A review of rechargeable batteries for portable electron

InformaÄnÃ-Materiály 1, 6-32 DOI: 10.1002/inf2.12000

Citation Report

#	Article	IF	CITATIONS
1	Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 20952-20957.	10.3	117
2	Recent research progresses in ether―and esterâ€based electrolytes for sodiumâ€ion batteries. InformaÄnÃ- Materiály, 2019, 1, 376-389.	17.3	183
3	Lithium Borate Containing Bifunctional Binder To Address Both Ion Transporting and Polysulfide Trapping for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28968-28977.	8.0	24
4	An Efficient Separator with Low Liâ€lon Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901800.	19.5	61
5	Boosting Cell Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ via Surface Structure Design. Small, 2019, 15, e1904854.	10.0	92
6	Design strategies toward catalytic materials and cathode structures for emerging Li‰CO ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 21605-21633.	10.3	75
7	Expediting redox kinetics of sulfur species by atomicâ€scale electrocatalysts in lithium–sulfur batteries. InformaÄnÃ-Materiály, 2019, 1, 533-541.	17.3	261
8	<scp>l</scp> -Cysteine-Modified Acacia Gum as a Multifunctional Binder for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 47956-47962.	8.0	16
9	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	12.8	144
10	Interface-engineered metallic 1T-MoS2 nanosheet array induced via palladium doping enabling catalysis enhancement for lithium–oxygen battery. Chemical Engineering Journal, 2020, 382, 122854.	12.7	52
11	Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020, 5, 5-19.	48.7	1,138
12	A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020, 5, .	5.8	111
13	An inorganic-framework proton exchange membrane for direct methanol fuel cells with increased energy density. Sustainable Energy and Fuels, 2020, 4, 772-778.	4.9	14
14	Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 109-115.	12.9	59
15	Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. Journal of Colloid and Interface Science, 2020, 565, 494-502.	9.4	44
16	Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 1229-1237.	10.3	26
17	Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. Energy Storage Materials, 2020, 26, 65-72.	18.0	31
18	Adsorption atalysis Design in the Lithiumâ€Sulfur Battery. Advanced Energy Materials, 2020, 10, 1903008.	19.5	275

#	Article	IF	CITATIONS
19	Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chemical Communications, 2020, 56, 1251-1254.	4.1	36
20	Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020, 8, 4283-4289.	10.3	51
21	The recent advances in selfâ€powered medical information sensors. InformaÄnÃ-Materiály, 2020, 2, 212-234.	17.3	96
22	Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy, 2020, 68, 104373.	16.0	95
23	A solid-electrolyte-reinforced separator through single-step electrophoretic assembly for safe high-capacity lithium ion batteries. Journal of Power Sources, 2020, 448, 227469.	7.8	23
24	A compact inorganic layer for robust anode protection in lithiumâ€sulfur batteries. InformaÄnÃ- Materiály, 2020, 2, 379-388.	17.3	197
25	Electrode Engineering by Atomic Layer Deposition for Sodiumâ€lon Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials, 2020, 30, 1906890.	14.9	36
26	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	12.9	63
27	A flexible CNT@nickel silicate composite film for high-performance sodium storage. Journal of Energy Chemistry, 2020, 47, 29-37.	12.9	31
28	Na+-storage properties derived from a high pseudocapacitive behavior for nitrogen-doped porous carbon anode. Materials Letters, 2020, 261, 127064.	2.6	5
29	Boosting the Optimization of Lithium Metal Batteries by Molecular Dynamics Simulations: A Perspective. Advanced Energy Materials, 2020, 10, 2002373.	19.5	56
30	Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001256.	19.5	43
31	Optimizing Redox Reactions in Aprotic Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002180.	19.5	112
32	Effect of Deep Cryogenic Activated Treatment on Hemp Stem-Derived Carbon Used as Anode for Lithium-Ion Batteries. Nanoscale Research Letters, 2020, 15, 193.	5.7	7
33	Structural Insight into the Abnormal Capacity of a Co-Substituted Tunnel-Type Na _{0.44} MnO ₂ Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47548-47555.	8.0	18
34	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy, 2020, 78, 105101.	16.0	51
35	Ion and electron-conducting additive effect on Li-ion charge storage performance of CuFe2O4/SiO2 composite aerogel anode. Ceramics International, 2020, 46, 25330-25340.	4.8	5
36	Construction of a secondary conductive and buffer structure towards high-performance Si anodes for Li-ion batteries. Electrochimica Acta, 2020, 354, 136767.	5.2	10

#	Article	IF	CITATIONS
37	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	4.7	53
38	On the challenge of large energy storage by electrochemical devices. Electrochimica Acta, 2020, 354, 136771.	5.2	62
39	Anionic vacancy-dependent activity of the CoSe ₂ with a tunable interfacial electronic structure on the N-doped carbon cloth for advanced Li–O ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 16636-16648.	10.3	31
40	Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nature Communications, 2020, 11, 3490.	12.8	121
41	Boosting Potassium Storage by Integration Advantageous of Defect Engineering and Spatial Confinement: A Case Study of Sb ₂ Se ₃ . Small, 2020, 16, e2005272.	10.0	43
42	Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic. ACS Symposium Series, 2020, , 1-47.	0.5	14
43	Transformation of Two-Dimensional Iron Sulfide Nanosheets from FeS ₂ to FeS as High-Rate Anodes for Pseudocapacitive Sodium Storage. ACS Applied Energy Materials, 2020, 3, 12672-12681.	5.1	20
44	Bare Mo-Based Ordered Double-Transition Metal MXenes as High-Performance Anode Materials for Aluminum-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 25769-25774.	3.1	23
45	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	10.7	186
46	Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies, 2020, 13, 5847.	3.1	58
47	High-yielding carbon nanofibers grown on NIPS-derived porous nickel as a flexible electrode for supercapacitors. Materials Chemistry Frontiers, 2020, 4, 2976-2981.	5.9	13
48	Hierarchical Defect Engineering for LiCoO2 through Low-Solubility Trace Element Doping. CheM, 2020, 6, 2759-2769.	11.7	74
49	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	6.1	17
50	A high voltage Li-ion full-cell battery with MnCo2O4/LiCoPO4 electrodes. Ceramics International, 2020, 46, 26147-26155.	4.8	10
51	Layered Oxide Cathode for Potassiumâ€ion Battery: Recent Progress and Prospective. Small, 2020, 16, e2002700.	10.0	52
52	IC Design for a Two-Mode Buck Converter Optimized for Both Light and Heavy Load. , 2020, , .		3
53	Shaping Li Deposits from Wild Dendrites to Regular Crystals via the Ferroelectric Effect. Nano Letters, 2020, 20, 7680-7687.	9.1	29
54	Hierarchical Selfâ€Supported Carbon Nanostructure Enables Superior Stability of Highly Nitrogenâ€Doped anodes. ChemElectroChem, 2020, 7, 3883-3888.	3.4	1

#	Article	IF	CITATIONS
55	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 22334-22339.	2.0	9
56	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 22150-22155.	13.8	55
57	Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni–Co–Al Cathode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 22549-22558.	3.7	11
58	Promoting the Electrocatalytic Activity of Ti ₃ C ₂ T _x MXene by Modulating CO ₂ Adsorption through Oxygen Vacancies for Highâ€Performance Lithium arbon Dioxide Batteries. ChemElectroChem, 2020, 7, 4922-4930.	3.4	10
59	A novel bifunctional oxygen electrode architecture enabled by heterostructures self-scaffolding for lithium–oxygen batteries. Journal of Energy Chemistry, 2020, 51, 216-221.	12.9	6
60	Tuning the electronic band structure of Mott–Schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium–oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 11337-11345.	10.3	38
61	Transparent Flexible Heteroepitaxy of NiO Coated AZO Nanorods Arrays on Muscovites for Enhanced Energy Storage Application. Small, 2020, 16, 2000020.	10.0	10
62	Cycling a Lithium Metal Anode at 90 °C in a Liquid Electrolyte. Angewandte Chemie, 2020, 132, 15221-15225.	2.0	57
63	Cycling a Lithium Metal Anode at 90 °C in a Liquid Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 15109-15113.	13.8	61
64	Atomicâ€Scale Dispersed Feâ€Based Catalysts Confined on Nitrogenâ€Doped Graphene for Liâ€S Batteries: Polysulfides with Enhanced Conversion Efficiency. Chemistry - A European Journal, 2020, 26, 10314-10320.	3.3	24
65	Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review. Chemical Research in Chinese Universities, 2020, 36, 377-385.	2.6	24
66	A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020, 49, 3806-3833.	38.1	323
68	Direct carbonization of black liquor powders into 3D honeycomb-like porous carbons with a tunable disordered degree for sodium-ion batteries. New Journal of Chemistry, 2020, 44, 10697-10702.	2.8	3
69	Origin of extra capacity in the solid electrolyte interphase near high-capacity iron carbide anodes for Li ion batteries. Energy and Environmental Science, 2020, 13, 2924-2937.	30.8	68
70	In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Materials, 2020, 30, 27-33.	18.0	90
71	Fiber-Shape Na ₃ V ₂ (PO ₄) ₂ F ₃ @N-Doped Carbon as a Cathode Material with Enhanced Cycling Stability for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 25920-25929.	8.0	58
72	Research progress of nanocellulose for electrochemical energy storage: A review. Journal of Energy Chemistry, 2020, 51, 342-361.	12.9	67
73	Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator*. Chinese Physics B, 2020, 29, 088201.	1.4	6

ARTICLE IF CITATIONS Uniform Mesoporous CoCO 3 Nanospindles on Graphite Nanosheets for Highly Efficient Lithium 2.3 3 74 Storage. Particle and Particle Systems Characterization, 2020, 37, 2000113. Wearable Bipolar Rechargeable Aluminum Battery., 2020, 2, 808-813. 19 76 A FigureÂof Merit for Flexible Batteries. Joule, 2020, 4, 1346-1349. 24.0 81 Carbon-Intercalated Montmorillonite as Efficient Polysulfide Mediator for Enhancing the 5.1 Performance of Lithium–Sulfur Batteries. Energy & amp; Fuels, 2020, 34, 8947-8955. Enriched pseudocapacitive lithium storage in electrochemically activated carbonaceous vanadium(<scp>iv</scp>, <scp>v</scp>) oxide hydrate. Journal of Materials Chemistry A, 2020, 8, 78 10.3 8 13183-13196. The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries. Small, 2020, 16, e2001989. 79 Facile Synthesis of Core-Shell Structured SiO2@Carbon Composite Nanorods for High-Performance 80 4.1 17 Lithium-Ion Batteries. Nanomaterials, 2020, 10, 513. Strategies toward Highâ€Loading Lithiumâ€"Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082. 19.5 272 Mesoporous Graphene Hosts for Dendrite-Free Lithium Metal Anode in Working Rechargeable 82 6.4 33 Batteries. Transactions of Tianjin University, 2020, 26, 127-134. NiO nanosheets grown on carbon cloth as mesoporous cathode for High-performance lithium-sulfur battery. Materials Letters, 2020, 268, 127622. Integrated lithium metal anode protected by composite solid electrolyte film enables stable 84 9.0 50 quasi-solid-state lithium metal batteries. Chinese Chemical Letters, 2020, 31, 2339-2342. Invigorating the Catalytic Activity of Cobalt Selenide via Structural Phase Transition Engineering for Lithium–Oxygen Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 5018-5027. Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912. 86 14.9 121 Slurryâ€Coated Sulfur/Sulfide Cathode with Li Metal Anode for Allâ€Solidâ€State Lithiumâ€Sulfur Pouch 87 Cells. Batteries and Supercaps, 2020, 3, 596-603. Improving LiNi_xCo_yMn_{1â^'xâ^'y}O₂ cathode electrolyte 88 3.7 36 interface under high voltage in lithium ion batteries. Nano Select, 2020, 1, 111-134. Recent advances in architecture design of nanoarrays for flexible solid-state aqueous batteries. Nano 2.2 Futures, 2020, 4, 032002. Poly(maleic anhydride) copolymersâ€based polymer electrolytes enlighten highly safe and 90 3.7 8 highâ€energyâ€density lithium metal batteries: Advances and prospects. Nano Śelect, 2020, 1, 59-78. Ultrahigh rate capability supercapacitors based on tremella-like nitrogen and phosphorus co-doped 24 graphene. Materials Chemistry Frontiers, 2020, 4, 2704-2715.

#	Article	IF	CITATIONS
92	Efficient Laserâ€Induced Construction of Oxygenâ€Vacancy Abundant Nanoâ€ZnCo ₂ O ₄ /Porous Reduced Graphene Oxide Hybrids toward Exceptional Capacitive Lithium Storage. Small, 2020, 16, e2001526.	10.0	48
93	Durian-Inspired Design of Bismuth–Antimony Alloy Arrays for Robust Sodium Storage. ACS Nano, 2020, 14, 9117-9124.	14.6	71
94	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	10.3	54
95	Electroanalytical methods and their hyphenated techniques for novel ion battery anode research. Energy and Environmental Science, 2020, 13, 2618-2656.	30.8	29
96	An aromatic carbonyl compound-linked conjugated microporous polymer as an advanced cathode material for lithium-organic batteries. Materials Chemistry Frontiers, 2020, 4, 2697-2703.	5.9	34
97	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	48.7	284
98	Heterostructured NiS ₂ /ZnIn ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	14.6	113
99	Wiping off oxygen bonding to maximize heteroatom-induced improvement in oxygen reaction activity of metal site for high-performance zinc-air battery. Nanotechnology, 2020, 31, 195403.	2.6	1
100	Recent progress on biomassâ€derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat, 2020, 2, e12019.	11.9	117
101	Asymmetric Air Cathode Design for Enhanced Interfacial Electrocatalytic Reactions in Highâ€Performance Zinc–Air Batteries. Advanced Materials, 2020, 32, e1908488.	21.0	107
102	Mildâ€Temperature Solutionâ€Assisted Encapsulation of Phosphorus into ZIFâ€8 Derived Porous Carbon as Lithiumâ€Ion Battery Anode. Small, 2020, 16, e1907141.	10.0	42
103	Development of a Highâ€Performance Handheld Triboelectric Nanogenerator with a Lightweight Power Transmission Unit. Advanced Materials Technologies, 2020, 5, 2000003.	5.8	20
104	A Mixed Ether Electrolyte for Lithium Metal Anode Protection in Working Lithium–Sulfur Batteries. Energy and Environmental Materials, 2020, 3, 160-165.	12.8	85
105	Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€5tate Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629.	21.0	140
106	Atomic interlamellar ion path in polymeric separator enables long-life and dendrite-free anode in lithium ion batteries. Journal of Power Sources, 2020, 451, 227773.	7.8	52
107	Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1909887.	14.9	251
108	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	21.0	61
109	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	8.6	177

#	Article	IF	Citations
110	Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes. Journal of Energy Chemistry, 2020, 51, 1-6.	12.9	69
111	Multifunctional Selenium Vacancy Coupling with Interface Engineering Enables High-Stability Li–O ₂ Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 6667-6674.	6.7	22
112	A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636.	4.1	43
113	Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. Journal of the Electrochemical Society, 2020, 167, 060516.	2.9	23
114	Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 2021, 55, 80-91.	12.9	57
115	Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. Journal of Energy Chemistry, 2021, 54, 754-760.	12.9	25
116	Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. Chinese Chemical Letters, 2021, 32, 1161-1164.	9.0	35
117	A system for characterisation of piezoelectric materials and associated electronics for vibration powered energy harvesting devices. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108285.	5.0	15
118	Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40, 1357-1365.	7.1	27
119	A versatile route to metal oxide nanoparticles impregnated in carbon matrix for electrochemical energy storage. Chemical Engineering Journal, 2021, 404, 126461.	12.7	11
120	Gallium-based anodes for alkali metal ion batteries. Journal of Energy Chemistry, 2021, 55, 557-571.	12.9	27
121	Phosphoric acid and thermal treatments reveal the peculiar role of surface oxygen anions in lithium and manganese-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 264-273.	10.3	26
122	Comparative life cycle assessment of high performance lithium-sulfur battery cathodes. Journal of Cleaner Production, 2021, 282, 124528.	9.3	26
123	Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021, 57, 451-468.	12.9	245
124	Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery. Journal of Colloid and Interface Science, 2021, 582, 852-858.	9.4	24
125	Fibrous Materials for Flexible Li–S Battery. Advanced Energy Materials, 2021, 11, 2002580.	19.5	85
126	Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage. Energy Storage Materials, 2021, 34, 45-52.	18.0	48
127	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	32.8	97

#	Article	IF	CITATIONS
128	Recent developments and future perspectives of anionic batteries. Journal of Power Sources, 2021, 481, 228877.	7.8	68
129	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	9.5	71
130	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy, 2021, 79, 105481.	16.0	32
131	Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries. Chemical Engineering Journal, 2021, 413, 127404.	12.7	39
132	Theoretical investigation on lithium polysulfide adsorption and conversion for high-performance Li–S batteries. Nanoscale, 2021, 13, 15-35.	5.6	37
133	A review on the failure and regulation of solid electrolyte interphase in lithium batteries. Journal of Energy Chemistry, 2021, 59, 306-319.	12.9	183
134	Insight into effects of niobium on electrospun Li2TiSiO5 fibers as anode materials in lithium-ion batteries. Materials Research Bulletin, 2021, 136, 111145.	5.2	5
135	Carbonâ€based materials for allâ€solidâ€state zinc–air batteries. , 2021, 3, 50-65.		54
136	Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective. Energy Storage Materials, 2021, 35, 443-469.	18.0	42
137	Vanadate-based electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 1585-1609.	5.9	12
138	Competitive Solid-Electrolyte Interphase Formation on Working Lithium Anodes. Trends in Chemistry, 2021, 3, 5-14.	8.5	34
139	One-pot supercritical water synthesis of Bi2MoO6-RGO 2D heterostructure as anodes for Li-ion batteries. Ceramics International, 2021, 47, 10274-10283.	4.8	15
140	Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 585, 328-336.	9.4	29
141	Structural orientation effect of cellulose nanocrystals (CNC) films on electrochemical kinetics and stability in lithium-ion batteries. Chemical Engineering Journal, 2021, 417, 128128.	12.7	23
142	Propelling electrochemical kinetics of transition metal oxide for high-rate lithium-ion battery through in situ deoxidation. Journal of Colloid and Interface Science, 2021, 587, 590-596.	9.4	22
143	An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices. European Journal of Inorganic Chemistry, 2021, 2021, 606-619.	2.0	25
144	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	12.9	26

0			n	
	ΙΤΔΤ	$1 \cap N$	IVER	PORT
<u> </u>	/			

#	ARTICLE	IF	CITATIONS
146	Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Materials Chemistry Frontiers, 2021, 5, 1315-1323.	5.9	38
147	Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small, 2021, 17, e1903854.	10.0	45
148	Li ₂ Sâ€Based Liâ€Ion Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	10.0	41
149	Recent Progress on the Alloyâ€Based Anode for Sodiumâ€Ion Batteries and Potassiumâ€Ion Batteries. Small, 2021, 17, e1903194.	10.0	284
150	Cobalt Chalcogenides/Cobalt Phosphides/Cobaltates with Hierarchical Nanostructures for Anode Materials of Lithiumâ€ion Batteries: Improving the Lithiation Environment. Small, 2021, 17, e1903418.	10.0	30
151	Na ₃ VO ₄ as a new anode material for lithium-ion batteries. New Journal of Chemistry, 2021, 45, 11506-11511.	2.8	10
152	Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 10251-10259.	10.3	66
153	Remarkably Elevated Permittivity Achieved in PVDF/1D La2TiO5 Composite Film Materials with Low-Level Dielectric Loss by Adding 2D V2C MXene Phase. Journal of Electronic Materials, 2021, 50, 2182-2189.	2.2	2
154	A controllable thermal-sensitivity separator with an organic–inorganic hybrid interlayer for high-safety lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2313-2319.	5.9	10
155	Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. Journal of Materials Chemistry A, 2021, 9, 25286-25324.	10.3	48
156	Recent advances in cathode engineering to enable reversible room-temperature aluminium–sulfur batteries. Nanoscale Advances, 2021, 3, 1569-1581.	4.6	25
157	Sb ₂ O ₃ nanoparticles anchored on N-doped graphene nanoribbons as improved anode for sodium-ion batteries. RSC Advances, 2021, 11, 31566-31571.	3.6	3
158	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	38.1	385
159	Nickel-iron layered double hydroxides for an improved Ni/Fe hybrid battery-electrolyser. Materials Advances, 2021, 2, 5076-5088.	5.4	6
160	Valorization of carbon fiber waste from the aeronautics sector: an application in Li-ion batteries. Green Chemistry, 2021, 23, 2464-2470.	9.0	4
161	Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. Journal of Materials Chemistry A, 2021, 9, 6487-6498.	10.3	44
162	Metal–organic framework-based materials: advances, exploits, and challenges in promoting post Li-ion battery technologies. Materials Advances, 2021, 2, 2457-2482.	5.4	30
163	An aqueous polyethylene oxide-based solid-state electrolyte with high voltage stability for dendrite-free lithium deposition <i>via</i> a self-healing electrostatic shield. Dalton Transactions, 2021, 50, 14296-14302.	3.3	7

#	Article	IF	CITATIONS
164	Solid-state integrated micro-supercapacitor array construction with low-cost porous biochar. Materials Chemistry Frontiers, 2021, 5, 4772-4779.	5.9	5
165	Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research, 2021, 36, 2-25.	2.6	22
166	Manganese dioxide nanosheet coated carbon cloth as a multifunctional interlayer for advanced lithium–sulfur batteries. Materials Advances, 2021, 2, 688-691.	5.4	5
167	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	12.2	51
168	Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 9771-9779.	10.3	21
169	A four-electron Zn-12 aqueous battery enabled by reversible Iâ^'/I2/I+ conversion. Nature Communications, 2021, 12, 170.	12.8	144
171	Metal–Organic Aerogel Assisted Reduced Graphene Oxide Coated Sulfur as a Cathode Material for Lithium Sulfur Batteries. Energy & Fuels, 2021, 35, 2742-2749.	5.1	13
172	Pathways of Developing Highâ€Energyâ€Density Flexible Lithium Batteries. Advanced Materials, 2021, 33, e2004419.	21.0	68
173	Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect, 2021, 6, 1127-1161.	1.5	17
174	Scavenging energy from a vibrating building using distributed electromagnetic energy harvesters with nonlinear circuits. Journal of Intelligent Material Systems and Structures, 2021, 32, 2244-2259.	2.5	3
175	Binding Se into nitrogenâ€doped porous carbon nanosheets for highâ€performance potassium storage. InformaÄnÃ-Materiály, 2021, 3, 421-431.	17.3	48
176	B2O3-Doped LATP Class-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods. Nanomaterials, 2021, 11, 390.	4.1	16
177	Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research. Cell Reports Physical Science, 2021, 2, 100327.	5.6	16
178	Ultrathin and Nonâ€Flammable Dualâ€Salt Polymer Electrolyte for Highâ€Energyâ€Density Lithiumâ€Metal Battery. Advanced Functional Materials, 2021, 31, 2010261.	14.9	78
179	Adaptation of electrodes and printable gel polymer electrolytes for optimized fully organic batteries. Journal of Polymer Science, 2021, 59, 494-501.	3.8	7
180	Study of Electrolyte and Electrode Composition Changes vs Time in Aged Li-Ion Cells. Journal of the Electrochemical Society, 2021, 168, 020532.	2.9	20
181	Critical Current Density in Solidâ€ s tate Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials, 2021, 31, 2009925.	14.9	239
182	Hardware architecture for real-time EEG-based functional brain connectivity parameter extraction. Journal of Neural Engineering, 2021, 18, 036012.	3.5	3

#	Article	IF	CITATIONS
183	Metal Catalyst to Construct Carbon Nanotubes Networks on Metal Oxide Microparticles towards Designing Highâ€Performance Electrode for Highâ€Voltage Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2009122.	14.9	34
184	Renewable biomassâ€derived carbons for electrochemical capacitor applications. SusMat, 2021, 1, 211-240.	14.9	98
185	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	14.9	208
186	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	19.1	74
187	The Defect Chemistry of Carbon Frameworks for Regulating the Lithium Nucleation and Growth Behaviors in Lithium Metal Anodes. Small, 2021, 17, e2007142.	10.0	35
188	3D Printed Li–S Batteries with In Situ Decorated Li ₂ S/C Cathode: Interface Engineering Induced Loadingâ€Insensitivity for Scaled Areal Performance. Advanced Energy Materials, 2021, 11, 2100420.	19.5	37
189	Architectural Engineering Achieves Highâ€Performance Alloying Anodes for Lithium and Sodium Ion Batteries. Small, 2021, 17, e2005248.	10.0	42
190	Advances of polymer binders for <scp>siliconâ€based</scp> anodes in high energy density <scp>lithiumâ€ion</scp> batteries. InformaÄnÃ-Materiály, 2021, 3, 460-501.	17.3	163
191	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	3.4	43
192	Cationic-Polymer-Functionalized Separator As a High-Efficiency Polysulfide Shuttle Barrier for Long-Life Li–S Battery. ACS Applied Energy Materials, 2021, 4, 2914-2921.	5.1	21
193	Reasonably Introduced ZnIn ₂ S ₄ @C to Mediate Polysulfide Redox for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 14169-14180.	8.0	13
194	A Δ <i>E</i> Â= 0.63 V Bifunctional Oxygen Electrocatalyst Enables Highâ€Rate and Long ycling Zinc–Air Batteries. Advanced Materials, 2021, 33, e2008606.	21.0	154
195	Micronanostructured Design of Dendriteâ€Free Zinc Anodes and Their Applications in Aqueous Zincâ€Based Rechargeable Batteries. Small Structures, 2021, 2, 2000128.	12.0	79
196	A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Materials, 2021, 36, 272-278.	18.0	31
197	Recent progress on the recycling technology of Li-ion batteries. Journal of Energy Chemistry, 2021, 55, 391-419.	12.9	212
198	Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Research, 2022, 15, 352-360.	10.4	93
199	Bismuth oxycarbonate Nanoplates@α-Ni(OH)2 nanosheets 2D plate-on-sheet heterostructure as electrode for high-performance supercapacitor. Journal of Alloys and Compounds, 2021, 860, 158495.	5.5	13
200	First-principle study of Ti2XS2 (XÂ=ÂC/N) MXenes as high capacity anodes for rechargeable potassium-ion batteries. Applied Surface Science, 2021, 546, 149096.	6.1	12

#	Article	IF	CITATIONS
201	Nitrate Additives Coordinated with Crown Ether Stabilize Lithium Metal Anodes in Carbonate Electrolyte. Advanced Functional Materials, 2021, 31, 2102128.	14.9	56
202	Synergistic Effect of Temperature and Electrolyte Concentration on Solidâ€State Interphase for Highâ€Performance Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100010.	5.8	2
203	Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & amp; related batteries. Materials Today, 2021, 49, 253-270.	14.2	29
204	Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 2021, 37, 152-158.	3.5	10
205	A Study on the Perceived Marketability of ShoeVid-19 as an Effective Disinfecting Shoe Rack. , 2021, , .		0
206	Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter, 2021, 4, 1511-1527.	10.0	107
207	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	18.0	116
208	Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Advanced Science, 2021, 8, 2004814.	11.2	44
209	Molten salt synthesis of LiMn 1 . 2 Ni 0 . 3 Cr 0 . 1 Co 0 . 15 Al 0 . 23 La. International Journal of Energy Research, 2021, 45, 15424-15437.	4.5	3
210	Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy Storage Materials, 2021, 37, 628-647.	18.0	94
211	A review on the recovery of metal values from spent nickel metal hydride and lithium-ion batteries. International Journal of Environmental Science and Technology, 2022, 19, 4537-4554.	3.5	16
212	3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. ACS Applied Materials & Interfaces, 2021, 13, 24785-24794.	8.0	38
213	Challenges, fabrications and horizons of oxide solid electrolytes for solidâ€state lithium batteries. Nano Select, 2021, 2, 2256-2274.	3.7	26
214	Poly(vinylidene fluoride) separators for nextâ€generation lithium based batteries. Nano Select, 2021, 2, 2308-2345.	3.7	14
215	Recent Advances on Sodiumâ€ion Batteries and Sodium Dualâ€ion Batteries: Stateâ€ofâ€theâ€Art Na ^{+Host Anode Materials. Small Science, 2021, 1, 2100014.}	P}.9	65
216	A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals, 2021, 40, 3019.	7.1	74
217	Interfacial engineering of <scp>lithiumâ€polymer</scp> batteries with in situ <scp>UV</scp> crossâ€linking. InformaÄnÃ-Materiály, 2021, 3, 1016-1027.	17.3	10
218	Can Aqueous Zinc–Air Batteries Work at Subâ€Zero Temperatures?. Angewandte Chemie, 2021, 133, 15409-15413.	2.0	53

#	Article	IF	CITATIONS
219	The social dimension of renewable energy storage in electricity markets: The role of partnerships. Energy Research and Social Science, 2021, 76, 102072.	6.4	10
220	A Selfâ€Limited Freeâ€Standing Sulfide Electrolyte Thin Film for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101985.	14.9	77
221	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	19.5	129
222	Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. Journal of Materials Science: Materials in Electronics, 2021, 32, 14610-14622.	2.2	13
223	Can Aqueous Zinc–Air Batteries Work at Subâ€Zero Temperatures?. Angewandte Chemie - International Edition, 2021, 60, 15281-15285.	13.8	76
224	Fast Li Plating Behavior Probed by X-ray Computed Tomography. Nano Letters, 2021, 21, 5254-5261.	9.1	19
225	Energy Storage Mechanism, Challenge and Design Strategies of Metal Sulfides for Rechargeable Sodium/Potassiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2103912.	14.9	108
226	Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte. Journal of Electrochemical Science and Technology, 2021, 12, 424-430.	2.2	2
227	Graphene Aerosol Gel Ink for Printing Micro-Supercapacitors. ACS Applied Energy Materials, 2021, 4, 7632-7641.	5.1	19
228	Ultrathin 5 μ4m Thick Silicon Nanowires Intercalated with Reduced Graphene Oxide Binderless Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6391-6398.	5.1	1
229	Novel low-cost, high-energy-density (>700ÂWhÂkgâ^'1) Li-rich organic cathodes for Li-ion batteries. Chemical Engineering Journal, 2021, 415, 128509.	12.7	29
230	Sustainable-inspired design of efficient organic electrodes for rechargeable sodium-ion batteries: Conversion of P-waste into E-wealth device. Sustainable Materials and Technologies, 2021, 28, e00247.	3.3	5
231	Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering. Journal of Colloid and Interface Science, 2021, 594, 540-549.	9.4	43
232	In Situ Chemical Lithiation Transforms Diamondâ€Like Carbon into an Ultrastrong Ion Conductor for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Materials, 2021, 33, e2100793.	21.0	82
233	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3, 1083-1109.	17.3	35
234	Dual arbon Confined SnP ₂ O ₇ with Enhanced Pseudocapacitances for Improved Li/Naâ€lon Batteries. ChemElectroChem, 2021, 8, 2708-2714.	3.4	6
235	In-situ mechanochemical synthesis of sub-micro Si/Sn@SiOx-C composite as high-rate anode material for lithium-ion batteries. Electrochimica Acta, 2021, 384, 138413.	5.2	12
236	Role of Lithiophilic Metal Sites in Lithium Metal Anodes. Energy & Fuels, 2021, 35, 12746-12752.	5.1	16

#	Article	IF	CITATIONS
237	Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO ₃ by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2021, 13, 33133-33146.	8.0	25
238	Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations. Sensors, 2021, 21, 5041.	3.8	99
239	A combinatorial study of electrochemical anion intercalation into graphite. Materials Research Express, 2021, 8, 085502.	1.6	5
240	Energy storage selection and operation for night-time survival of small lunar surface systems. Acta Astronautica, 2021, 185, 308-318.	3.2	2
241	Cu-Doped Alloy Layer Guiding Uniform Li Deposition on a Li–LLZO Interface under High Current Density. ACS Applied Materials & Interfaces, 2021, 13, 42212-42219.	8.0	23
242	Dual-heterostructures decorated interweaved carbon nanofibers sulfur host for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 418, 129388.	12.7	27
243	Deciphering the Effect of Electrical Conductivity of Hosts on Lithium Deposition in Composite Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2101654.	19.5	49
244	The control of lithiumâ€ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: A review. International Journal of Energy Research, 2021, 45, 20524-20544.	4.5	53
245	Scalable Solvent-Based Fabrication of Thermo-Responsive Polymer Nanocomposites for Battery Safety Regulation. Journal of the Electrochemical Society, 2021, 168, 080507.	2.9	3
246	Ironâ€Based Layered Cathodes for Sodiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	4.7	19
248	Circular economy of Li Batteries: Technologies and trends. Journal of Energy Storage, 2021, 40, 102690.	8.1	65
249	How Can the Electrode Influence the Formation of the Solid Electrolyte Interface?. ACS Energy Letters, 2021, 6, 3307-3320.	17.4	60
250	Patterned separator membranes with pillar surface microstructures for improved battery performance. Journal of Colloid and Interface Science, 2021, 596, 158-172.	9.4	4
251	Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology, 2021, 57, 56-71.	3.6	79
252	Strain engineering of ion migration in LiCoO2. Frontiers of Physics, 2022, 17, 1.	5.0	15
253	Review of the lâ^'/l3â^' redox chemistry in Zn-iodine redox flow batteries. Materials Research Bulletin, 2021, 141, 111347.	5.2	24
254	Hard Carbon Anodes for Nextâ€Generation Liâ€lon Batteries: Review and Perspective. Advanced Energy Materials, 2021, 11, 2101650.	19.5	213
255	Hybrid and Aqueous Li ⁺ –Ni Metal Batteries. CCS Chemistry, 2021, 3, 2498-2508.	7.8	23

#	Article	IF	CITATIONS
256	Ionâ€Inserted Metal–Organic Frameworks Accelerate the Mass Transfer Kinetics in Lithium–Sulfur Batteries. Small, 2021, 17, e2104367.	10.0	13
257	Technology for recycling and regenerating graphite from spent lithium-ion batteries. Chinese Journal of Chemical Engineering, 2021, 39, 37-50.	3.5	38
258	Decoration of carbon nanofibers with bimetal sulfides as interlayer for high performance lithium-sulfur battery. Materials Today Communications, 2021, 28, 102666.	1.9	5
259	<scp>Antiâ€perovskite</scp> materials for energy storage batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	32
260	In-situ construction of stable cathode/Li interfaces simultaneously via different electron density azo compounds for solid-state lithium metal batteries. Energy Storage Materials, 2021, 40, 394-401.	18.0	20
261	SiO <i>_x</i> Anode: From Fundamental Mechanism toward Industrial Application. Small, 2021, 17, e2102641.	10.0	57
262	Modulating Sand's time by ion-transport-enhancement toward dendrite-free lithium metal anode. Nano Research, 2022, 15, 3150-3160.	10.4	25
263	Functional carbons for energy applications. Materials Research Bulletin, 2021, 142, 111425.	5.2	14
264	Ordered lithium ion channels of covalent organic frameworks with lithiophilic groups enable uniform and efficient Li plating/stripping. Journal of Energy Chemistry, 2021, 61, 135-140.	12.9	13
265	Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. Journal of Colloid and Interface Science, 2021, 600, 586-593.	9.4	32
266	Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites. Journal of Colloid and Interface Science, 2021, 599, 271-279.	9.4	3
267	Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. Journal of Energy Storage, 2021, 43, 103112.	8.1	32
268	Active site synergy of the mixed-phase cobalt diselenides with slight lattice distortion for highly reversible and stable lithium oxygen batteries. Journal of Materials Science and Technology, 2021, 92, 159-170.	10.7	1
269	Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries. Chemical Engineering Journal, 2021, 423, 130127.	12.7	32
270	Recent progress in solution assembly of 2D materials for wearable energy storage applications. Journal of Energy Chemistry, 2021, 62, 27-42.	12.9	29
271	New insights into "dead lithium―during stripping in lithium metal batteries. Journal of Energy Chemistry, 2021, 62, 289-294.	12.9	115
272	Co/Zn bimetal organic framework elliptical nanosheets on flexible conductive fabric for energy harvesting and environmental monitoring via triboelectricity. Nano Energy, 2021, 89, 106355.	16.0	26
273	Interfacial interaction between molybdenum phosphide and N, P co-doped hollow carbon fibers boosting the oxygen electrode reactions in zinc-air batteries. Electrochimica Acta, 2021, 395, 139211.	5.2	8

#	Article	IF	CITATIONS
274	The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium–sulfur batteries. Journal of Energy Chemistry, 2022, 64, 568-573.	12.9	56
275	Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes. Journal of Energy Chemistry, 2022, 64, 172-178.	12.9	42
276	Facile fabrication of Fe0.8Mn1.2O3 with various nanostructures for high-performance lithium-ion batteries. Chemical Engineering Journal, 2022, 427, 131697.	12.7	8
277	Anion effect on Li/Na/K hybrid electrolytes for Graphite//NCA (LiNi0.8Co0.15Al0.05O2) Li-ion batteries. Journal of Energy Chemistry, 2022, 64, 451-462.	12.9	8
278	Adjusting the d-band center of metallic sites in NiFe-based Bimetal-organic frameworks via tensile strain to achieve High-performance oxygen electrode catalysts for Lithium-oxygen batteries. Journal of Colloid and Interface Science, 2022, 607, 1215-1225.	9.4	20
279	Polyaniline Encapsulated Amorphous V ₂ O ₅ Nanowireâ€Modified Multiâ€Functional Separators for Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2001056.	8.6	86
280	Non-flammable liquid electrolytes for safe batteries. Materials Horizons, 2021, 8, 2913-2928.	12.2	58
281	High-Voltage "Single-Crystal―Cathode Materials for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 1918-1932.	5.1	93
282	Metastable marcasite NiSe ₂ nanodendrites on carbon fiber clothes to suppress polysulfide shuttling for high-performance lithium–sulfur batteries. Nanoscale, 2021, 13, 16487-16498.	5.6	13
283	Rapid prototyping and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs. Journal of Materials Chemistry A, 2021, 9, 16255-16280.	10.3	11
284	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	21.0	205
285	Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 14815-14826.	5.5	13
286	Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances, 2021, 2021, .	11.0	179
287	Boosting Zn ²⁺ and NH ₄ ⁺ Storage in Aqueous Media via Inâ€Situ Electrochemical Induced VS ₂ /VO <i>_x</i> Heterostructures. Advanced Functional Materials, 2021, 31, 2008743.	14.9	92
288	Red Phosphorousâ€Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendriteâ€Free Sodium and Potassium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003381.	19.5	102
289	Full Activation of Mn ⁴⁺ /Mn ³⁺ Redox in Na ₄ MnCr(PO ₄) ₃ as a Highâ€Voltage and Highâ€Rate Cathode Material for Sodiumâ€Ion Batteries. Small, 2020, 16, e2001524.	10.0	98
290	Layerâ€byâ€Layer Selfâ€Assembled Nanostructured Electrodes for Lithiumâ€Ion Batteries. Small, 2021, 17, e2006434.	10.0	12
291	Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Materials, 2020, 32, 497-516.	18.0	125

#	Article	IF	CITATIONS
292	Facile synthesis of FeCO3/nitrogen-doped carbon dot composites for lithium-ion battery anodes. Journal of Alloys and Compounds, 2020, 838, 155508.	5.5	20
293	High-Performance Polypyrrole Coated Filter Paper Electrode for Flexible All-Solid-State Supercapacitor. Journal of the Electrochemical Society, 2020, 167, 140533.	2.9	10
294	Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. Nanoscale Research Letters, 2019, 14, 366.	5.7	18
295	Recent progress in tackling Zn anode challenges for Zn ion batteries. Journal of Materials Chemistry A, 2021, 9, 25750-25772.	10.3	29
296	Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: A review. Energy Storage Materials, 2022, 44, 390-407.	18.0	42
297	Natural Lepidolite Enables Fast Polysulfide Redox for Highâ€Rate Lithium Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2102058.	19.5	47
298	Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses. Energies, 2021, 14, 6558.	3.1	7
299	Cadmium(II) coordination polymer based on flexible dithiolate-polyamine binary ligands system: Crystal structure, Hirshfeld surface analysis, antimicrobial, and DNA cleavage potential. Polyhedron, 2022, 211, 115544.	2.2	7
300	Transport In and Optimization of Aligned-Channel Li-Ion Electrode Architectures. Journal of the Electrochemical Society, 2021, 168, 100536.	2.9	4
301	A Review on Drive Train Technologies for Passenger Electric Vehicles. Energies, 2021, 14, 6742.	3.1	33
302	A Quinone-Based Cathode Material for High-Performance Organic Lithium and Sodium Batteries. ACS Applied Energy Materials, 2021, 4, 12084-12090.	5.1	9
303	Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Engineering Research Express, 2021, 3, 045022.	1.6	5
304	3D Cross-linked Ti3C2Tx-Ca-SA films with expanded Ti3C2Tx interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. Journal of Colloid and Interface Science, 2022, 610, 295-303.	9.4	11
305	A Polycationâ€Modified Nanofillers Tailored Polymer Electrolytes Fiber for Versatile Biomechanical Energy Harvesting and Fullâ€Range Personal Healthcare Sensing. Advanced Functional Materials, 2022, 32, 2106731.	14.9	33
306	High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction. Nano Energy, 2022, 91, 106667.	16.0	36
307	Battery-Related Injuries in Children and Adults. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1665-1670.	0.3	0
308	Designing conductive networks of hybrid carbon enables stable and long-lifespan cotton-fiber-based lithium–sulfur batteries. RSC Advances, 2021, 11, 34955-34962.	3.6	6
309	Discharge analysis and temperature management of LiFePO4 battery pack for Electric Vehicles. , 2021, , .		0

#	Article	IF	CITATIONS
310	Estimating State of Charge and State of Health of Vented NiCd Batteries with Evolution of Electrochemical Parameters. Jom, 2021, 73, 4085.	1.9	2
311	Constructing Robust Cross-Linked Binder Networks for Silicon Anodes with Improved Lithium Storage Performance. ACS Applied Materials & Interfaces, 2021, 13, 53818-53828.	8.0	32
312	On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures. ACS Biomaterials Science and Engineering, 2023, 9, 2070-2086.	5.2	12
313	Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research, 0, , 1-24.	2.6	1
315	Concept of Thermodynamic Studies in Electrochemical Storage and Conversion Systems. , 2022, , 264-274.		1
316	Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion. Carbon, 2022, 187, 321-329.	10.3	19
317	Electrochemical performance of expanded graphite prepared from anthracite via a microwave method. Fuel Processing Technology, 2022, 227, 107100.	7.2	16
318	Metal–Organic Framework Separator as a Polyselenide Filter for High-Performance Lithium–Selenium Batteries. ACS Applied Energy Materials, 2021, 4, 13450-13460.	5.1	8
319	Phase structure and electrochemical characteristics of CaNi4.7Mn0.3 hydrogen storage alloy by mechanical alloying. Journal of Solid State Electrochemistry, 2022, 26, 457-468.	2.5	7
320	Porous Structure of Cylindrical Particle Compacts. Micromachines, 2021, 12, 1498.	2.9	3
321	Ultralight Materials. , 2022, , 395-438.		0
322	Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li–S Battery Applications. Energy & Fuels, 2021, 35, 18285-18307.	5.1	37
323	Syntheses, challenges and modifications of single-crystal cathodes for lithium-ion battery. Journal of Energy Chemistry, 2021, 63, 217-229.	12.9	30
324	Regulating lithium-ion flux in the solid electrolyte interphase layer to prevent lithium dendrite growth on lithium metal anode. Journal of Energy Storage, 2022, 47, 103668.	8.1	8
325	Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Advanced Science, 2022, 9, e2103879.	11.2	98
326	Amphiphilic Bottlebrush Polymeric Binders for Highâ€Mass‣oading Cathodes in Lithiumâ€ŀon Batteries. Advanced Energy Materials, 2022, 12, .	19.5	33
327	A high capacity aqueous zinc-based chlorine ion battery improved by zinc selenide-modified anode. Inorganic Chemistry Communication, 2021, 134, 109068.	3.9	5
328	Thermodynamic Studies on Energy Density of Batteries. , 2022, , 275-285.		0

#	Article	IF	CITATIONS
329	Theoretical Investigation of a Novel Three-Phase Alternating Current Liquid Metal Vortex Magnetohydrodynamic Generator. SSRN Electronic Journal, 0, , .	0.4	0
330	Co,N-co-doped graphene sheet as a sulfur host for high-performance lithium–sulfur batteries. RSC Advances, 2022, 12, 1375-1383.	3.6	5
331	Lignin-derived materials and their applications in rechargeable batteries. Green Chemistry, 2022, 24, 565-584.	9.0	37
332	Electrospun conductive carbon nanofiber hosts for stable zinc metal anode. International Journal of Energy Research, 2022, 46, 7201-7214.	4.5	11
334	Probing lattice defects in crystalline battery cathode using hard X-ray nanoprobe with data-driven modeling. Energy Storage Materials, 2022, 45, 647-655.	18.0	7
335	Rational design of graphene oxide wrapped porous microspheres as high-performance sulfur cathode in lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 899, 163240.	5.5	5
336	A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries. Journal of Energy Chemistry, 2022, 68, 548-555.	12.9	46
337	Engineering V ₂ O ₃ nanoarrays with abundant localized defects towards high-voltage aqueous supercapacitors. Journal of Materials Chemistry A, 2022, 10, 4825-4832.	10.3	6
338	Quantification of the Dynamic Interface Evolution in Highâ€Efficiency Working Liâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	13
339	Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries. Inorganic Chemistry Frontiers, 2022, 9, 925-934.	6.0	16
340	Precisely quantifying bulk transition metal valence evolution in conventional battery electrode by inverse partial fluorescence yield. Journal of Energy Chemistry, 2022, 69, 363-368.	12.9	4
341	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	30.8	313
342	Sandwich-like solid composite electrolytes employed as bifunctional separators for safe lithium metal batteries with excellent cycling performance. Journal of Materials Chemistry A, 2022, 10, 4660-4670.	10.3	6
344	Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International, 2022, 32, 1-9.	4.4	59
345	Quantification of the Dynamic Interface Evolution in Highâ€Efficiency Working Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	66
346	Modulating superlattice structure and cyclic stability of Ce2Ni7-type LaY2Ni10.5-based alloys by Mn, Al, and Zr substitutions. Journal of Power Sources, 2022, 524, 231067.	7.8	16
347	Prediction of battery thermal behaviour in the presence of a constructal theory-based heat pipe (CBHP): A multiphysics model and pattern-based machine learning approach. Journal of Energy Storage, 2022, 48, 103963.	8.1	28
348	Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Materials, 2022, 46, 563-569.	18.0	28

	Сіта	CITATION REPORT	
# 349	ARTICLE A multifunctional protective layer with biomimetic ionic channel suppressing dendrite and side	IF 9.4	CITATIONS 8
350	reactions on zinc metal anodes. Journal of Colloid and Interface Science, 2022, 613, 136-145. In Situ/Operando Raman Techniques in Lithium–Sulfur Batteries. Small Structures, 2022, 3, .	12.0	44
351	Catalytic polysulfide conversion in lithium-sulfur batteries by platinum nanoparticles supported on carbonized microspheres. Chemical Engineering Journal, 2022, 435, 135112.	12.7	11
352	Prussian Blue Analogues for Sodium″on Batteries: Past, Present, and Future. Advanced Materials, 202 34, e2108384.	2, _{21.0}	252
353	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2022, 52, 225-249.	14.2	39
354	Key to intimately coupling metal chalcogenides with a carbon nanonetwork for potassium-ion storage. Journal of Materials Chemistry A, 2022, 10, 8958-8965.	10.3	6
355	Synthesis of O3-Namno2 for Sodium Ion Batteries by a Sol-Gel Method. SSRN Electronic Journal, 0, , .	0.4	0
356	Intrinsic Defects, Diffusion and Dopants in AVSi2O6 (A = Li and Na) Electrode Materials. Batteries, 2022 8, 20.	2, 4.5	1
357	Life-Related Hazards of Materials Applied to Mg–S Batteries. Energies, 2022, 15, 1543.	3.1	1
358	Complex <scp>permittivityâ€dependent</scp> plasma <scp>confinementâ€assisted</scp> growth of asymmetric vertical graphene nanofiber membrane for <scp>highâ€performance Liâ€6</scp> full cells. InformaÄnÃ-Materiály, 2022, 4, .	17.3	45
359	Roomâ€ŧemperature metal–sulfur batteries: What can we learn from <scp>lithium–sulfur</scp> ?. InformaÄnĀ-Materiály, 2022, 4, .	17.3	45
360	Facile, Atom-Economic, Chemical Thinning Strategy for Ultrathin Lithium Foils. Nano Letters, 2022, 22, 3047-3053.	9.1	16
361	Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review. Sensors, 2022, 22, 2244.	3.8	6
362	Air sensitivity of electrode materials in Li/Na ion batteries: Issues and strategies. InformaÄnÃ-Materiály, 2022, 4, .	17.3	43
363	Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition. Journal of Energy Chemistry, 2022, 71, 324-332 Mercey Chemistry, 2022, 71, 324-332 tp://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>12.9</td><td>10</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub>	12.9	10
364	mathvariant= "normal">C>: A Promising Building Block for the Anode of <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="infine" overflow="scroli"><mmi:miow></mmi:miow></mmi:math> : A Promising Building Block for the Anode of <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="infine" overflow="scroli"><mmi:miow></mmi:miow></mmi:math> : A Promising Building Block for the Anode of <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="infine" overflow="scroli"><mmi:miow></mmi:miow></mmi:math> : A Promising Building Block for the Anode of <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="infine" overflow="scroli"><mmi:miow></mmi:miow></mmi:math> : A Promising Building Block for the Anode of <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="infine" overflow="scroli"><mmi:miow></mmi:miow></mmi:math> : A Promising Building Block for the Anode of <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="infine" overflow="scroli"><mmi:miow></mmi:miow></mmi:math> : A Promising Building display="infine" overflow="scroli"> <mmi:miow></mmi:miow> <td>3.8</td> <td>5</td>	3.8	5
365	Nanoflakes: A High-Performance Flexible Renewable Energy Storage Device. Energy & amp; Fuels, 2022, 36, 4076-4086.	5.1	13
366	Influence of Polarizability on the Structure, Dynamic Characteristics, and Ion-Transport Mechanisms in Polymeric Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 2583-2592.	2.6	11

#	Article	IF	CITATIONS
367	Promoting Reversibility of Multielectron Redox in Alkali-Rich Sulfide Cathodes through Cryomilling. Chemistry of Materials, 2022, 34, 3236-3245.	6.7	1
368	Recent Advances in Printed Thin-Film Batteries. Engineering, 2022, 13, 238-261.	6.7	14
369	Construction of Mixed Ionicâ€Electronic Conducting Scaffolds in Zn Powder: A Scalable Route to Dendriteâ€Free and Flexible Zn Anodes. Advanced Materials, 2022, 34, e2200860.	21.0	54
370	Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery. Surface and Coatings Technology, 2022, 436, 128270.	4.8	9
371	Sulfur-doped LaNiO3 perovskite oxides with enriched anionic vacancies and manipulated orbital occupancy facilitating oxygen electrode reactions in lithium-oxygen batteries. Materials Today Chemistry, 2022, 24, 100889.	3.5	5
372	A review on the recent advances in binder-free electrodes for electrochemical energy storage application. Journal of Energy Storage, 2022, 50, 104283.	8.1	57
373	Polyether sulfone and Li6.4La3Zr1.4Ta0.6O12 based polymer-in-ceramic electrolyte with enhanced conductivity at low temperature for solid state lithium batteries. Applied Materials Today, 2022, 27, 101447.	4.3	4
374	Organic/inorganic hybrid quaternary ionogel electrolyte with low lithium-ion association and uniform lithium flux for lithium secondary batteries. Electrochimica Acta, 2022, 416, 140292.	5.2	7
375	Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation. Energy, 2022, 251, 123895.	8.8	37
376	Lonicerae flos-derived N, S co-doped graphitized carbon uniformly embedded with FeS2 nanoparticles as anode materials for high performance lithium ion batteries. Journal of Alloys and Compounds, 2022, 909, 164707.	5.5	12
377	The preparation of Al2O3-Na2SO4 composites derived from local kaolin through an alkaline destruction combined with sulphatization method. IOP Conference Series: Earth and Environmental Science, 2021, 882, 012026.	0.3	0
378	Structural tuneability and electrochemical energy storage applications of <scp>resorcinolâ€formaldehyde</scp> â€based carbon aerogels. International Journal of Energy Research, 2022, 46, 5478-5502.	4.5	10
379	Rational Design of β-NiOOH Nanosheet-Sheathed CNTs as a Highly Efficient Electrocatalyst for Practical Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58789-58798.	8.0	5
380	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Advanced Functional Materials, 2022, 32, .	14.9	43
381	Research progress on solid polymer electrolytes. Chinese Science Bulletin, 2021, , .	0.7	2
382	A Toolbox of Reference Electrodes for Lithium Batteries. Advanced Functional Materials, 2022, 32, .	14.9	27
383	Failure Mechanism of Lithiophilic Sites in Composite Lithium Metal Anode under Practical Conditions. Advanced Energy Materials, 2022, 12, .	19.5	56
384	Bifunctional polymer electrolyte with higher lithium-ion transference number for lithium-sulfur batteries. Journal of Central South University, 2021, 28, 3681-3693.	3.0	12

#	Article	IF	CITATIONS
385	Free-Standing N, P Codoped Hollow Carbon Fibers as Efficient Hosts for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14191-14197.	5.1	8
386	Stable Li–Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. ACS Applied Materials & Interfaces, 2021, 13, 60054-60062.	8.0	21
387	Sodium-ion battery from sea salt: a review. Materials for Renewable and Sustainable Energy, 2022, 11, 71-89.	3.6	13
388	Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. Journal of Energy Chemistry, 2022, 71, 351-369.	12.9	59
389	Dataâ€driven battery degradation prediction: Forecasting voltageâ€capacity curves using oneâ€cycle data. EcoMat, 2022, 4, .	11.9	14
390	Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?. Journal of the American Chemical Society, 2022, 144, 8591-8604.	13.7	18
391	High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries. Energy and Environmental Science, 2022, 15, 3015-3023.	30.8	25
392	An insight into the sodium-ion and lithium-ion storage properties of CuS/graphitic carbon nitride nanocomposite. RSC Advances, 2022, 12, 12383-12395.	3.6	10
393	A perspective on energy chemistry of low-temperature lithium metal batteries. , 2022, 1, 72-81.		18
394	From Lychee Seeds to Hierarchical Fe ₃ O ₄ /Carbon Composite Anodes for Lithium-Ion Batteries: A High Additional Value Conversion-Based Self-Assembly Strategy. Energy & Fuels, 2022, 36, 5027-5035.	5.1	2
395	Anticorrosive performance of green deep eutectic solvent for electrochemical capacitor. Chemical Engineering Journal, 2022, 444, 136594.	12.7	9
396	Interface science in polymerâ€based composite solid electrolytes in lithium metal batteries. SusMat, 2022, 2, 264-292.	14.9	21
397	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	47.7	138
398	Battery recycling for sustainable future: recent progress, challenges, and perspectives. , 2022, , 123-138.		0
399	Design of experiments applied to lithium-ion batteries: A literature review. Applied Energy, 2022, 320, 119305.	10.1	52
400	Anodeâ€Free Solidâ€State Lithium Batteries: A Review. Advanced Energy Materials, 2022, 12, .	19.5	81
401	Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?. , 2022, 1, e9120012.		83
402	Solar Energy Harvesting to Improve Capabilities of Wearable Devices. Sensors, 2022, 22, 3950.	3.8	17

#	Article	IF	CITATIONS
403	Effects of Paradigm Color and Screen Brightness on Visual Fatigue in Light Environment of Night Based on Eye Tracker and EEG Acquisition Equipment. Sensors, 2022, 22, 4082.	3.8	6
404	Recovery of rare earth elements from spent NiMH batteries using subcritical water extraction with citric acid. Journal of Environmental Chemical Engineering, 2022, 10, 108000.	6.7	10
405	Review of various sulfide electrolyte types for solid-state lithium-ion batteries. Open Engineering, 2022, 12, 409-423.	1.6	17
406	Impact of Using a Predictive Neural Network of Multi-Term Zenith Angle Function on Energy Management of Solar-Harvesting Sensor Nodes. SSRN Electronic Journal, 0, , .	0.4	3
407	Reconfigurable Power Circuits to Series or Parallel for Energy-Balanced Multicell Battery Pack. IEEE Transactions on Industrial Electronics, 2023, 70, 3641-3651.	7.9	4
408	Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications. Frontiers of Materials Science, 2022, 16, .	2.2	5
409	MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 2008.	4.1	10
410	Cross-linked binder enables reversible volume changes of Si-based anodes from sustainable photovoltaic waste silicon. Materials Today Sustainability, 2022, 19, 100178.	4.1	8
411	Hierarchical Engineering for High-Energy-Oriented Sodium-Ion Batteries. Accounts of Materials Research, 2022, 3, 672-684.	11.7	14
412	Nextâ€Generation Energy Harvesting and Storage Technologies for Robots Across All Scales. Advanced Intelligent Systems, 2023, 5, .	6.1	10
413	Li ₈ MnO ₆ : A Novel Cathode Material with Only Anionic Redox. ACS Applied Materials & amp; Interfaces, 2022, 14, 29832-29843.	8.0	2
414	Simulation design for thermal model from various materials in electronic devices: A review. Numerical Heat Transfer; Part A: Applications, 2022, 82, 640-665.	2.1	3
415	Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries. Crystals, 2022, 12, 885.	2.2	6
416	[<i>tert</i> -Butyl(diphenyl)silyl] trifluoromethanesulfonate acts as an effective additive for high-voltage lithium metal batteries. Materials Chemistry Frontiers, 0, , .	5.9	0
417	Ï€-Conjugated polymeric materials for cutting-edge electrochemical energy storage devices. , 2022, , 145-173.		0
418	Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries. RSC Advances, 2022, 12, 20360-20378.	3.6	5
419	Durable Zn-ion hybrid capacitors using 3D printed carbon composites. Journal of Materials Chemistry A, 2022, 10, 15665-15676.	10.3	21
420	Fabrication of Flexible Li-ion Battery Electrodes Using "Battlets" Approach with Ionic Liquid Electrolyte for Powering Wearable Devices. , 2022, , .		3

#	Article	IF	CITATIONS
421	Exploration of two-dimensional molybdenum-borides and potential applications. Npj 2D Materials and Applications, 2022, 6, .	7.9	2
422	Porous Electrode Modeling and its Applications to Liâ€ŀon Batteries. Advanced Energy Materials, 2022, 12, .	19.5	50
423	Aqueous sol-gel synthesis, structural, thermoanalytical studies, and conductivity properties of lithium lanthanum titanate. Thermochimica Acta, 2022, 715, 179268.	2.7	1
424	Ag doped ZnSnO3 nanocubes: Promotion on the charge storage mechanism for supercapacitors. Journal of Physics and Chemistry of Solids, 2022, 169, 110894.	4.0	1
425	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	18.0	58
426	Progress in the development of solid-state electrolytes for reversible room-temperature sodium–sulfur batteries. Materials Advances, 2022, 3, 6415-6440.	5.4	26
427	Coaxial Hard Carbon oated Carbon Nanotubes as Anodes for Sodiumâ€ion Batteries. ChemNanoMat, 2022, 8, .	2.8	1
428	Reclaimed Î-MnO2 from exhausted Zn/C primary cells as active cathode in secondary Zn2+ ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 2479-2489.	2.5	1
429	Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: The roles of prelithiation and working mechanism. Materials Today, 2022, 58, 80-90.	14.2	11
430	Tug-of-War in the Selection of Materials for Battery Technologies. Batteries, 2022, 8, 105.	4.5	7
431	Regulating solvation environment of Li ions via high donor number anions for high-performance Li-metal batteries. Chemical Engineering Journal, 2022, 450, 138369.	12.7	8
432	Surface Film Formation from Sodium Polysulfide Decomposition on Sodium-Metal Anode Surface. Journal of Physical Chemistry C, 2022, 126, 16615-16626.	3.1	5
433	High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. Journal of Colloid and Interface Science, 2023, 629, 279-287.	9.4	23
434	Tailoring mixed geometrical configurations in amorphous catalysts to activate oxygen electrode reactions of lithium-oxygen batteries. Chemical Engineering Journal, 2023, 452, 139162.	12.7	17
435	Chemical energy storage technologies. , 2023, , 426-439.		1
436	A Perspective on Sulfur-Equivalent Cathode Materials for Lithium-Sulfur Batteries. , 0, 1, .		1
437	<i>In situ</i> growth of CoO nanosheets on a carbon fiber derived from corn cellulose as an advanced hybrid anode for lithium-ion batteries. New Journal of Chemistry, 2022, 46, 18664-18670.	2.8	3
438	Micro-tabless-pouch-cell (MTPC) with high energy density and exposed functional current collector for flexible device. Chemical Engineering Journal, 2023, 451, 138913.	12.7	8

#	Article	IF	CITATIONS
439	Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries. Proceedings of the Indian National Science Academy, 2022, 88, 430-438.	1.4	4
440	Formation of a CoMn‣ayered Double Hydroxide/Graphite Supercapacitor by a Single Electrochemical Step. ChemSusChem, 2022, 15, .	6.8	9
441	Improvement Strategies toward Stable Lithiumâ€Metal Anodes for Highâ€Energy Batteries. Batteries and Supercaps, 2022, 5, .	4.7	4
442	Insight into Cellulose Nanosizing for Advanced Electrochemical Energy Storage and Conversion: A Review. Electrochemical Energy Reviews, 2022, 5, .	25.5	8
443	Grapheneâ€Oxideâ€Encapsulated Fe ₂ O ₃ Nanoparticles with Different Dimensions as Lithiumâ€Ion Battery Anodes: The Morphology Effect of Fe ₂ O ₃ . ChemistrySelect, 2022, 7, .	1.5	2
444	Direct recovery: A sustainable recycling technology for spent lithium-ion battery. Energy Storage Materials, 2023, 54, 120-134.	18.0	82
445	Remote Electric Vehicle Battery Monitoring & Life Cycle Management System. , 2022, , .		0
446	Linearized Tracking of Dendritic Evolution in Rechargeable Batteries. Journal of the Electrochemical Society, 2022, 169, 112507.	2.9	1
447	Thermalâ€Stable Separators: Design Principles and Strategies Towards Safe Lithiumâ€lon Battery Operations. ChemSusChem, 2022, 15, .	6.8	13
448	V ₂ O ₅ as a versatile electrode material for postlithium energy storage systems. , 2023, 2, .		7
449	A simple electrospinning strategy to achieve the uniform distribution of ultra-fine CoP nanocrystals on carbon nanofibers for efficient lithium storage. Carbon Letters, 2023, 33, 203-213.	5.9	4
450	Recent advancement in rechargeable battery technologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	4.1	6
451	The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. , 2022, 1, e9120037.		63
452	All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester. Nano Energy, 2022, 104, 107878.	16.0	13
453	Deposition behavior regulated by an SPSF@PMIA nanofiber separator for high-performance zinc ion batteries. Journal of Materials Chemistry A, 2022, 10, 24761-24771.	10.3	23
454	A 6.78MHz Mid-Range Wireless Power Charging System for Milliwatt-Power-Level Long-term Biomedical Sensing Applications. , 2022, , .		1
455	Porous MOF derived TiO2/ZnO/C@CNTs composites for enhancing lithium storage performance. Chemical Engineering Journal, 2023, 454, 140454.	12.7	14
456	Design Strategies toward Highâ€Performance Hybrid Carbon Bilayer Anode for Improved Ion Transport and Reaction Stability. Advanced Functional Materials, 2023, 33, .	14.9	1

#	Article	IF	CITATIONS
457	Status Quo on Graphene Electrode Catalysts for Improved Oxygen Reduction and Evolution Reactions in Li-Air Batteries. Molecules, 2022, 27, 7851.	3.8	3
458	A comprehensive review on power conditioning units and control techniques in fuel cell hybrid systems. Energy Reports, 2022, 8, 14236-14258.	5.1	9
459	Blending of Activated Low-Grade Coal Powder with Coconut Shell Waste for Supercapacitor Applications. Energy & Fuels, 2022, 36, 14476-14489.	5.1	7
460	Cellulose Nanocrystals (CNC) Liquid Crystalline State in Suspension: An Overview. , 2022, 1, 244-278.		3
461	An overview of metal-air batteries, current progress, and future perspectives. Journal of Energy Storage, 2022, 56, 106075.	8.1	12
463	Electrode/electrolyte additives for practical sodium-ion batteries: a mini review. Inorganic Chemistry Frontiers, 2022, 10, 37-48.	6.0	11
464	Bamboo mat-inspired interlocking compact textile electrodes for high-energy-density flexible lithium-ion full batteries. Energy Storage Materials, 2023, 55, 388-396.	18.0	4
465	Three dimensional graphene composites: preparation, morphology and their multi-functional applications. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107335.	7.6	20
466	Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy, 2023, 266, 126408.	8.8	37
467	An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries. Green Chemistry, 2022, 24, 9552-9564.	9.0	7
468	Metal sulfide heterojunction with tunable interfacial electronic structure as an efficient catalyst for lithium-oxygen batteries. Science China Materials, 2023, 66, 1341-1351.	6.3	3
469	Wearable and Flexible Multifunctional Sensor Based on Laser-Induced Graphene for the Sports Monitoring System. ACS Applied Materials & Interfaces, 2022, 14, 54170-54181.	8.0	27
470	Photoâ€Assisted Metalâ€Air Batteries: Recent Progress, Challenges and Opportunities. Chemistry - A European Journal, 2023, 29, .	3.3	3
471	Magnesium Bis(Oxalate)Borate as a Potential Electrolyte for Rechargeable Magnesium Ion Batteries. Journal of Electronic Materials, 2023, 52, 1250-1257.	2.2	6
472	Ion-Conducting Robust Cross-Linked Organic/Inorganic Polymer Composite as Effective Binder for Electrode of Electrochemical Capacitor. Polymers, 2022, 14, 5174.	4.5	0
473	Unraveling the fundamentals of pulsed laser-assisted synthesis of nanomaterials in liquids: Applications in energy and the environment. Applied Physics Reviews, 2022, 9, .	11.3	26
474	Halide double perovskite-based efficient mechanical energy harvester and storage devices for self-charging power unit. Nano Energy, 2023, 107, 108148.	16.0	4
475	Aluminum/Bromate and Aluminum/Iodate Mechanically Rechargeable Batteries. Batteries, 2022, 8, 270.	4.5	0

		CITATION REPORT		
#	Article		IF	Citations
476	Facile Access to Fabricate Carbon Dots and Perspective of Largeâ \in Scale Applications. S	Small, 2023, 19, .	10.0	21
477	Spin-State Regulation of Nickel Cobalt Spinel toward Enhancing the Electron Transfer F Oxygen Redox Reactions in Lithium–Oxygen Batteries. Energy & Fuels, 2023, 33	Process of 7, 735-745.	5.1	3
478	High-capacity proton battery based on π-conjugated N-containing organic compound. Acta, 2023, 442, 141870.	Electrochimica	5.2	4
479	Vessel-UAV Collaborative Optimization for the Offshore Oil and Gas Pipelines Inspectic International Journal of Fuzzy Systems, 2023, 25, 382-394.	on.	4.0	1
480	Use of Water-In-Salt Concentrated Liquid Electrolytes in Electrochemical Energy Storag Art and Perspectives. Batteries, 2023, 9, 47.	ge: State of the	4.5	8
481	Tensor Network-Based MIMO Volterra Model for Lithium-Ion Batteries. IEEE Transaction Systems Technology, 2023, , 1-14.	ns on Control	5.2	1
482	From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review. Biosenso	rs, 2023, 13, 113.	4.7	15
483	Refined DFTï¼< <mml:math altim<br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e1616"><mml:mi>U</mml:mi></mml:math> method for compu oxide cathode materials. Electrochimica Acta, 2023, 443, 141912.	ng="si81.svg" tation of layered	5.2	3
484	Strain Compensation Methods for Fiber Bragg Grating Temperature Sensors Suitable for into Lithium-Ion Battery Electrolyte. Batteries, 2023, 9, 34.	or Integration	4.5	3
485	Wearable and Washable MnO2â~'Zn Battery Packaged by Vacuum Sealing. Nanomater	ials, 2023, 13, 265.	4.1	1
486	Fast and reliable calibration of thermal-physical model of lithium-ion battery: a sensitivi method. Journal of Energy Storage, 2023, 59, 106435.	ty-based	8.1	4
487	A novel zinc ion supercapacitor with ultrahigh capacity and ultralong cycling lives enha redox electrolyte. Journal of Energy Storage, 2023, 60, 106597.	nced by	8.1	2
488	A Review on the Status and Challenges of Cathodes in Roomâ€Temperature Naâ€S Ba Functional Materials, 2023, 33, .	tteries. Advanced	14.9	19
489	Mo ₂ P ₂ O ₁₁ : A Potential Cathode Material for R Sodium-Ion Batteries. Energy & Fuels, 2023, 37, 1288-1296.	echargeable	5.1	5
490	Sustainable production and application of biochar for energy storage and conversion. ,	2023, , 333-364.		1
491	Processing Temperature Impact on TiNb ₂ O ₇ Thick All Active Lithium-Ion Battery Electrodes. Journal of the Electrochemical Society, 2023, 170, 010		2.9	4
492	An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High N ACS Applied Materials & Interfaces, 2023, 15, 6594-6602.	lass Loading.	8.0	13
493	Conformal Coating of a High-Voltage Spinel to Stabilize LiCoO ₂ at 4.6 V. Materials & amp; Interfaces, 2023, 15, 5326-5335.	ACS Applied	8.0	9

#	Article	IF	CITATIONS
494	Fabrication of an Energy-Dense, Binder-Free Zn//V ₅ O ₁₂ ·6H ₂ O Solid-State In-Plane Flexible Battery via a Rapid and Scalable Approach. ACS Applied Energy Materials, 2023, 6, 1799-1809.	5.1	4
496	Economical cobalt-free single-crystal LiNi0.6Mn0.4O2 cathodes for high-performance lithium-ion batteries. Journal of Solid State Electrochemistry, 2023, 27, 1363-1372.	2.5	3
497	The hidden use cochlear implant. Journal of Laryngology and Otology, 0, , 1-23.	0.8	0
498	A stepwise oxidation strategy for the synthesis of amorphous V ₂ O ₅ @V ₂ CT _{<i>x</i>} nanohybrid cathodes toward high-performance aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2023, 11, 8224-8234.	10.3	8
499	Capacity degradation analysis of the rechargeable iron ion batteries using post-mortem analysis and the impedance spectroscopy. Ionics, 2023, 29, 1497-1506.	2.4	8
500	Effect of preparation temperature on the structure and lithium storage properties of multicomponent composites fabricated by one-step thermal decomposition method from the leaching liquor of jarosite residue. Ionics, 2023, 29, 1359-1368.	2.4	Ο
501	Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent performance cathode for Li-Se batteries. New Carbon Materials, 2023, 38, 190-198.	6.1	3
502	2D graphitic carbon nitride as the efficient cathode material for the non-aqueous rechargeable iron-ion battery under an ambient environment. Journal of Power Sources, 2023, 567, 232943.	7.8	15
503	Facile preparation of Fe3O4/ZnFe2O4/ZnS/C composite from the leaching liquor of jarosite residue as a high-performance anode material for Li-ion batteries. Journal of Alloys and Compounds, 2023, 952, 169993.	5.5	3
504	Multifunctional polymer electrolyte membrane networks for energy storage via ion-dipole complexation in lithium metal battery. Journal of Energy Storage, 2023, 64, 107138.	8.1	2
505	Recyclable 3Dâ€Printed Aqueous Lithiumâ€Ion Battery. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	1
506	Vacancy engineering in Co-doped CuS1- with fast Electronic/Ionic migration kinetics for efficient Lithium-Ion batteries. Journal of Colloid and Interface Science, 2023, 641, 176-186.	9.4	2
507	Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy, 2023, 108, 108223.	16.0	9
508	Hydrogen-Bond Restructuring of Water-in-Salt Electrolyte Confined in Ti ₃ C ₂ T _{<i>x</i>} MXene Monitored by Operando Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2023, 14, 1578-1584.	4.6	3
509	Reversible Thermally-Responsive Copolymer Valve for Manipulating Water Wicking. ACS Applied Electronic Materials, 2023, 5, 1097-1105.	4.3	1
510	The electrochemical behavior of silica and activated carbon materials derived from the rice husk waste for li-ion cells. Diamond and Related Materials, 2023, 133, 109759.	3.9	4
511	2D Materials Boost Advanced Zn Anodes: Principles, Advances, and Challenges. Nano-Micro Letters, 2023, 15, .	27.0	19
512	Copper electrode preparation by a selective laser reduction of copper oxide on lignin fiber membranes and its application as a photodetector. Optics Express, 2023, 31, 8190.	3.4	2

#	Article	IF	CITATIONS
513	Nanostructure Engineering and Electronic Modulation of a PtNi Alloy Catalyst for Enhanced Oxygen Reduction Electrocatalysis in Zinc–Air Batteries. Journal of Physical Chemistry Letters, 2023, 14, 1740-1747.	4.6	11
514	Unraveling the effect of excessive Al on the growth of high-quality YbAl3 film. Materials Today Physics, 2023, 32, 101008.	6.0	0
515	Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes. Chemical Reviews, 2023, 123, 1327-1363.	47.7	62
516	Intercalation Pseudocapacitance of Cation-Exchanged Molybdenum-Based Polyoxometalate for the Fast and Stable Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2023, 15, 9350-9361.	8.0	4
517	Effect of Zr4+ on Lithium-Ion Conductivity of Garnet-Type Li5+xLa3(Nb2â^'xZrx)O12 Solid Electrolytes. Batteries, 2023, 9, 137.	4.5	2
518	A Survey on Energy Storage: Techniques and Challenges. Energies, 2023, 16, 2271.	3.1	12
519	Future of Lithium Ion Batteries for Electric Vehicles: Problems and Expected Developments. Lecture Notes in Mechanical Engineering, 2023, , 524-540.	0.4	0
520	Extension of the TraPPE Force Field for Battery Electrolyte Solvents. Journal of Physical Chemistry B, 2023, 127, 2224-2236.	2.6	1
521	Development of PI controller for CC-CV charging method of Li-ion battery. , 2022, , .		1
522	Bisphenol-Derived Single-Ion Conducting Multiblock Copolymers as Lithium Battery Electrolytes: Impact of the Bisphenol Building Block. Macromolecules, 2023, 56, 2505-2514.	4.8	2
523	Nanocomposite polymer electrolyte-based poly(ethylene oxide) reinforced with nanocellulose from oil palm empty fruit bunch: electrical and electrochemical insights. , 2023, , 173-185.		0
524	Utilization of the spent catalyst as a raw material for rechargeable battery production: The effect of leaching time, type, and concentration of organic acids. International Journal of Renewable Energy Development, 2023, 12, 459-466.	2.4	0
525	Lithium-ion Differential Thermal Analysis Studies of the Effects of Long-Term Li-ion Cell Storage on Electrolyte Composition and Implications for Cell State of Health. Journal of the Electrochemical Society, 2023, 170, 030543.	2.9	1
527	Selenium-Doped Sulfurized Poly(acrylonitrile) Composites as Ultrastable and High-Volumetric-Capacity Cathodes for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2023, 6, 3903-3914.	5.1	3
528	Electrochemical properties of the <scp>CaNi₄</scp> _. <scp>₈M_{0.2}</scp> (MMg, Zn, and) T	j ETQq0 0	0 ₁ gBT /Ove
	Progress and Sustainable Energy, 2023, 42, .		
529	A hierarchical SiO2-microsphere-graphene host enabling superior long-term cycling for lithium-metal anodes. Journal of Alloys and Compounds, 2023, 955, 169949.	5.5	2
530	A comprehensive overview of MXeneâ€based anode materials for univalent metal ions (Li ⁺ ,) Tj ETQ 2023, 8, .	q0 0 0 rgB 1.5	T /Overlock 0
531	Enabling stable and high-rate of an olivine-type cathode LiFePO ₄ for Li-ion batteries by using graphene nanoribbons as conductive agent. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2023, 14, 015009.	1.5	2

#	Article	IF	CITATIONS
532	Regression and Monte Carlo Approach to Lithium-Ion Battery Capacity Degradation Modeling and Prediction for Heating Systems. , 2023, , .		0
533	Dynamic Galvanic Corrosion of Working Lithium Metal Anode Under Practical Conditions. Advanced Energy Materials, 2023, 13, .	19.5	7
534	Investigation of aluminum current collector degradation in lithium-ion batteries using glow discharge optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2023, 205, 106681.	2.9	1
535	Solid composite electrolyte formed via CeO2 nanoparticles and supramolecular network material for lithium-ion batteries. Journal of the Australian Ceramic Society, 0, , .	1.9	0
536	Optimization of Chitosan: Methylcellulose polyblend to obtain highly amorphous polymer matrix useful for ion transportation. Indian Journal of Physics, 2023, 97, 3483-3493.	1.8	1
537	Materials Towards the Development of Li Rechargeable Thin Film Battery. , 2023, 2, 26-40.		3
538	SYNTHESIS AND INVESTIGATION OF ELECTROCHEMICAL CHARACTERISTICS OF OXIDE LI-CONDUCTIVE MATERIALS WITH SPINEL AND PEROSKITE STRUCTURES. Ukrainian Chemistry Journal, 2023, 89, 3-17.	0.5	0
539	Sizing and Lifecycle Assessment of Electrochemical Batteries for Electric Vehicles and Renewable Energy Storage Systems. , 0, , .		0
540	Self-Healing Binder for High-Voltage Batteries. ACS Applied Materials & Interfaces, 2023, 15, 21517-21525.	8.0	2
541	Application of T _{4,4,4} -graphyne for anode of Na-ion battery: first principle theoretical study. Molecular Simulation, 2023, 49, 1044-1050.	2.0	3
542	Allâ€Impurities Scavenging, Safe Separators with Functional Metalâ€Organicâ€Frameworks for Highâ€Energyâ€Density Liâ€Ion Battery. Advanced Functional Materials, 2023, 33, .	14.9	12
543	Maskâ€Based Separator with Sustainedâ€Release LiNO ₃ as Dendrite Growth Barrier for Potassium Metal Battery. Advanced Energy Materials, 2023, 13, .	19.5	3
544	Thermal runaway behaviors of Li-ion batteries after low temperature aging: Experimental study and predictive modeling. Journal of Energy Storage, 2023, 66, 107451.	8.1	7
545	Rare-metal-free Zn–air batteries with ultrahigh voltage and high power density achieved by iron azaphthalocyanine unimolecular layer (AZUL) electrocatalysts and acid/alkaline tandem aqueous electrolyte cells. , 2023, 1, .		5
546	Structure Regulation of Electric Double Layer via Hydrogen Bonding Effect to Realize Highâ€Stability Lithiumâ€Metal Batteries. Energy and Environmental Materials, 0, , .	12.8	1
548	A review on the role of graphene quantum dots and carbon quantum dots in secondary-ion battery electrodes. FlatChem, 2023, 40, 100516.	5.6	4
549	Synergistic Effect of Crosslinked Organic–Inorganic Composite Protective Layer for High Performance Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	14.9	3
550	Designing MXene-Wrapped AgCl@Carbon core shell cathode for robust quasi-solid-state Ag-Zn battery with ultralong cycle life. Energy Storage Materials, 2023, 60, 102836.	18.0	1

#	Article	IF	CITATIONS
551	Conductive Polymer/Nanocellulose Composites as a Functional Platform for Electronic Devices: A Mini-Review. Polymer Reviews, 2024, 64, 162-191.	10.9	2
552	A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions. Energy, 2023, 278, 128027.	8.8	3
553	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513.	13.7	22
554	CNT/turanite/FeNdCo-alloy electrodes to enhance the capacitance of waterproof/eco-friendly supercapacitors. New Journal of Chemistry, 2023, 47, 12217-12228.	2.8	1
555	Influence of binder and solvents on the electrochemical performance of screen-printed MXene electrodes. Nanotechnology, 2023, 34, 375401.	2.6	0
556	Emerging 2D MXenes as next-generation materials for energy storage applications. Journal of Energy Storage, 2023, 70, 108004.	8.1	9
557	Silver-carbon interlayers in anode-free solid-state lithium metal batteries: Current development, interfacial issues, and instability challenges. Carbon, 2023, 213, 118225.	10.3	1
558	Development of high-performance zinc-ion batteries: Issues, mitigation strategies, and perspectives. Journal of Energy Storage, 2023, 70, 108081.	8.1	6
559	Direct-current output of silicon–organic monolayer–platinum Schottky TENGs: Elusive friction-output relationship. Nano Energy, 2023, 114, 108627.	16.0	5
560	High-Modulus Single-Ion-Conducting Electrolytes Based on a Rigid-Rod Polyanion. ACS Applied Energy Materials, 0, , .	5.1	1
561	Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems. Journal of Power Sources, 2023, 580, 233343.	7.8	18
562	Green preparation of flake nano porous carbon: For sulfur scaffolds in high-performance lithium sulfur batteries. Journal of Energy Storage, 2023, 67, 107466.	8.1	1
563	Three-dimensional porous Na4MnV(PO4)3 constructed by Aspergillus niger biological template as a high performance cathode for sodium ion batteries. Electrochimica Acta, 2023, 458, 142521.	5.2	1
564	Enhanced flotation separation of spodumene and albite via selective adsorption of N-hydroxy-9-octadecenamide on the mineral surfaces. Minerals Engineering, 2023, 199, 108117.	4.3	7
565	On-Site Cross-Linking of Polyacrylamide to Efficiently Bind the Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 24416-24426.	8.0	3
566	40 Years of Lowâ€Temperature Electrolytes for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
567	40 Years of Lowâ€Temperature Electrolytes for Rechargeable Lithium Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
568	GalvAnalyze: Streamlining Data Analysis of Galvanostatic Battery Cycling. Batteries and Supercaps, 0, ,	4.7	1

#	Article	IF	CITATIONS
569	NiCo alloyâ€anchored selfâ€supporting carbon foam as a bifunctional oxygen electrode for rechargeable and flexible Zn–air batteries. , 2023, 2, .		6
570	Impact of using a predictive neural network of multi-term zenith angle function on energy management of solar-harvesting sensor nodes. Energy Harvesting and Systems, 2024, 11, .	2.7	0
571	Selecting Suitable Battery Technologies for Untethered Robot. Energies, 2023, 16, 4904.	3.1	1
572	Interfacial structure of protic and aprotic ionic liquid-DMSO-Li salt mixtures near charged and neutral electrodes: A Molecular Dynamics study. Journal of Molecular Liquids, 2023, 386, 122492.	4.9	1
574	Rethinking the Electrode Multiscale Microstructures: A Review on Structuring Strategies toward Battery Manufacturing Genome. Advanced Energy Materials, 2023, 13, .	19.5	4
575	Two-in-one structure as both lithium protective layer and electrolyte for safe solid-state lithium-metal battery. Energy Storage Materials, 2023, 61, 102884.	18.0	2
576	A Comprehensive Review for Battery Electric Vehicles (BEV) Drive Circuits Technology, Operations, and Challenges. World Electric Vehicle Journal, 2023, 14, 195.	3.0	3
577	A review on technologies for recovery of metals from waste lithium-ion batteries. Journal of Power Sources, 2023, 580, 233428.	7.8	9
578	Spontaneous electrochemical stabilization of nanostructured organic electrodes by field-induced charge-transfer. Energy Storage Materials, 2023, 61, 102896.	18.0	0
579	Nanoâ€Impact Electrochemistry Reveals Kinetics Information of Metalâ€Ion Battery Materials with Multiple Redox Centers. Angewandte Chemie, 2023, 135, .	2.0	0
580	Nanoâ€Impact Electrochemistry Reveals Kinetics Information of Metalâ€Ion Battery Materials with Multiple Redox Centers. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
581	Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chemical Engineering Journal, 2023, 474, 145114.	12.7	2
582	GaN/graphene heterostructures as promising anode materials for Li-ion batteries. Surfaces and Interfaces, 2023, 42, 103333.	3.0	1
583	Recent Progress in Flame-Retardant Polymer Electrolytes for Solid-State Lithium Metal Batteries. Batteries, 2023, 9, 439.	4.5	3
584	Innovative Personal Assistance: Speech Recognition and NLP-Driven Robot Prototype. Jurnal Nasional Teknik Elektro, 0, , .	0.1	0
585	Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors. Journal of Energy Storage, 2023, 73, 108811.	8.1	1
586	Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage. Molecules, 2023, 28, 6377.	3.8	1
587	Research progress of all-solid-state lithium–sulfur batteries with sulfide solid electrolytes: materials, interfaces, challenges, and prospects. Materials Chemistry Frontiers, 2023, 7, 5760-5785.	5.9	1

#	Article	IF	CITATIONS
588	First Principles Study of Decomposition Reactions in the Electrolyte System Ethylene Carbonate and Lithium Hexafluorophosphate. , 2023, 2, 030506.		0
589	A comparison of the impact of cation chemistry in ionic liquid-based lithium battery electrolytes. Energy Advances, 2023, 2, 1859-1871.	3.3	0
590	Electropolymerisation Technologies for Next-Generation Lithium–Sulphur Batteries. Polymers, 2023, 15, 3231.	4.5	1
591	Coulombic Efficiency for Practical Zinc Metal Batteries: Critical Analysis and Perspectives. Small Methods, 2024, 8, .	8.6	1
592	Redox Flow Batteries: Recent Development in Main Components, Emerging Technologies, Diagnostic Techniques, Large-Scale Applications, and Challenges and Barriers. Batteries, 2023, 9, 409.	4.5	3
593	Nitrogen-Doped Amorphous Carbon/Dual-Phasic TiO ₂ Nanocomposite Electrodes Derived from Ti-Based Metal–Organic Frameworks Designed with a Mixed Linker Combination for High-Rate Lithium Storage. ACS Sustainable Chemistry and Engineering, 2023, 11, 14046-14055.	6.7	0
594	Li ₂ GeS ₃ : Lithium Ionic Conductor with an Unprecedented Structural Type. Inorganic Chemistry, 2023, 62, 15856-15863.	4.0	0
595	Molecular Design of Film-Forming Additives for Lithium-Ion Batteries: Impact of Molecular Substrate Parameters on Cell Performance. ACS Applied Energy Materials, 2023, 6, 9837-9850.	5.1	0
596	Organic phase change composite separators to enhance the safety performance of lithium-ion batteries. Journal of Power Sources, 2023, 584, 233620.	7.8	3
597	Direct Recycling for Advancing Sustainable Battery Solutions. Materials Today Energy, 2023, , 101434.	4.7	0
598	Resynthesis of cathode active material from heterogenous leachate composition produced by electric vehicle (EV) battery recycling stream. Journal of Cleaner Production, 2023, , 139343.	9.3	0
599	Bismuth nanoparticles confined in multi-walled carbon nanotubes toward enhanced sodium storage anodes. Journal of Alloys and Compounds, 2023, 967, 171660.	5.5	0
600	Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2023, 652, 305-316.	9.4	0
601	Electroforming as a Novel One-Step Manufacturing Method of Structured Aluminum Foil Current Collectors for Lithium-Ion Batteries. Batteries, 2023, 9, 422.	4.5	1
602	An Improved Method Based on Support Vector Regression With Application Independent Training for State of Charge Estimation. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	4.7	0
603	Design of High-Precision Infrared Photoelectric Sensor and Its Adoption in Soft Package Counting Management in Workshop. Journal of Nanoelectronics and Optoelectronics, 2023, 18, 459-467.	0.5	1
604	Uniform and Multifunctional PEIâ€POSS/Carbon Encapsulation for Highâ€Rate Performance and Surface Stabilization of Nickelâ€Rich Layered Cathodes in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	14.9	1
605	Nitrogen, phosphorus co-doped holey rGO as a cathode material for Li-ion capacitors (LICs). Applied Surface Science, 2023, 641, 158452.	6.1	0

#	Article	IF	CITATIONS
606	The application of hard carbon with internal quasi-lithium metal deposition in high-energy Li-ion/Li-metal hybrid batteries. Electrochimica Acta, 2023, 468, 143194.	5.2	1
607	A Comprehensive Survey on Artificial Intelligence Empowered Edge Computing on Consumer Electronics. IEEE Transactions on Consumer Electronics, 2023, 69, 1023-1034.	3.6	3
608	The Influence of TiO2 Nanoparticles Morphologies on the Performance of Lithium-Ion Batteries. Nanomaterials, 2023, 13, 2636.	4.1	1
609	Elevates the electrochemical stability performance of hydrothermally synthesized Co3O4 nanowires/NF for hybrid supercapacitors. Inorganic Chemistry Communication, 2023, 158, 111506.	3.9	3
610	Development of dye-sensitized solar cells STEAM learning prototype for supporting educational for sustainable development. EUREKA, Physics and Engineering, 2023, , 56-66.	0.8	0
611	Prospects of battery assembly for electric vehicles based on patent analysis. International Journal of Low-Carbon Technologies, 2023, 18, 1134-1139.	2.6	1
612	Selective Electrophoretic Deposition of Silicon Nanoparticles onto PANâ€Based Carbon Fiber as a Prospective Anode for Structural Liâ€lon Batteries. ChemistrySelect, 2023, 8, .	1.5	0
613	First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect. Journal of Solid State Electrochemistry, 0, , .	2.5	1
614	SPICE modeling of the Li-ion battery pack's charge behavior using QUCS-S software. , 2023, , .		0
615	The effect of biaxial strain on the electronic properties, quantum capacitance and diffusion of Li adsorption on Sc2CO2 MXene. Journal of Energy Storage, 2023, 74, 109159.	8.1	0
616	Nano-enhanced phase change material using salt hydrate and cooper nanoparticles for battery thermal management system: Buoyancy-driven approach. Journal of Energy Storage, 2023, 74, 108788.	8.1	0
617	Interfacially-enhanced quasi-solid electrolyte using ionic liquid for lithium-ion battery. Materials Research Bulletin, 2024, 170, 112588.	5.2	0
619	Reducing interfacial thermal resistance between polyethylene oxide-based solid-state polymer electrolyte and lithium anode by using IVA group two-dimensional materials: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2024, 219, 124864.	4.8	0
620	A review of solid-state lithium metal batteries through in-situ solidification. Science China Chemistry, 0, , .	8.2	1
621	Chemo-mechanical failure of solid composite cathodes accelerated by high-strain anodes in all-solid-state batteries. Energy Storage Materials, 2023, 63, 103049.	18.0	0
623	2D Nano hanneled Molybdenum Compounds for Accelerating Interfacial Polysulfides Catalysis in Li–S Battery. Small, 2024, 20, .	10.0	2
624	State of Health Assessment of Spent Lithium–Ion Batteries Based on Voltage Integral during the Constant Current Charge. Batteries, 2023, 9, 537.	4.5	0
625	Mapping the trends and prospects of battery cathode materials based on patent landscape. Frontiers in Energy, 2023, 17, 822-832.	2.3	1

#	Article	IF	CITATIONS
626	A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis. World Electric Vehicle Journal, 2023, 14, 305.	3.0	2
627	Review of Management System and State-of-Charge Estimation Methods for Electric Vehicles. World Electric Vehicle Journal, 2023, 14, 325.	3.0	0
628	A biocompatible and flexible supercapacitor for wearable electronic devices. Journal of Energy Storage, 2023, 74, 109400.	8.1	2
629	Activating iodine redox by enabling single-atom coordination to dormant nitrogen sites to realize durable zinc–iodine batteries. , 0, , .		0
630	High-performance Li-CO2 batteries enabled by synergistic interaction of iron dopant-modulated catalysts and nitrogen-modified substrates. Journal of Alloys and Compounds, 2024, 976, 173146.	5.5	1
631	Atık LFP Bataryaların Geri Dönüşümü. Gazi Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.6	0
632	Fluorinated bamboo-structure carbon nanotubes: as attractive substrates for the cathodes of lithium–sulfur batteries. Nanotechnology, 2024, 35, 095701.	2.6	0
633	Low-carbon technologies in automotive industry and decarbonizing transport. Journal of Power Sources, 2024, 591, 233888.	7.8	5
634	Construction of FeSbO4-Sb2O4 hetero-nanocrystals anchored on reduced graphene oxide sheets for superior lithium and sodium storage. Applied Surface Science, 2024, 648, 159077.	6.1	1
635	A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability. New Carbon Materials, 2023, 38, 1080-1091.	6.1	0
636	åŒåŠŸèƒ¼z氮氧åŒ−é'›-碳æ¶,å±,æå≢é«~å®1é‡é",离å电æ±ç"' SiOx çš"å,¨é",性能. Science China Mate	eri a த 2024	4, 6 7, 85-92.
637	Enhancing the sustainability and robustness of critical material supply in electrical vehicle market: an Al-powered supplier selection approach. Annals of Operations Research, 0, , .	4.1	2
638	Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries. Journal of Energy Storage, 2024, 77, 109884.	8.1	0
639	Challenges and strategies of lithium-ion mass transfer in natural graphite anode. Chemical Engineering Journal, 2024, 480, 148047.	12.7	0
640	Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries. Advanced Materials, 0, , .	21.0	1
641	Modulating electrochemical properties byÂFe3+ doping for cobalt-free Li1.2Ni0.26Mn0.54O2 cathode material. Journal of Alloys and Compounds, 2024, 976, 173057.	5.5	0
642	Comparative study of polycrystalline and single-crystal NCM811 cathode materials: the role of crystal defects in electrochemical performance. Journal of Materials Chemistry A, 2024, 12, 1671-1684.	10.3	3
643	Battery Charge Controller Using Artificial Neural Network-PI (ANN-PI) Algorithm for Various Voltages Rate. , 2023, , .		0

#	Article	IF	CITATIONS
644	Scalable Precursor-Assisted Synthesis of a High Voltage LiNiyCo1â^'yPO4 Cathode for Li-Ion Batteries. Nanomaterials, 2023, 13, 3156.	4.1	0
645	Effect of Ti-containing precursors on structure and adsorption performance of Li4Ti5O12 and Li2TiO3 oxides to Li+ ions. Separation and Purification Technology, 2024, 335, 125986.	7.9	0
646	Surface-Engineered Cotton Fabric-Derived Functional Carbon Cloth and Its Application in Advanced Lithium–Sulfur Full Cells. ACS Applied Energy Materials, 0, , .	5.1	0
647	Hybrid energy storage: Features, applications, and ancillary benefits. Renewable and Sustainable Energy Reviews, 2024, 192, 114196.	16.4	2
648	Polysiloxane-coated PI nonwoven separators with higher thermal and electrochemical stability for lithium ion battery application. , 2024, 3, 100090.		0
650	Robust zinc anode modification layer with hydrophobic-cation selectivity for stabilized aqueous zinc ion batteries. Chemical Engineering Journal, 2024, 481, 148479.	12.7	0
651	MXene- and MOF-based single-atom catalysts for next-generation batteries chemistry: A synergy of experimental and theoretical insights. Energy Storage Materials, 2024, 65, 103159.	18.0	0
652	Utilizing an integrated AHP-COPRAS approach for battery selection in electric vehicles. International Journal of Automotive Engineering and Technologies, 2023, 12, 121-132.	0.5	0
653	Fundamental chemical and physical properties of electrolytes in energy storage devices: A review. Journal of Energy Storage, 2024, 81, 110361.	8.1	0
654	Unlocking the power of nano-heterostructured engineering: Advancements in Ti3C2Tx MXene-based heterojunctions for rechargeable ion batteries. Journal of Energy Storage, 2024, 82, 110583.	8.1	1
655	Fluorinated organic compounds as promising materials to protect lithium metal anode: a review. Materials Today Energy, 2024, 40, 101512.	4.7	0
656	Pseudocapacitive Materials for 3D Printed Batteries. Engineering Materials, 2024, , 389-407.	0.6	0
657	First-principle prediction of Penta-NiN2 monolayer as electrode materials for Na and K ion batteries. Chemical Physics Letters, 2024, 837, 141066.	2.6	0
658	Lithium-copolymerized polyimide cathodes for stable and fast lithium-ion storage. Chemical Engineering Journal, 2024, 481, 148503.	12.7	0
659	A selfâ€adaptive, dataâ€driven method to predict the cycling life of lithiumâ€ion batteries. InformaÄnÃ- Materiály, 2024, 6, .	17.3	1
660	First-principles calculation of electronic properties and diffusion barriers of Sc2CCl2 and Sc2CF2 for metal (Li, Na, K) ion batteries. Applied Surface Science, 2024, 652, 159364.	6.1	0
661	Nanoarchitectonics of 3D-networked bio-based binders for silicon anodes in lithium-ion batteries based on dynamic hydrogen bonding. Sustainable Energy and Fuels, 2024, 8, 843-851.	4.9	0
662	Exploring the potential of two-dimensional NiCo2O4 sheets//BiPO4 flakes as a hybrid supercapacitor device for energy storage application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685, 133247.	4.7	0

#	Article	IF	CITATIONS
663	Dataâ€Ðriven Online Prognosis of Rechargeable Batteries: Prospect and Perspective. Batteries and Supercaps, 2024, 7, .	4.7	0
664	A Costâ€Effective Production Route of Li ₄ Ti ₅ O ₁₂ Resisting Unsettled Market and Subsequent Application in the Liâ€Ion Capacitor. Small Structures, 2024, 5, .	12.0	0
665	Recycling Strategies for Spent Consumer Lithium-Ion Batteries. Metals, 2024, 14, 151.	2.3	0
666	CNT Sheets Co‣oaded with Sulfur and Silicon Oxides: Free Standing Anodes for Lithium and Sodium″on Batteries. ChemNanoMat, 0, , .	2.8	0
667	Discrimination of ingestive behavior in sheep using an electronic device based on a triaxial accelerometer and machine learning. Computers and Electronics in Agriculture, 2024, 218, 108657.	7.7	0
668	Recent Progress of Urea-Based Deep Eutectic Solvents as Electrolytes in Battery Technology: A Critical Review. Batteries, 2024, 10, 45.	4.5	1
669	An Automated Framework for Lithium Battery State of Health (SOH) Analysis. , 2023, , .		0
670	Interfacial design towards stable zinc metal-free zinc-ion batteries with high energy density. Journal of Materials Chemistry A, 2024, 12, 5499-5507.	10.3	0
671	Health Risk Awareness of Electronic Waste: A Cross-sectional Study among Smartphone Users in the Lake Zone, Tanzania. Asian Journal of Social Health and Behavior, 2023, 6, 189-195.	3.8	0
672	Built defects of homogeneous junction to enhance the lithium storage capacity of niobium pentoxide materials. Journal of Energy Chemistry, 2024, 92, 730-737.	12.9	0
673	Stacking pressure homogenizes the electrochemical lithiation reaction of silicon anode in solid-state batteries. Energy Storage Materials, 2024, 67, 103246.	18.0	0
674	Improvement of interfacial stability between Na metal and Na3PS4 family solid electrolyte for all-solid-state sodium metal batteries. Electrochimica Acta, 2024, 480, 143919.	5.2	0
675	The grain refinements effect of Zn alloying on low-temperature Sn–Bi–In lead-free solder. Journal of Materials Research and Technology, 2024, 29, 2272-2278.	5.8	0
676	Nanocarbon-based sheets: Advances in processing methods and applications. Carbon, 2024, 221, 118909.	10.3	0
677	Solar-driven (photo)electrochemical devices for green hydrogen production and storage: Working principles and design. Journal of Energy Storage, 2024, 82, 110484.	8.1	0
678	Overview of Highly Solvating Electrolytes for Lean Electrolyte Conditions in Lithium–Sulfur Batteries. Korean Journal of Chemical Engineering, 2024, 41, 375-383.	2.7	0
679	Investigating the effectiveness of borophene on anchoring and influence on kinetics of sodium superoxide in sodium–oxygen batteries. Journal of Energy Storage, 2024, 84, 110977.	8.1	0
680	Single-Step Synthesis of Ni-Doped MoS ₂ Nanostructures for Symmetrical Supercapacitor Devices. ACS Applied Nano Materials, 2024, 7, 5358-5371.	5.0	0

#	Article	IF	CITATIONS
681	Fe-doped NaV3O8 thin films as an efficient electrode with enhanced performance for asymmetric supercapacitor device. Journal of Electroanalytical Chemistry, 2024, 957, 118136.	3.8	0
682	Current scenario and future aspect of low viscosity doped polymer electrolyte. Materials Today: Proceedings, 2024, , .	1.8	0
683	Potential to transform words to watts with large language models in battery research. Cell Reports Physical Science, 2024, 5, 101844.	5.6	0
684	Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nature Protocols, 0, , .	12.0	0
685	Advancements in Vanadium Disulphide (VS2) Nanomaterials for Enhanced Energy Storage Synthesis Techniques, Electrochemical Properties, and Prospective Outcomes. Advances in Chemical and Materials Engineering Book Series, 2024, , 49-93.	0.3	0
686	Recent Advances in the Synthesis of Conjugated Polymers for Supercapacitors. Advanced Materials Technologies, 2024, 9, .	5.8	0
687	Mimicking Self-Powered Piezoelectric Energy-Generating Behavior in Silicone Rubber Composites under Compressive and Tensile Strains. ACS Applied Electronic Materials, 2024, 6, 1638-1650.	4.3	0
688	3D printing of layered vanadium disulfide for water-in-salt electrolyte zinc-ion batteries. Nanoscale Horizons, 2024, 9, 742-751.	8.0	0
689	Preliminary Experimental Study of Herbal Electrolyte for Future Green Battery. Journal of the Electrochemical Society, 2024, 171, 030523.	2.9	0
691	Membraneless ethanol fuel cell Pt–Sn–Re nano active catalyst on a mesoporous carbon support. RSC Advances, 2024, 14, 9646-9655.	3.6	0
692	Ionic liquid with hydrogen bonding reducing leakage charge for enhancing triboelectric performance. Nano Energy, 2024, 125, 109535.	16.0	0
693	On the prospects of using B4C3 as a potential electrode material for lithium-ion batteries. Materials Science in Semiconductor Processing, 2024, 176, 108320.	4.0	0
694	Recent advances in the synthesis and application of copper bismuthate-based materials. Materials Today Sustainability, 2024, 26, 100747.	4.1	0