Analysis of the pebble burnup profile in a pebble-bed nu

Nuclear Engineering and Design 345, 233-251

DOI: 10.1016/j.nucengdes.2019.01.030

Citation Report

#	Article	IF	CITATIONS
1	The application of the DEM-based burnup construction method in the pebble burnup history analysis in HTR-10. Nuclear Engineering and Design, 2019, 349, 1-7.	0.8	8
2	A matrix model of particle-scale radiative heat transfer in structured and randomly packed pebble bed. International Journal of Thermal Sciences, 2020, 153, 106334.	2.6	22
3	Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed. Experimental and Computational Multiphase Flow, 2021, 3, 250-257.	1.9	52
5	Burnup computations of multi-pass fuel loading scenarios in HTR-10 using a pre-generated fuel composition library. Nuclear Engineering and Design, 2021, 374, 111063.	0.8	4
6	A numerical analysis of the porosity of the HTR-10 packed pebble bed. Nuclear Engineering and Design, 2021, 383, 111438.	0.8	6
8	A New Method to Efficiently Estimate the Equilibrium State of Pebble Bed Reactors. Nuclear Technology, 2022, 208, 1577-1590.	0.7	3
9	A review of recent study on the characteristics and applications of pebble flows in nuclear engineering. Experimental and Computational Multiphase Flow, 2022, 4, 339-349.	1.9	22
10	A comparison study on the burnup of HTR-10 fuels using radiometric and mass spectrometric methods. Progress in Nuclear Energy, 2023, 156, 104535.	1.3	1