, 339, 127406.	3.4	4
229	Understanding the molecular structure of Datong coal by combining experimental and computational study. Journal of Molecular Structure, 2023, 1279, 135035.	1.8	8
230	Effect of SO2 on HCl removal over ethanol-hydrated CaO adsorbent: Mechanism of competitive adsorption and product layer shielding. Chemical Engineering Journal, 2023, 464, 142516.	6.6	9
231	Construction of Z scheme S-g-C3N4/Bi5O7I photocatalysts for enhanced photocatalytic removal of Hg0 and carrier separation. Science of the Total Environment, 2023, 872, 162309.	3.9	23
232	Adsorption, regeneration and kinetic of gas phase elemental mercury capture on sulfur incorporated porous carbon synthesized by template method under simulated coal-fired flue gas. Fuel, 2023, 342, 127925.	3.4	7
233	Improvement mechanism of Ru species on HgO oxidation reactivity over V2O5/TiO2 Catalyst: A density functional theory study. Chemical Engineering Science, 2023, 274, 118689.	1.9	1
234	Potential of iron-based composites derived from sucrose foam for mercury removal and safe recovery. Fuel, 2023, 345, 128181.	3.4	1
235	Mercury removal over Ce-doped LaCoO3 supported on CeO2 at low temperatures from coal combustion flue gas. Fuel, 2023, 346, 128350.	3.4	3
236	Gaseous mercury capture using seaweed biochars modified by clean ultraviolet/hydrogen peroxide advanced oxidation process. Journal of Cleaner Production, 2023, 389, 136121.	4.6	4
237	Simultaneous oxidation absorption of NO and HgO using biomass carbon-activated Oxone system under synergism of high temperature. Separation and Purification Technology, 2023, 310, 123212.	3.9	9

#	Article	IF	CITATIONS
238	Enrichment and utilization of residual carbon from coal gasification slag:A review. Chemical Engineering Research and Design, 2023, 171, 859-873.	2.7	21
239	Revealing reactive mechanism and nitrogen transformation of HSW coal combustions at molecule and particle scales. Powder Technology, 2023, 419, 118368.	2.1	1
240	A new method of sulfur recovery from coking waste liquor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 1780-1792.	1.2	1
241	Isotopic Fractionation Characteristics of Speciated Mercury from Local Biomass Combustion in the Tibetan Plateau. Environmental Science & amp; Technology, 2023, 57, 4775-4783.	4.6	4
242	Characteristics of Mercury Fluxes between Soil and Air in the Farming-Pastoral Ecotone of Songnen Grassland. Sustainability, 2023, 15, 5416.	1.6	0
243	Tail-Pipe Clean-Air Technologies. , 2023, , 1-68.		0
244	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219.	23.0	37
244 245	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Current Pollution Reports, 2023, 9, 338-358.	23.0 3.1	37 6
244 245 246	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Current Pollution Reports, 2023, 9, 338-358. An efficient thumbtack-cylinder type wet electrostatic precipitator for moxa smoke aerosol control. Powder Technology, 2023, 424, 118562.	23.0 3.1 2.1	37 6 1
244 245 246 247	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Current Pollution Reports, 2023, 9, 338-358. An efficient thumbtack-cylinder type wet electrostatic precipitator for moxa smoke aerosol control. Powder Technology, 2023, 424, 118562. Research on migration and transformation behavior of selenium during the dual-alkali wet flue gas deacidification process in the simulated flue gas. Fuel, 2023, 346, 128408.	23.0 3.1 2.1 3.4	37 6 1 4
244 245 246 247 248	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Current Pollution Reports, 2023, 9, 338-358. An efficient thumbtack-cylinder type wet electrostatic precipitator for moxa smoke aerosol control. Powder Technology, 2023, 424, 118562. Research on migration and transformation behavior of selenium during the dual-alkali wet flue gas deacidification process in the simulated flue gas. Fuel, 2023, 346, 128408. Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: insights from a comprehensive bibliometric analysis. Environmental Science and Pollution Research, 0, , .	23.0 3.1 2.1 3.4 2.7	37 6 1 4 0
244 245 246 247 248	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Current Pollution Reports, 2023, 9, 338-358. An efficient thumbtack-cylinder type wet electrostatic precipitator for moxa smoke aerosol control. Powder Technology, 2023, 424, 118562. Research on migration and transformation behavior of selenium during the dual-alkali wet flue gas deacidification process in the simulated flue gas. Fuel, 2023, 346, 128408. Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: insights from a comprehensive bibliometric analysis. Environmental Science and Pollution Research, 0, , . Tail-Pipe Clean-Air Technologies. , 2023, , 1409-1476.	23.0 3.1 2.1 3.4 2.7	 37 6 1 4 0 0