A Universal Strategy for Activating the Multicolor Room Carbon Dots in a Boric Acid Matrix

Angewandte Chemie - International Edition 58, 7278-7283 DOI: 10.1002/anie.201814629

Citation Report

#	Article	IF	CITATIONS
1	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	1.6	23
2	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	7.2	125
3	Lifetime-tunable room-temperature phosphorescence of polyaniline carbon dots in adjustable polymer matrices. Nanoscale, 2019, 11, 18311-18319.	2.8	62
4	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. , 2019, 1, 58-63.		92
5	Rational Design of Oxygen-Enriched Carbon Dots with Efficient Room-Temperature Phosphorescent Properties and High-Tech Security Protection Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 19918-19924.	3.2	47
6	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie, 2020, 132, 1279-1285.	1.6	18
7	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie - International Edition, 2020, 59, 1263-1269.	7.2	198
8	The phosphorescence property of carbon dots presenting as powder, embedded in filter paper and dispersed in solid solution. Journal of Luminescence, 2020, 218, 116851.	1.5	20
9	Afterglow of carbon dots: mechanism, strategy and applications. Materials Chemistry Frontiers, 2020, 4, 386-399.	3.2	137
10	Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Materials Chemistry Frontiers, 2020, 4, 472-488.	3.2	79
11	Theoryâ€Guided Defect Tuning through Topochemical Reactions for Accelerated Discovery of UVC Persistent Phosphors. Advanced Optical Materials, 2020, 8, 1901727.	3.6	20
12	Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science and Technology, 2020, 95, 149-161.	7.8	141
13	Full-color fluorescent carbon quantum dots. Science Advances, 2020, 6, .	4.7	344
14	Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Applied Materials & Interfaces, 2020, 12, 38593-38601.	4.0	90
15	Rapid and highly sensitive visual detection of oxalate for metabolic assessment of urolithiasis <i>via</i> selective recognition reaction of CdTe quantum dots. Journal of Materials Chemistry B, 2020, 8, 7677-7684.	2.9	18
16	Water-soluble boron carbon oxynitride dots with excellent solid-state fluorescence and ultralong room-temperature phosphorescence. Nano Research, 2020, 13, 3261-3267.	5.8	34
17	Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 2020, 6, 2179-2195.	5.3	793
18	Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nature Communications, 2020, 11, 5591.	5.8	202

#	Article	IF	CITATIONS
19	A rapid <i>in situ</i> synthesis of wide-spectrum CD@BaCl ₂ phosphors <i>via</i> anti-solvent recrystallization for white LEDs. Inorganic Chemistry Frontiers, 2020, 7, 4845-4853.	3.0	8
20	Carbonâ€Based Quantum Dots with Solidâ€State Photoluminescent: Mechanism, Implementation, and Application. Small, 2020, 16, e2004621.	5.2	141
21	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie, 2020, 132, 19558-19570.	1.6	12
22	Tunable dual fluorescence emissions with high photoluminescence quantum yields modulated by Na ion dispersion method for purely solid state N-doped carbon dots. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112548.	2.0	14
23	Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. Nanomaterials, 2020, 10, 1063.	1.9	15
24	Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. Small, 2020, 16, e2001295.	5.2	113
25	Visible-Light-Excited Room Temperature Phosphorescent Carbon Dots. Nanomaterials, 2020, 10, 464.	1.9	28
26	Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale, 2020, 12, 6852-6860.	2.8	50
27	Photoâ€Stimulated Polychromatic Room Temperature Phosphorescence of Carbon Dots. Small, 2020, 16, e2001909.	5.2	125
28	Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Research, 2020, 13, 875-881.	5.8	51
29	Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nature Communications, 2020, 11, 944.	5.8	278
30	Matrixâ€Free and Highly Efficient Roomâ€Temperature Phosphorescence Carbon Dots towards Information Encryption and Decryption. Chemistry - an Asian Journal, 2020, 15, 1281-1284.	1.7	25
31	A visible-light-excited afterglow achieved by carbon dots from rhodamine B fixed in boron oxide. Journal of Materials Chemistry C, 2020, 8, 4557-4563.	2.7	53
32	New route to strong, long-lived room-temperature phosphorescence using organic phosphor guest-friendly matrices [Al(DMSO)6]X3 (X=Clâ^', Brâ^'). Dyes and Pigments, 2020, 177, 108323.	2.0	5
33	Aggregation-Induced Room-Temperature Phosphorescence Obtained from Water-Dispersible Carbon Dot-Based Composite Materials. ACS Applied Materials & Interfaces, 2020, 12, 10791-10800.	4.0	96
34	Visibleâ€Lightâ€Excited Ultralongâ€Lifetime Room Temperature Phosphorescence Based on Nitrogenâ€Doped Carbon Dots for Double Anticounterfeiting. Advanced Optical Materials, 2020, 8, 1901557.	3.6	71
35	Achieving red room temperature afterglow carbon dots in composite matrices through chromophore conjugation degree controlling. Journal of Luminescence, 2020, 223, 117267.	1.5	15
36	Multiresponsive Luminescence Materials: Richer Color Than Chameleon Materials. Advanced Optical Materials, 2020, 8, 2000007.	3.6	14

#	Article	IF	CITATIONS
37	Plasmonic nanopapers: flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applications. Nanoscale, 2020, 12, 9471-9480.	2.8	60
38	Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots. Chemical Engineering Journal, 2021, 420, 127647.	6.6	101
39	Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chemical Engineering Journal, 2021, 406, 126794.	6.6	50
40	Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 2021, 66, 839-856.	4.3	288
41	Highly efficient room-temperature phosphorescent materials with a heavy-atom effect of bromine. New Journal of Chemistry, 2021, 45, 4930-4933.	1.4	3
43	Luminescence antiâ€counterfeiting: From elementary to advanced. Aggregate, 2021, 2, 20-34.	5.2	224
44	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
45	Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. Journal of Materials Chemistry C, 2021, 9, 4425-4443.	2.7	61
46	A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting. Nanoscale Advances, 2021, 3, 4536-4540.	2.2	18
47	Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Research, 2021, 14, 2231-2240.	5.8	41
48	The Progress of Circularly Polarized Luminescence in Chiral Purely Organic Materials. Advanced Photonics Research, 2021, 2, 2000136.	1.7	51
49	Carbon Dotâ^'NaCl Crystals for Whiteâ€Light Generation and Fabryâ€Perot Lasing. Chemistry - an Asian Journal, 2021, 16, 783-792.	1.7	8
50	Afterglow Carbon Dots: From Fundamentals to Applications. Research, 2021, 2021, .	2.8	30
51	Modulating Emission of Nonconventional Luminophores from Nonemissive to Fluorescence and Room-Temperature Phosphorescence <i>via</i> Dehydration-Induced Through-Space Conjugation. Journal of Physical Chemistry Letters, 2021, 12, 1413-1420.	2.1	26
52	Lifetimeâ€Engineered Carbon Nanodots for Time Division Duplexing. Advanced Science, 2021, 8, 2003433.	5.6	54
53	Construction and Multifunctional Applications of Visible-Light-Excited Multicolor Long Afterglow Carbon Dots/Boron Oxide Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 4477-4486.	3.2	54
54	Timeâ€Dependent Phosphorescence Colors from Carbon Dots for Advanced Dynamic Information Encryption. Advanced Materials, 2021, 33, e2006781.	11.1	241
55	Blue-to-green manipulation of carbon dots from fluorescence to ultralong room-temperature phosphorescence for high-level anti-counterfeiting. Chinese Chemical Letters, 2021, 32, 3907-3910.	4.8	27

#	Article	IF	CITATIONS
56	Thermally Driven Amorphous rystalline Phase Transition of Carbonized Polymer Dots for Multicolor Room‶emperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2100421.	3.6	38
57	Combinations of Superior Inorganic Phosphors for Levelâ€Tunable Information Hiding and Encoding. Advanced Optical Materials, 2021, 9, 2100281.	3.6	37
58	Carbon dots-based room-temperature phosphorescent test strip: Visual and convenient water detection in organic solvents. Dyes and Pigments, 2021, 189, 109226.	2.0	22
59	Boron carbon oxyphosphide heterostructured nanodots with phosphate tunable emission for switchable dual detection channels of 6-mercaptopurine assay. Talanta, 2021, 226, 122067.	2.9	9
60	A micro-wave strategy for synthesizing room temperature phosphorescent materials. Chinese Chemical Letters, 2022, 33, 243-246.	4.8	14
61	Hydrothermal Synthesis of Zincâ€Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Longâ€Lived Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2021, 133, 15618-15624.	1.6	4
62	Hydrothermal Synthesis of Zincâ€Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Longâ€Lived Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2021, 60, 15490-15496.	7.2	22
63	Fluorescent carbon dots in solid-state: From nanostructures to functional devices. Progress in Solid State Chemistry, 2021, 62, 100295.	3.9	67
64	Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification. Chinese Chemical Letters, 2021, 32, 1953-1956.	4.8	70
65	Lifetime-tunable green room temperature phosphorescence of carbon dots by the multi-step modification. Optics Express, 2021, 29, 41014.	1.7	5
66	Reversible and color-variable afterglow luminescence of carbon dots triggered by water for multi-level encryption and decryption. Chemical Engineering Journal, 2021, 415, 128999.	6.6	48
67	Lignin Nanoparticles: Promising Sustainable Building Blocks of Photoluminescent and Haze Films for Improving Efficiency of Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33536-33545.	4.0	13
68	Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAl ₂ O ₄ Composites by Inorganic Defect Triplet-State Energy Transfer. ACS Applied Materials & Interfaces, 2021, 13, 34705-34713.	4.0	34
69	Tuning Organic Roomâ€Temperature Phosphorescence through the Confinement Effect of Inorganic Micro/Nanostructures. Small Structures, 2021, 2, 2100044.	6.9	43
70	Facile Synthesis of Matrixâ€Free Roomâ€Temperature Phosphorescent Nitrogenâ€Doped Carbon Dots and Their Application as Security Inks. Macromolecular Materials and Engineering, 2021, 306, 2100339.	1.7	9
71	Phosphorescent carbon dots: Microstructure design, synthesis and applications. New Carbon Materials, 2021, 36, 649-664.	2.9	31
72	Synthesis of carbon dots@Mg(OH)2 solid-state composites with blue, red emitting for horticultural application. Journal of Alloys and Compounds, 2021, 873, 159663.	2.8	9

#	Article	IF	CITATIONS
74	Study on the Origin of Fluorescence by Using Dual-Emission Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 18543-18551.	1.5	17
75	Boron nitride dots In-situ embedded in a B2O3 matrix with the long lifetime Room-Temperature phosphorescence in dry and wet states. Chemical Engineering Journal, 2021, 417, 129175.	6.6	31
76	Recent advances in synthesis and applications of room temperature phosphorescence carbon dots. Talanta, 2021, 231, 122350.	2.9	26
77	Modulating Triplet Excited-State Energy in Phosphorescent Carbon Dots for Information Encryption and Anti-Counterfeiting. ACS Applied Materials & amp; Interfaces, 2021, 13, 43241-43246.	4.0	33
78	Sustainable Silkâ€Derived Multimode Carbon Dots. Small, 2021, 17, e2103623.	5.2	21
79	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie, 2021, 133, 22427-22433.	1.6	8
80	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie - International Edition, 2021, 60, 22253-22259.	7.2	73
81	Color-Tunable Long-Lived Room-Temperature Phosphorescence in a Coordination Polymer Based on a Nonaromatic Ligand and Its Phosphor/Coordination Polymer-Doped Systems. Chemistry of Materials, 2021, 33, 7272-7282.	3.2	19
82	Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout. Nano-Micro Letters, 2021, 13, 198.	14.4	53
83	Achieving room temperature phosphorescence in aqueous phase through rigidifying the triplet state and information encryption. Applied Surface Science, 2021, 566, 150726.	3.1	18
84	Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles. Chemical Engineering Journal, 2021, 426, 130728.	6.6	55
85	Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption. Journal of Materials Chemistry C, 2021, 9, 4847-4853.	2.7	44
86	Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. Journal of Materials Chemistry C, 2021, 9, 6781-6788.	2.7	27
87	Surface chemical functionality of carbon dots: influence on the structure and energy storage performance of the layered double hydroxide. RSC Advances, 2021, 11, 10785-10793.	1.7	3
88	Hydrothermal synthesis of blueâ€green emitting carbon dots based on the liquid products of biodegradation of coal. International Journal of Energy Research, 2021, 45, 9396-9407.	2.2	10
89	Achieving 46% efficient white-light emissive carbon dot-based materials by enhancing phosphorescence for single-component white-light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 6796-6801.	2.7	46
90	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie - International Edition, 2020, 59, 19390-19402.	7.2	94
91	Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sensors and Actuators B: Chemical, 2020, 319, 128265.	4.0	69

#	Article	IF	CITATIONS
92	Highly efficient carbon dot-based room-temperature fluorescence–phosphorescence dual emitter. Journal of Materials Chemistry C, 2021, 9, 15577-15582.	2.7	15
93	Energy Transfer Mediated Enhancement of Roomâ€Temperature Phosphorescence of Carbon Dots Embedded in Matrixes. Advanced Optical Materials, 2022, 10, .	3.6	38
94	Carbon Dotsâ€inâ€EuAPOâ€5 Zeolite: Tripleâ€Emission for Multilevel Luminescence Antiâ€Counterfeiting. Small, 2021, 17, e2103374.	5.2	47
95	Selective Ligand Sensitization of Lanthanide Nanoparticles for Multilevel Information Encryption with Excellent Durability. Analytical Chemistry, 2021, 93, 14317-14322.	3.2	6
96	Room-temperature phosphorescence based on chitosan carbon dots for trace water detection in organic solvents and anti-counterfeiting application. Dyes and Pigments, 2022, 197, 109923.	2.0	20
97	A multilevel fluorometric biosensor based on boric acid embedded in carbon dots to detect intracellular and serum glucose. Sensors and Actuators B: Chemical, 2022, 350, 130898.	4.0	18
98	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
99	Self-quenching-resistant solid-state carbon dots for mechanism and applications. Mikrochimica Acta, 2021, 188, 412.	2.5	17
100	Deep-Blue Room-Temperature Phosphorescent Carbon Dots/Silica Microparticles from a Single Raw Material. Langmuir, 2021, 37, 13187-13193.	1.6	19
101	Ultraâ€ s trong phosphorescence with 48% quantum yield from grinding treated thermal annealed carbon dots and boric acid composite. SmartMat, 2022, 3, 260-268.	6.4	42
102	Phosphorescence Tuning of Fluorine, Oxygen-Codoped Carbon Dots by Substrate Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16262-16269.	3.2	38
103	Tailored Fabrication of Carbon Dot Composites with Full olor Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	5.6	100
104	White Light Afterglow in Carbon Dots Achieved via Synergy between the Roomâ€Temperature Phosphorescence and the Delayed Fluorescence. Small, 2022, 18, e2105415.	5.2	44
105	Employing metformin-directed carbon dots with room-temperature phosphorescent towards the dual-channel detection of L-tryptophan. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112236.	2.5	10
106	Si-assisted N, P Co-doped room temperature phosphorescent carbonized polymer Dots: Information Encryption, graphic Anti-counterfeiting and biological imaging. Journal of Colloid and Interface Science, 2022, 609, 279-288.	5.0	35
107	Sulfuric-acid-mediated synthesis strategy for multi-colour aggregation-induced emission fluorescent carbon dots: Application in anti-counterfeiting, information encryption, and rapid cytoplasmic imaging. Journal of Colloid and Interface Science, 2022, 612, 650-663.	5.0	31
108	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	5.0	374
109	Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity. Advanced Optical Materials, 2022, 10, .	3.6	3

#	Article	IF	CITATIONS
110	Carboxylateâ€Induced RTP Based on Gelatin for Anticounterfeiting. Particle and Particle Systems Characterization, 2022, 39, .	1.2	9
111	Long-Lived Color-Tunable Room-Temperature Phosphorescence of Boron-Doped Carbon Dots. Langmuir, 2022, 38, 2287-2293.	1.6	29
112	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
113	Construction of coral-like architectures of boron-containing compounds: coral-like boric acid and its application performances. CrystEngComm, 2022, 24, 2383-2387.	1.3	1
114	Highly Efficient and Stable Deep-Blue Room Temperature Phosphorescence Via Through-Space Conjugation. SSRN Electronic Journal, 0, , .	0.4	0
115	AlCl ₃ -promoted growth of alkylated carbon dots with an enhanced nonlinear optical response. Journal of Materials Chemistry C, 2022, 10, 5576-5581.	2.7	3
116	Regulation between the Delayed Fluorescence and Room-Temperature Phosphorescence of Matrix-Free Carbon Dots with the Position of the Carboxyl Substituent on the Benzene Ring. Journal of Physical Chemistry C, 2022, 126, 3540-3548.	1.5	18
117	One-step Synthesis of Biomass-Based Carbon Dots for Detection of Metal Ions and Cell Imaging. Frontiers in Energy Research, 2022, 10, .	1.2	3
118	Cascade Resonance Energy Transfer for the Construction of Nanoparticles with Multicolor Long Afterglow in Aqueous Solutions for Information Encryption and Bioimaging. Advanced Optical Materials, 2022, 10, .	3.6	43
119	Achieving blue water-dispersed room-temperature phosphorescence of carbonized polymer dots through nano-compositing with mesoporous silica. Chinese Chemical Letters, 2022, 33, 4213-4218.	4.8	15
120	Room Temperature Phosphorescence of Chlorine Doped Carbon Nitride Dots. Frontiers in Chemistry, 2022, 10, 812602.	1.8	5
121	Carbon Dots Confined in Silica Nanoparticles for Triplet-to-Singlet Föster Resonance Energy-Transfer-Induced Delayed Fluorescence. ACS Applied Nano Materials, 2022, 5, 5168-5175.	2.4	11
122	Highly efficient and stable deep-blue room temperature phosphorescence via through-space conjugation. Chemical Engineering Journal, 2022, 442, 136179.	6.6	23
123	Green Synthesis of Phosphorescent Carbon Dots for Anticounterfeiting and Information Encryption. Sensors, 2022, 22, 2944.	2.1	11
124	Multi-Functional Hydrogels Simultaneously Featuring Strong Fluorescence, Ultralong Phosphorescence, and Excellent Self-Healing Properties and Their Use for Advanced Anti-counterfeiting. Analytical Chemistry, 2022, 94, 7264-7271.	3.2	10
125	Modulating the Carbonization Degree of Carbon Dots for Multicolor Afterglow Emission. ACS Applied Materials & Interfaces, 2022, 14, 22363-22371.	4.0	33
126	Fast photostimulus-responsive ultralong room-temperature phosphorescence behaviour of benzoic acid. Journal of Materials Chemistry C, 2022, 10, 8806-8814.	2.7	6
127	Lignin fractionation-inspired carbon dots to enable trimodule fluorescent sensing of pH, silver ion and cysteine. Industrial Crops and Products, 2022, 185, 115127.	2.5	7

#	Article	IF	CITATIONS
128	Quadruple Anticounterfeiting Encryption: Anion-Modulated Forward and Reverse Excitation-Dependent Multicolor Afterglow in Two-Component Ionic Crystals. ACS Applied Materials & Interfaces, 2022, 14, 30246-30255.	4.0	23
129	Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. Nano Letters, 2022, 22, 5127-5136.	4.5	46
130	NearlyÂUnity Quantum Yield Persistent Room Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie, 0, , .	1.6	0
131	Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. Nanomaterials, 2022, 12, 2210.	1.9	14
132	Nearly Unity Quantum Yield Persistent Roomâ€Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
133	Phosphorus and Nitrogen Codoped Carbonized Polymer Dots with Multicolor Room Temperature Phosphorescence for Anticounterfeiting Painting. Langmuir, 2022, 38, 8304-8311.	1.6	10
134	Boric Acidâ€Activated Roomâ€Temperature Phosphorescence and Thermally Activated Delayed Fluorescence for Efficient Solidâ€State Photoluminescence Materials. Advanced Optical Materials, 2022, 10, .	3.6	17
135	Prepared carbon dots from wheat straw for detection of Cu2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121597.	2.0	14
136	Enabling Dual Phosphorescence by Locating a Flexible Ligand in Zn-Based Hybrid Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 6975-6980.	2.1	11
137	Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence. Nano Research, 2022, 15, 9454-9460.	5.8	14
138	Carbon dots-based delayed fluorescent materials: Mechanism, structural regulation and application. IScience, 2022, 25, 104884.	1.9	17
139	Efficient blue TADF-type organic afterglow material <i>via</i> boric acid-assisted confinement. Chemical Communications, 2022, 58, 11418-11421.	2.2	4
140	Water-enhanced high-efficiency persistent room-temperature phosphorescence materials for temperature sensing <i>via</i> crystalline transformation. Journal of Materials Chemistry C, 2022, 10, 13210-13216.	2.7	8
141	Ultrabroad-band, white light emission from carbon dot-based materials with hybrid fluorescence/phosphorescence for single component white light-emitting diodes. Chinese Chemical Letters, 2023, 34, 107794.	4.8	5
142	Color-tunable and high-quantum-yield afterglow of carbon dots by covalent fixation. Journal of Luminescence, 2022, 252, 119399.	1.5	5
143	Triphenylamine derivatives functionalized di-ureasil hybrids for information encipherment. Chemical Engineering Journal Advances, 2022, 12, 100411.	2.4	1
144	Novel visible-light-excited afterglow rose-bengal-derived carbon dots and their applications. Journal of Luminescence, 2022, 252, 119370.	1.5	4
145	Solidâ€State Luminescent Materials with Multiple Emission Colors and Nearâ€Unity Quantum Yield. Chemistry - A European Journal, 2023, 29, .	1.7	1

#	Article	IF	CITATIONS
146	Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection. Molecules, 2022, 27, 6771.	1.7	7
147	Generation of color-controllable room-temperature phosphorescence via luminescent center engineering and in-situ immobilization. Chinese Chemical Letters, 2023, 34, 107950.	4.8	0
148	The Emerging Development of Multicolor Carbon Dots. Small, 2022, 18, .	5.2	82
149	Applications of Carbon Dots in Electrochemical Energy Storage. ACS Applied Electronic Materials, 2022, 4, 5144-5164.	2.0	8
150	Ultra-stable dual-color phosphorescence Carbon-Dot@Silica material for advanced anti-counterfeiting. Dyes and Pigments, 2022, 208, 110827.	2.0	6
151	A sequential dual-lock strategy for generation of room-temperature phosphorescence of boron doped carbon dots for dynamic anti-counterfeiting. Journal of Colloid and Interface Science, 2023, 632, 129-139.	5.0	17
152	One-step large-scale fabricating aggregation-induced emission carbon dots with strong solid-state fluorescence emission. Materials Today Chemistry, 2022, 26, 101255.	1.7	8
153	Water friendly room temperature phosphorescence doped materials prepared via metal organic framework matrix transformation. Dyes and Pigments, 2023, 210, 110959.	2.0	5
154	Engineered full-color-emissive lignin carbon dots enable selectively fluorescent sensing of metal ions. Industrial Crops and Products, 2023, 192, 116116.	2.5	6
155	The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchemical Journal, 2023, 185, 108299.	2.3	9
156	Luminescent materials derived from biomass resources. Coordination Chemistry Reviews, 2023, 477, 214951.	9.5	10
157	Rational Design of Covalent Bond Engineered Encapsulation Structure toward Efficient, Longâ€Lived Multicolored Phosphorescent Carbon Dots. Small, 2023, 19, .	5.2	35
158	In Situ Confining Citric Acidâ€Derived Carbon Dots for Fullâ€Color Roomâ€Temperature Phosphorescence. Small, 2023, 19, .	5.2	23
159	A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency above 50%. Advanced Materials, 2023, 35, .	11.1	54
160	Spatial effect and resonance energy transfer for the construction of carbon dots composites with long-lived multicolor afterglow for advanced anticounterfeiting. Chinese Chemical Letters, 2023, 34, 108070.	4.8	6
161	Color-tunable and ultralong organic room temperature phosphorescence from poly(acrylic) Tj ETQq1 1 0.784314 1960-1970.	rgBT /Ove 2.7	erlock 10 T 3
162	Deep-blue thermally activated delayed fluorescence carbon dots with ultralong lifetime. Nanoscale, 2023, 15, 3337-3344.	2.8	13
163	Multicolor-Emissive Carbon Dots for White-Light-Emitting Diodes and Room-Temperature Phosphorescence. ACS Applied Nano Materials, 2023, 6, 918-929.	2.4	15

#	Article	IF	CITATIONS
164	Recent Progress in Inorganic Afterglow Materials: Mechanisms, Persistent Luminescent Properties, Modulating Methods, and Bioimaging Applications. Advanced Optical Materials, 2023, 11, .	3.6	27
165	Longâ€Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. Small, 2023, 19, .	5.2	32
166	Multiple Stimuliâ€Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. Small, 2023, 19, .	5.2	22
167	Modulating Emission of Organic Emitters from Fluorescence to Red Afterglow through Boric Acid-Assisted Energy Transfer. Journal of Physical Chemistry C, 2023, 127, 682-688.	1.5	2
168	Rationally Designed Matrixâ€Free Carbon Dots with Wavelengthâ€Tunable Roomâ€Temperature Phosphorescence. Chemistry - an Asian Journal, 2023, 18, .	1.7	2
169	High Color Stability Blue-to-Violet Room Temperature Phosphorescent Carbon Dot Composites with Ultralong Lifetime for Information Encryption. ACS Sustainable Chemistry and Engineering, 2023, 11, 1809-1819.	3.2	21
170	Nanomaterials and artificial intelligence in anti-counterfeiting. , 2023, , 361-398.		0
171	Switching between Fluorescence and Room Temperature Phosphorescence in Carbon Dots: Key Role of Heteroatom Functionalities. Journal of Physical Chemistry C, 2023, 127, 2430-2439.	1.5	7
172	Polymer–Structureâ€induced Roomâ€Temperature Phosphorescence of Carbon Dot Materials. Small Structures, 2023, 4, .	6.9	30
173	Photo-stimuli responsive phosphorescence from carbon dots in porous gelatin. Journal of Luminescence, 2023, 257, 119725.	1.5	2
174	Achieving purple light excitable high-efficiency temperature-responsive dual- and single-mode afterglow in carbon dots. Carbon, 2023, 208, 365-373.	5.4	29
175	Hydrogen bonds and space restriction promoting long-lived room-temperature phosphorescence and its application for white light-emitting diodes. Journal of Colloid and Interface Science, 2023, 639, 78-86.	5.0	12
176	Proximate white light-long phosphor emission and a photoelectrochemical probe from boron defects engineered carbon-nitride nanosheets. Materials Today Sustainability, 2023, 22, 100366.	1.9	1
177	Room temperature phosphorescence based on nitrogen-phosphorus co-doped carbonized polymer dots for information encryption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131456.	2.3	5
178	Ultra-long room temperature phosphorescence carbon dots-based composites with high environmental stability. Journal of Luminescence, 2023, 259, 119834.	1.5	4
179	Multiple-color room-temperature phosphorescence regulated by graphitization and carbonyls. Chemical Engineering Journal, 2023, 459, 141635.	6.6	2
180	A Deeper Understanding of H ₂ Evolution Entirely from Water via Diborane Hydrolysis. , 2023, 5, 783-797.		7
181	Reaction Time-Controlled Synthesis of Multicolor Carbon Dots for White Light-Emitting Diodes. ACS Applied Nano Materials, 2023, 6, 2478-2490.	2.4	15

#	Article	IF	CITATIONS
182	Shallow Traps in Carbon Nitride Quantum Dots to Achieve 6.47 s Ultralong Lifetime and Wavelengthâ€Tunable Room Temperature Phosphorescence. Advanced Optical Materials, 2023, 11, .	3.6	11
183	Recent Advances of Carbon Dots with Afterglow Emission. Small, 2023, 19, .	5.2	31
184	Evolution and fabrication of carbon dot-based room temperature phosphorescence materials. Chemical Science, 2023, 14, 3705-3729.	3.7	41
185	Aggregation-induced color fine-tunable carbon dot phosphorescence covering from green to near-infrared for advanced information encryption. Chemical Engineering Journal, 2023, 462, 142339.	6.6	18
186	An Overview on Carbon Quantum Dots Optical and Chemical Features. Molecules, 2023, 28, 2772.	1.7	18
187	Modulating Emission of Boric Acid into Highly Efficient and Colorâ€Tunable Afterglow via Dehydrationâ€Induced Throughâ€Space Conjugation. Advanced Science, 2023, 10, .	5.6	11
188	Boron Dopants in Red-Emitting B and N Co-Doped Carbon Quantum Dots Enable Targeted Imaging of Lysosomes. ACS Applied Materials & Interfaces, 2023, 15, 17045-17053.	4.0	16
189	Tough, Reprocessable, and Recyclable Dynamic Covalent Polymers with Ultrastable Longâ€Lived Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	1.6	3
190	Tough, Reprocessable, and Recyclable Dynamic Covalent Polymers with Ultrastable Longâ€Lived Room‶emperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
191	Polythiophene Derivatives Carbonized Polymer Dots: Aggregation Induced <scp>Solid tate</scp> Fluorescence Emission ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1950-1956.	2.6	9
192	Mechanical Force-Induced Color-Variable Luminescence of Carbon Dots in Boric Acid Matrix. Molecules, 2023, 28, 3388.	1.7	0
193	Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their Imaging Applications. Crystals, 2023, 13, 705.	1.0	0
194	Room Temperature Phosphorescence Carbon Dots: Preparations, Regulations, and Applications. Small, 2023, 19, .	5.2	22
217	The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. Materials Horizons, 0, , .	6.4	1
222	The afterglow of carbon dots shining in inorganic matrices. Materials Horizons, 2024, 11, 113-133.	6.4	2
241	Recent advances in red-emissive carbon dots and their biomedical applications. Materials Chemistry Frontiers, 2024, 8, 930-955.	3.2	0
251	Optical properties and applications of zero-dimensional carbon nanomaterials. , 2024, , 153-183.		0