Efficient, stable and scalable perovskite solar cells using

Nature 567, 511-515 DOI: 10.1038/s41586-019-1036-3

Citation Report

#	Article	IF	CITATIONS
2	High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives. Journal of Industrial and Engineering Chemistry, 2019, 80, 265-272.	5.8	19
3	I ₂ vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions. Energy and Environmental Science, 2019, 12, 3074-3088.	30.8	131
4	Photophysics of lead-free tin halide perovskite films and solar cells. APL Materials, 2019, 7, .	5.1	32
5	Photochemically Cross-Linked Quantum Well Ligands for 2D/3D Perovskite Photovoltaics with Improved Photovoltage and Stability. Journal of the American Chemical Society, 2019, 141, 14180-14189.	13.7	107
6	A Modulated Doubleâ€Passivation Strategy Toward Highly Efficient Perovskite Solar Cells with Efficiency Over 21%. Solar Rrl, 2019, 3, 1900291.	5.8	12
7	A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden–Popper Perovskite Solar Cells. Nano Letters, 2019, 19, 5237-5245.	9.1	76
8	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	13.7	62
9	Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy, 2019, 64, 103962.	16.0	55
10	Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering. Nano Energy, 2019, 64, 103964.	16.0	35
11	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 2147-2167.	17.4	161
12	Comparison of mesoporous materials based on mixed-organic-cation hole-conductor-free perovskite solar cells. Applied Surface Science, 2019, 493, 975-981.	6.1	11
13	Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells. Materials Chemistry Frontiers, 2019, 3, 2357-2362.	5.9	16
14	Review of Stability Enhancement for Formamidiniumâ€Based Perovskites. Solar Rrl, 2019, 3, 1900215.	5.8	60
15	A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18898-18905.	10.3	36
16	Dithieno[3,2â€b:2â€2,3â€2â€d]pyrrolâ€Cored Hole Transport Material Enabling Over 21% Efficiency Dopantâ€Fi Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1904300.	^{-ee} 14.9	114
17	Surface Plasmonâ€Assisted Transparent Conductive Electrode for Flexible Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900847.	7.3	13
18	High Efficiency (16.37%) of Cesium Bromide—Passivated Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900254.	5.8	91
19	Molecular doping of CuSCN for hole transporting layers in inverted-type planar perovskite solar cells. Inorganic Chemistry Frontiers, 2019, 6, 2158-2166.	6.0	31

#	Article	IF	CITATIONS
20	A new polytriarylamine derivative for dopant-free high-efficiency perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2627-2632.	4.9	32
21	Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110080.	6.2	29
22	Sideâ€Chain Engineering on Dopantâ€Free Holeâ€Transporting Polymers toward Highly Efficient Perovskite Solar Cells (20.19%). Advanced Functional Materials, 2019, 29, 1904856.	14.9	69
23	From Macroscopic to Nanoscopic Current Hysteresis Suppressed by Fullerene in Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900235.	5.8	10
24	Μethylammonium Chloride: A Key Additive for Highly Efficient, Stable, and Up calable Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 79-92.	12.8	79
25	Scalable Deposition Methods for Largeâ€area Production of Perovskite Thin Films. Energy and Environmental Materials, 2019, 2, 119-145.	12.8	153
26	Chemical Vapor Deposition of Organic-Inorganic Bismuth-Based Perovskite Films for Solar Cell Application. Scientific Reports, 2019, 9, 9774.	3.3	45
27	Reusable Chemically Micropatterned Substrates via Sequential Photoinitiated Thiol–Ene Reactions as a Template for Perovskite Thin-Film Microarrays. ACS Applied Electronic Materials, 2019, 1, 2279-2286.	4.3	2
28	An Interlayer with Strong Pb-Cl Bond Delivers Ultraviolet-Filter-Free, Efficient, and Photostable Perovskite Solar Cells. IScience, 2019, 21, 217-227.	4.1	43
29	Efficient and Stable Mesoscopic Perovskite Solar Cells Using PDTITT as a New Hole Transporting Layer. Advanced Functional Materials, 2019, 29, 1905887.	14.9	29
30	Review on Recent Progress of Allâ€inorganic Metal Halide Perovskites and Solar Cells. Advanced Materials, 2019, 31, e1902851.	21.0	309
31	Predictions and Strategies Learned from Machine Learning to Develop Highâ€Performing Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901891.	19.5	83
32	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	19.5	89
33	Enhanced Lifetime and Photostability with Lowâ€Temperature Mesoporous ZnTiO ₃ /Compact SnO ₂ Electrodes in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 18460-18465.	13.8	33
34	Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3â€hexylthiophene) Hole Transport Layer. Small, 2019, 15, e1904399.	10.0	55
35	Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells. Materials Today Energy, 2019, 14, 100341.	4.7	12
36	Vapor Phase Selective Growth of Two-Dimensional Perovskite/WS ₂ Heterostructures for Optoelectronic Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 40503-40511.	8.0	39
37	Double-Helicene-Based Hole-Transporter for Perovskite Solar Cells with 22% Efficiency and Operation Durability. ACS Energy Letters, 2019, 4, 2683-2688.	17.4	56

#	Article	IF	CITATIONS
38	Role of Moisture in the Preparation of Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 17691-17696.	6.7	20
39	Delocalized molecule surface electronic modification for enhanced performance and high environmental stability of CsPbl2Br perovskite solar cells. Nano Energy, 2019, 66, 104180.	16.0	40
40	Characterization and analysis of FA <i>x</i> Cs(1â^' <i>x</i>) Pb(I <i>y</i> Br(1â^' <i>y</i>))3 perovskite solar cells with thickness controlled transport layers for performance optimization. AIP Advances, 2019, 9, .	1.3	5
41	Charge Carrier Collection and Contact Selectivity in Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900252.	3.7	39
42	Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902740.	19.5	209
43	Engineering Halide Perovskite Crystals through Precursor Chemistry. Small, 2019, 15, e1903613.	10.0	82
44	Toward Highly Thermal Stable Perovskite Solar Cells by Rational Design of Interfacial Layer. IScience, 2019, 22, 534-543.	4.1	38
45	Interfacial Passivation for Perovskite Solar Cells: The Effects of the Functional Group in Phenethylammonium Iodide. ACS Energy Letters, 2019, 4, 2913-2921.	17.4	176
46	Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749-753.	12.6	936
47	Analysis of highly efficient perovskite solar cells with inorganic hole transport material. Chinese Physics B, 2019, 28, 128801.	1.4	10
48	Surface Treatment on Nickel Oxide to Enhance the Efficiency of Inverted Perovskite Solar Cells. International Journal of Photoenergy, 2019, 2019, 1-7.	2.5	4
49	A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN. Inorganic Chemistry, 2019, 58, 15824-15831.	4.0	4
50	Toward Scalable PbS Quantum Dot Solar Cells Using a Tailored Polymeric Hole Conductor. ACS Energy Letters, 2019, 4, 2850-2858.	17.4	61
51	Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation. Scientific Reports, 2019, 9, 15461.	3.3	60
52	Accelerating the Screening of Perovskite Compositions for Photovoltaic Applications through Highâ€Throughput Inkjet Printing. Advanced Functional Materials, 2019, 29, 1905487.	14.9	37
53	Enhanced Lifetime and Photostability with Lowâ€Temperature Mesoporous ZnTiO ₃ /Compact SnO ₂ Electrodes in Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 18631-18636.	2.0	13
54	Electron Transport Bilayer with Cascade Energy Alignment for Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900333.	5.8	49
55	Thermally Stable Inorganic CsPbI ₂ Br Mesoscopic Metal Halide Perovskite Solar Submodules. ACS Applied Materials & Interfaces, 2019, 11, 43066-43074.	8.0	21

#	Article	IF	CITATIONS
56	Holeâ€Boosted Cu(Cr,M)O 2 Nanocrystals for Allâ€Inorganic CsPbBr 3 Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 16293-16297.	2.0	25
57	Holeâ€Boosted Cu(Cr,M)O ₂ Nanocrystals for Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 16147-16151.	13.8	118
58	A novel inorganic hole-transporting material of CuInS2 for perovskite solar cells with high efficiency and improved stability. Organic Electronics, 2019, 75, 105430.	2.6	34
59	Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903691.	21.0	125
60	Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage. Advanced Energy Materials, 2019, 9, 1902142.	19.5	63
61	Interfacial Bonding and Electronic Structure between Copper Thiocyanate and Hybrid Organohalide Lead Perovskites for Photovoltaic Application. Journal of Physical Chemistry Letters, 2019, 10, 5609-5616.	4.6	4
62	Inorganic perovskite solar cells: an emerging member of the photovoltaic community. Journal of Materials Chemistry A, 2019, 7, 21036-21068.	10.3	137
63	Flexible Perovskite Solar Cells. Joule, 2019, 3, 1850-1880.	24.0	242
64	Cs-Doped TiO ₂ Nanorod Array Enhances Electron Injection and Transport in Carbon-Based CsPbI ₃ Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 16927-16932.	6.7	35
65	Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220.	4.1	7
66	Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy, 2019, 66, 104070.	16.0	48
67	Crystal Structure Ideality Impact on Bimolecular, Auger, and Diffusion Coefficients in Mixed-Cation Cs <i>_x</i> MA _{1â€"<i>x</i>} PbBr ₃ and Cs <i>_x</i> FA _{1â€"<i>x</i>} PbBr ₃ Perovskites. Journal of Physical Chemistry C. 2019. 123. 23838-23844.	3.1	5
68	Crystal Orientation Drives the Interface Physics at Two/Three-Dimensional Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 5713-5720.	4.6	47
69	Effects of dengue immunity on Zika virus infection. Nature, 2019, 567, 467-468.	27.8	8
70	Solar cells boosted by an improved charge-carrying material. Nature, 2019, 567, 465-467.	27.8	16
71	Hot Scientific Debate on Halide Perovskites: Fundamentals, Photovoltaics, and Optoelectronics at Eighth Sungkyun International Solar Forum 2019 (SISF 2019). ACS Energy Letters, 2019, 4, 2475-2479.	17.4	5
72	Standardizing Perovskite Solar Modules beyond Cells. Joule, 2019, 3, 2076-2085.	24.0	56
73	Mg Doped CuCrO2 as Efficient Hole Transport Layers for Organic and Perovskite Solar Cells. Nanomaterials, 2019, 9, 1311.	4.1	24

#	Article	IF	CITATIONS
74	Skillfully deflecting the question: a small amount of piperazine-1,4-diium iodide radically enhances the thermal stability of CsPbI ₃ perovskite. Journal of Materials Chemistry C, 2019, 7, 11757-11763.	5.5	32
75	Solution-Processed Ultrahigh Detectivity Photodetectors by Hybrid Perovskite Incorporated with Heterovalent Neodymium Cations. ACS Omega, 2019, 4, 15873-15878.	3.5	13
76	Oxidized Nickel films as highly transparent HTLs for inverted planar perovskite solar cells. Solar Energy, 2019, 193, 387-394.	6.1	32
77	Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85PbI3 solar cells. Solar Energy Materials and Solar Cells, 2019, 203, 110200.	6.2	8
78	Unraveling the Structure–Property Relationship of Molecular Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 39001-39009.	8.0	39
79	Impact of Oxygen on the Electronic Structure of Triple-Cation Halide Perovskites. , 2019, 1, 506-510.		30
80	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	12.8	49
81	Broadband White Emission in Cs ₂ AgIn _{1–<i>x</i>} Bi _{<i>x</i>} Cl ₆ Phosphors. Inorganic Chemistry, 2019, 58, 13403-13410.	4.0	58
82	Solar cell efficiency tables (version 54). Progress in Photovoltaics: Research and Applications, 2019, 27, 565-575.	8.1	1,096
83	Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO ₂ Nanocolloids. ACS Energy Letters, 2019, 4, 1845-1851.	17.4	56
84	Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. International Journal of Extreme Manufacturing, 2019, 1, 022004.	12.7	50
85	Three-dimensional perovskite modulated by two-dimensional homologue as light-absorbing materials for efficient solar cells. Organic Electronics, 2019, 74, 126-134.	2.6	14
86	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	17.4	125
87	Soldering Grain Boundaries Yields Inverted Perovskite Solar Cells with Enhanced Openâ€Circuit Voltages. Advanced Materials Interfaces, 2019, 6, 1900474.	3.7	17
88	Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. Journal of Materials Chemistry A, 2019, 7, 15476-15490.	10.3	85
88 89		10.3 10.3	85 67
	hole transport materials. Journal of Materials Chemistry A, 2019, 7, 15476-15490. Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. Journal of Materials Chemistry A, 2019, 7,		

#	Article	IF	CITATIONS
92	Microstructural Study of Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheet Degradation under Illumination. Nanomaterials, 2019, 9, 722.	4.1	16
93	Comparative Study on Perovskite Solar Cells Using Inorganic Transport Layers. , 2019, , .		5
94	Strategies to Fabricate Flexible SnO2 Based Perovskite Solar Cells Using Pre-Crystallized SnO2. Journal of Physics: Conference Series, 2019, 1346, 012036.	0.4	0
95	Controlled Growth of BiSI Nanorod-Based Films through a Two-Step Solution Process for Solar Cell Applications. Nanomaterials, 2019, 9, 1650.	4.1	21
96	Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 19700-19707.	13.7	119
97	Study on the Movements of Organometallic Halide Perovskite Crystals on their Films. ChemistrySelect, 2019, 4, 13904-13907.	1.5	0
98	Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366, 1509-1513.	12.6	846
99	Hot electron injection into semiconducting polymers in polymer based-perovskite solar cells and their fate. Nanoscale, 2019, 11, 23357-23365.	5.6	3
100	Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 26334-26341.	10.3	44
101	Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n–i–p perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25796-25801.	10.3	6
102	Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. Journal of Chemical Physics, 2019, 151, 211101.	3.0	12
103	High Photovoltage Inverted Planar Heterojunction Perovskite Solar Cells with All-Inorganic Selective Contact Layers. ACS Applied Materials & amp; Interfaces, 2019, 11, 46894-46901.	8.0	20
104	Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr ₃ -Cluster Assisted Bottom-up Crystallization Approach. Journal of the American Chemical Society, 2019, 141, 20537-20546.	13.7	79
105	Nearly Isotropic Conjugated Polymer Aggregates with Efficient Local Exciton Diffusion. Journal of Physical Chemistry C, 2019, 123, 29418-29426.	3.1	4
106	Hybrid organic–metal oxide multilayer channel transistors with high operational stability. Nature Electronics, 2019, 2, 587-595.	26.0	49
107	Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nature Communications, 2019, 10, 4593.	12.8	214
108	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	39.5	736
109	Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell. Energy and Environmental Science, 2019, 12, 3502-3507.	30.8	90

# 110	ARTICLE Excited-state stability of quasi-two-dimensional metal halide perovskite films under optical and electrical excitations. Applied Physics Letters, 2019, 115, .	IF 3.3	Citations 9
111	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	19.5	240
112	Perovskite Solar Cells: Can We Go Organicâ€Free, Leadâ€Free, and Dopantâ€Free?. Advanced Energy Materials, 2020, 10, 1902500.	19.5	198
113	Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials, 2020, 10, 1902584.	19.5	124
114	Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902650.	19.5	516
115	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	19.5	87
116	Interfacial Bridge Using a <i>cis</i> â€Fulleropyrrolidine for Efficient Planar Perovskite Solar Cells with Enhanced Stability. Small Methods, 2020, 4, 1900476.	8.6	65
117	Present Status and Research Prospects of Tinâ€based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900310.	5.8	60
118	P3HT with Zn(C ₆ F ₅) ₂ as pâ€Type Dopant for the Enhanced Performance of Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900340.	5.8	16
119	Ammonium Fluoride Interface Modification for Highâ€Performance and Longâ€Term Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1901017.	3.8	12
120	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	16.0	81
121	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	10.0	80
122	Verringerung schÃ e licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€Solarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	2.0	16
123	Interfacial Postâ€Treatment for Enhancing the Performance of Printable Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900278.	5.8	23
124	Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability. Solar Rrl, 2020, 4, 1900257.	5.8	119
125	A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Materials, 2020, 24, 557-564.	18.0	26
126	Carbonâ€Electrode Based Perovskite Solar Cells: Effect of Bulk Engineering and Interface Engineering on the Power Conversion Properties. Solar Rrl, 2020, 4, 1900190.	5.8	45
127	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	5.8	13

#	Article	IF	CITATIONS
128	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	13.8	334
129	Highly efficient perovskite solar cells based on symmetric hole transport material constructed with indaceno[1,2-b:5,6-b']dithiophene core building block. Journal of Energy Chemistry, 2020, 43, 98-103.	12.9	31
130	Influence of halogen content in mixed halide perovskite solar cells on cell performances through device simulation. Solar Energy Materials and Solar Cells, 2020, 205, 110252.	6.2	15
131	Printable materials for printed perovskite solar cells. Flexible and Printed Electronics, 2020, 5, 014002.	2.7	2
132	Modified HTL-induced efficiency enhancement for inverted perovskite solar cells. Organic Electronics, 2020, 78, 105557.	2.6	13
133	Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902579.	19.5	477
134	Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 013002.	2.7	17
135	Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14, 82-88.	31.4	326
136	How to Report Record Open ircuit Voltages in Leadâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902573.	19.5	153
137	Reducing Photovoltage Loss in Inverted Perovskite Solar Cells by Quantum Dots Alloying Modification at Cathode Contact. Solar Rrl, 2020, 4, 1900468.	5.8	19
138	Comparison of the treatment outcomes of endoscopic and surgical resection of GI stromal tumors in the stomach: a propensity score–matched case-control study. Gastrointestinal Endoscopy, 2020, 91, 527-536.	1.0	21
139	Highly oriented perovskites for efficient light-emitting diodes with balanced charge transport. Organic Electronics, 2020, 77, 105529.	2.6	5
140	Solutionâ€Processable 2D αâ€In ₂ Se ₃ as an Efficient Hole Transport Layer for Highâ€Performance and Stable Polymer Solar Cells. Solar Rrl, 2020, 4, 1900428.	5.8	33
141	Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment. Solar Rrl, 2020, 4, 1900397.	5.8	9
142	Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Solar Energy Materials and Solar Cells, 2020, 206, 110268.	6.2	66
143	A Review on Halide Perovskite Film Formation by Sequential Solution Processing for Solar Cell Applications. Energy Technology, 2020, 8, 1901114.	3.8	31
144	Recent Progress of Allâ€Bromide Inorganic Perovskite Solar Cells. Energy Technology, 2020, 8, 1900961.	3.8	66
145	Impact of Temperatureâ€Dependent Hydration Water on Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900370.	5.8	9

#	Article	IF	CITATIONS
146	Fluorineâ€ S ubstituted Benzotriazole Core Building Blockâ€Based Highly Efficient Holeâ€Transporting Materials for Mesoporous Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900362.	5.8	16
147	Alkylâ€Chainâ€Regulated Charge Transfer in Fluorescent Inorganic CsPbBr ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 4391-4395.	13.8	122
148	MAClâ€Assisted Ge Doping of Pbâ€Hybrid Perovskite: A Universal Route to Stabilize High Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903299.	19.5	36
149	Alkylâ€Chainâ€Regulated Charge Transfer in Fluorescent Inorganic CsPbBr 3 Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 4421-4425.	2.0	16
151	Zn doped MAPbBr ₃ single crystal with advanced structural and optical stability achieved by strain compensation. Nanoscale, 2020, 12, 3692-3700.	5.6	22
152	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	30.8	114
153	Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures. Advanced Functional Materials, 2020, 30, 1907481.	14.9	33
154	Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1578-1603.	10.3	112
155	Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells. Journal of Materials Chemistry A, 2020, 8, 2039-2046.	10.3	58
156	Improved Performance of Carbon Electrode Perovskite Solar Cells Using Urea Treatment in Two‣tep Processing. ChemNanoMat, 2020, 6, 806-815.	2.8	9
157	Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28, 3-15.	8.1	694
158	Conjugated Polymers as Hole Transporting Materials for Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 449-458.	3.8	9
159	Efficient mesoscopic perovskite solar cells from emulsion-based bottom-up self-assembled TiO2 microspheres. Journal of Materials Science: Materials in Electronics, 2020, 31, 1969-1975.	2.2	0
160	Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chemical Engineering Journal, 2020, 385, 123976.	12.7	48
161	Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics. Joule, 2020, 4, 222-234.	24.0	88
162	Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive. Journal of Power Sources, 2020, 450, 227623.	7.8	28
163	A solution processed Ag-nanowires/C60 composite top electrode for efficient and translucent perovskite solar cells. Solar Energy, 2020, 196, 582-588.	6.1	27
164	High Remaining Factors in the Photovoltaic Performance of Perovskite Solar Cells after High-Fluence Electron Beam Irradiations. Journal of Physical Chemistry C, 2020, 124, 1330-1336.	3.1	30

	Сітаті	on Report	
#	Article	IF	CITATIONS
165	Improved Carrier Collection and Hot Electron Extraction Across Perovskite, C ₆₀ , and TiO ₂ Interfaces. Journal of the American Chemical Society, 2020, 142, 1236-1246.	13.7	40
166	Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1904347.	21.0	172
167	Investigating the Growth of CH ₃ NH ₃ Pbl ₃ Thin Films on RFâ€5puttered NiO <i>_x</i> for Inverted Planar Perovskite Solar Cells: Effect of CH ₃ NH ₃ ⁺ Halide Additives versus CH ₃ NH ₃ ⁺ Halide Vapor Annealing. Advanced Materials Interfaces, 2020, 7, 1901748.	3.7	48
168	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	19.5	237
169	Chemical Approaches for Stabilizing Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903249.	19.5	132
170	Planar perovskite solar cells using triazatruxene-based hyperbranched conjugated polymers and small molecule as hole-transporting materials. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112228.	3.9	2
171	Quantum Interference Measurements and Their Application to Analysis of Ultrafast Photocarrier Dynamics in Semiconductor Solar Cell Materials. Advanced Quantum Technologies, 2020, 3, 1900098.	3.9	2
172	Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Applied Materials & Interfaces, 2020, 12, 5081-5089.	8.0	14
173	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	10.3	85
174	A New Approach to the Crystallization of Perovskite Films by Cold Hydrogen Atmospheric Pressure Plasma. Plasma Chemistry and Plasma Processing, 2020, 40, 539-548.	2.4	3
175	Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%. Advanced Materials, 2020, 32, e1905766.	21.0	172
176	Fourâ€Terminal Perovskite on Silicon Tandem Solar Cells Optimal Measurement Schemes. Energy Technology, 2020, 8, 1901267.	3.8	13
177	Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells. Cell Reports Physical Science, 2020, 1, 100001.	5.6	28
178	Doubleâ€Sided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.	14.9	130
179	Inkjetâ€Printed Micrometerâ€Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy Materials, 2020, 10, 1903184.	19.5	142
180	Charge Transport between Coaxial Polymer Nanorods and Grafted All-Inorganic Perovskite Nanocrystals for Hybrid Organic Solar Cells with Enhanced Photoconversion Efficiency. Journal of Physical Chemistry C, 2020, 124, 246-255.	3.1	11
181	A review of aspects of additive engineering in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 27-54.	10.3	232
182	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	19.5	87

#	Article	IF	CITATIONS
183	Facile Formation of 2D–3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 1159-1168.	8.0	55
184	The evolution of the most important research topics in organic and perovskite solar cell research from 2008 to 2017: A bibliometric literature review using bibliographic coupling analysis. Solar Energy Materials and Solar Cells, 2020, 207, 110325.	6.2	24
185	Efficient Metal Halide Perovskite Solar Cells Prepared by Reproducible Electrospray Coating on Vertically Aligned TiO ₂ Nanorod Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 886-892.	8.0	7
186	Polarizability and Catalytic Activity Determine Good Titanium Oxide Crystals but Not Homogeneity in Solar Cells Using Photocatalysts on Both Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 1406-1416.	6.7	3
187	Ultrathin Nanosheets of Oxoâ€functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902653.	19.5	52
188	Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbl ₃ Powder. ACS Energy Letters, 2020, 5, 360-366.	17.4	139
189	Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5, 44-60.	48.7	754
190	Tetrahydrofuran as an Oxygen Donor Additive to Enhance Stability and Reproducibility of Perovskite Solar Cells Fabricated in High Relative Humidity (50%) Atmosphere. Energy Technology, 2020, 8, 1900990.	3.8	6
191	Chemical inhibition of reversible decomposition for efficient and super-stable perovskite solar cells. Nano Energy, 2020, 68, 104315.	16.0	25
192	NiO _{<i>x</i>} /Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21%. ACS Energy Letters, 2020, 5, 79-86.	17.4	104
193	Improving and Stabilizing Perovskite Solar Cells with Incorporation of Graphene in the Spiro-OMeTAD Layer: Suppressed Li Ions Migration and Improved Charge Extraction. ACS Applied Energy Materials, 2020, 3, 970-976.	5.1	32
194	Spinâ€Onâ€Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Activeâ€Matrix Nearâ€Infrared Imaging. Advanced Materials Technologies, 2020, 5, 1900752.	5.8	21
195	Mobile Ion Concentration Measurement and Open-Access Band Diagram Simulation Platform for Halide Perovskite Solar Cells. Joule, 2020, 4, 109-127.	24.0	117
196	Boost the performance of inverted perovskite solar cells with PEDOT:PSS/Graphene quantum dots composite hole transporting layer. Organic Electronics, 2020, 78, 105575.	2.6	28
197	Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109608.	16.4	83
198	Understanding Molecular Structures of Buried Interfaces in Halide Perovskite Photovoltaic Devices Nondestructively with Subâ€Monolayer Sensitivity Using Sum Frequency Generation Vibrational Spectroscopy. Advanced Energy Materials, 2020, 10, 1903053.	19.5	36
199	Cluster effect of additives in precursors for inorganic perovskites solar cells. Electrochimica Acta, 2020, 331, 135379.	5.2	9
200	Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results in Physics, 2020, 16, 102839.	4.1	128

#	Article	IF	CITATIONS
201	Influence of Ge/(Ge+Sn) composition ratio in Cu2Sn1-xGexS3 thin-film solar cells on their physical properties and photovoltaic performances. Solar Energy Materials and Solar Cells, 2020, 208, 110382.	6.2	9
202	Interlayer Engineering for Flexible Large-Area Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 777-784.	5.1	13
203	Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability. Journal of Materials Chemistry A, 2020, 8, 2343-2348.	10.3	112
204	Tailored Nanostructures for Light Management in Silicon Heterojunction Solar Cells. Solar Rrl, 2020, 4, 2000484.	5.8	11
205	Following isothermal and non-isothermal crystallization of poly(3-hexylthiophene) thin films by UV–vis spectroscopy. Polymer, 2020, 210, 122959.	3.8	9
206	An extensible and tunable full-opaque cascade smart electrochromic device. Solar Energy Materials and Solar Cells, 2020, 218, 110740.	6.2	10
207	Highâ€Pressure Nitrogenâ€Extraction and Effective Passivation to Attain Highest Largeâ€Area Perovskite Solar Module Efficiency. Advanced Materials, 2020, 32, e2004979.	21.0	145
208	Fully Solution Processed Pure αâ€Phase Formamidinium Lead Iodide Perovskite Solar Cells for Scalable Production in Ambient Condition. Advanced Energy Materials, 2020, 10, 2001869.	19.5	46
209	Formation of NiCo Alloy Nanoparticles on Co Doped Al ₂ O ₃ Leads to High Fuel Production Rate, Large Lightâ€ŧoâ€Fuel Efficiency, and Excellent Durability for Photothermocatalytic CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 2002602.	19.5	67
210	A data review on certified perovskite solar cells efficiency and I-V metrics: Insights into materials selection and process scaling up. Solar Energy, 2020, 209, 21-29.	6.1	5
211	Tailoring In Situ Healing and Stabilizing Post-Treatment Agent for High-Performance Inverted CsPbI ₃ Perovskite Solar Cells with Efficiency of 16.67%. ACS Energy Letters, 2020, 5, 3314-3321.	17.4	74
212	Alkali Metal Ion-Regulated Lead-free, All-Inorganic Double Perovskites for HTM-free, Carbon-Based Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 47408-47415.	8.0	54
213	Methoxy-Functionalized Triarylamine-Based Hole-Transporting Polymers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3304-3313.	17.4	59
214	An <i>in situ</i> cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy and Environmental Science, 2020, 13, 4344-4352.	30.8	142
215	Induced Growth of CsPbBr ₃ Perovskite Films by Incorporating Metal Chalcogenide Quantum Dots in PbBr ₂ Films for Performance Enhancement of Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 10376-10383.	5.1	21
216	Control of Molecular Orientation of Spiro-OMeTAD on Substrates. ACS Applied Materials & Interfaces, 2020, 12, 50187-50191.	8.0	10
217	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. Journal of Physical Chemistry C, 2020, 124, 24379-24390.	3.1	17
218	Understanding how chlorine additive in a dynamic sequential process affects FA0.3MA0.7PbI3 perovskite film growth for solar cell application. Materials Today Energy, 2020, 18, 100551.	4.7	5

#	Article	IF	CITATIONS
219	Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy and Environmental Science, 2020, 13, 4854-4861.	30.8	137
220	Historical Analysis of Highâ€Efficiency, Largeâ€Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002202.	21.0	103
221	Dispersion degree and sheet spacing control of graphene products via oxygen functionalities and its effect on electrical conductivities of P3HT-graphene composite coatings. Journal of Materials Science: Materials in Electronics, 2020, 31, 19623-19637.	2.2	3
222	Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. Advanced Materials, 2020, 32, 2002196.	21.0	20
223	Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5068-5079.	30.8	121
224	Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 2020, 11, 5146.	12.8	165
225	Mechanistic Understanding of Cetyltrimethylammonium Bromide-Assisted Durable CH ₃ NH ₃ PbI ₃ Film for Stable ZnO-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9856-9865.	5.1	8
226	A Quantitative Analysis of the Research Trends in Perovskite Solar Cells in 2009–2019. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000441.	1.8	5
227	Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule, 2020, 4, 2646-2660.	24.0	218
228	CuGaS2 quantum dots with controlled surface defects as an hole-transport material for high-efficient and stable perovskite solar cells. Solar Energy, 2020, 211, 55-61.	6.1	9
229	Recent developments in conducting polymers: applications for electrochemistry. RSC Advances, 2020, 10, 37834-37856.	3.6	131
230	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	5.8	14
231	Ï€-Extended donor-acceptor conjugated copolymers for use as hole transporting materials in perovskite solar cells. Organic Electronics, 2020, 87, 105943.	2.6	5
232	Two-Step Processed Efficient Potassium and Cesium-Alloyed Quaternary Cations Perovskite Solar Cells. Synthetic Metals, 2020, 269, 116564.	3.9	6
233	Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy and Environmental Science, 2020, 13, 4057-4086.	30.8	241
234	Molecularly engineered thienyl-triphenylamine substituted zinc phthalocyanine as dopant free hole transporting materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 6188-6195.	4.9	12
235	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	5.6	26
236	Interfacial defect passivation by chenodeoxycholic acid for efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 472, 228502.	7.8	21

#	Article	IF	CITATIONS
237	Solar-energy camouflage coating with varying sheet resistance. Nano Energy, 2020, 77, 105095.	16.0	15
238	Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 2020, 5, 587-595.	39.5	338
239	A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nature Energy, 2020, 5, 596-604.	39.5	274
240	Choice of the electronic basis for field-induced surface hopping. Physical Review A, 2020, 102, .	2.5	3
241	Possible top cells for next-generation Si-based tandem solar cells. Frontiers of Optoelectronics, 2020, 13, 246-255.	3.7	29
242	Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chemical Science, 2020, 11, 7746-7759.	7.4	119
243	Improved Interfacial Crystallization by Synergic Effects of Precursor Solution Stoichiometry and Conjugated Polyelectrolyte Interlayer for High Open-Circuit Voltage of Perovskite Photovoltaic Diodes. ACS Applied Materials & Interfaces, 2020, 12, 12328-12336.	8.0	17
244	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule, 2020, 4, 1575-1593.	24.0	88
245	Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Solar Energy, 2020, 207, 579-591.	6.1	50
246	Interdiffusion Stomatal Movement in Efficient Multiple-Cation-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 35105-35112.	8.0	8
247	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	3.1	60
248	Charge Transport Layer-Dependent Electronic Band Bending in Perovskite Solar Cells and Its Correlation to Light-Induced Device Degradation. ACS Energy Letters, 2020, 5, 2580-2589.	17.4	39
249	Energy-generating textiles. , 2020, , 415-455.		4
250	Simple 9,10-dihydrophenanthrene based hole-transporting materials for efficient perovskite solar cells. Chemical Engineering Journal, 2020, 402, 126298.	12.7	12
251	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tr 10.3	f 50 182 Td (a
252	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	10.0	34
253	Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Facile Mechanical Approach. Joule, 2020, 4, 2661-2674.	24.0	81
254	Donor–Acceptor Type Polymers Containing Fused-Ring Units as Dopant-Free, Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 12475-12483.	5.1	15

#	Article	IF	Citations
255	Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 25831-25841.	10.3	59
256	Synthesis and Optical Properties of Triphenylene-Based Donor-Donor and Donor-Acceptor Conjugated Polymers: A Comparative Study. International Journal of Polymer Science, 2020, 2020, 1-12.	2.7	2
257	Recent Progress in Fabrication of Antimony/Bismuth Chalcohalides for Lead-Free Solar Cell Applications. Nanomaterials, 2020, 10, 2284.	4.1	22
258	Optoelectronic Properties of Cs ₂ AgBiBr ₆ Thin Films: The Influence of Precursor Stoichiometry. ACS Applied Energy Materials, 2020, 3, 11597-11609.	5.1	27
259	High-Speed Production of Crystalline Semiconducting Polymer Line Arrays by Meniscus Oscillation Self-Assembly. ACS Nano, 2020, 14, 17254-17261.	14.6	10
260	Interfacial engineering with conjugated polyelectrolyte for high performance 2D perovskite solar cells. Chemical Physics Letters, 2020, 761, 138063.	2.6	0
261	Detecting alcohol vapors using two-dimensional copper-based Ruddlesden–Popper perovskites. Applied Physics Letters, 2020, 117, .	3.3	7
262	Location-Specific Spectral and Thermal Effects in Tracking and Fixed Tilt Photovoltaic Systems. IScience, 2020, 23, 101634.	4.1	7
263	Controlled Growth of Large Grains in CH ₃ NH ₃ PbI ₃ Perovskite Films Mediated by an Intermediate Liquid Phase without an Antisolvent for Efficient Solar Cells. ACS Applied Energy Materials, 2020, 3, 12484-12493.	5.1	13
264	Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr ₃ with In Situ Zn ²⁺ Addition. ACS Applied Electronic Materials, 2020, 2, 4002-4011.	4.3	33
265	Interfacial engineering with carbon–graphite–Cu _δ Ni _{1â^'δ} O for ambient-air stable composite-based hole-conductor-free perovskite solar cells. Nanoscale Advances, 2020, 2, 5883-5889.	4.6	8
266	Triple-Cation Perovskite Resistive Switching Memory with Enhanced Endurance and Retention. ACS Applied Electronic Materials, 2020, 2, 3695-3703.	4.3	18
267	Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 2020, 120, 9835-9950.	47.7	248
268	Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer. Organic Electronics, 2020, 86, 105907.	2.6	3
269	Investigating the structure–function relationship in triple cation perovskite nanocrystals for light-emitting diode applications. Journal of Materials Chemistry C, 2020, 8, 11805-11821.	5.5	27
270	Templated growth of FASnl ₃ crystals for efficient tin perovskite solar cells. Energy and Environmental Science, 2020, 13, 2896-2902.	30.8	165
271	Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8, 12012-12035.	5.5	22
272	Cascade Typeâ€II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency. Solar Rrl, 2020, 4, 2000282.	5.8	18

ARTICLE IF CITATIONS Quasiâ€Heteroface Perovskite Solar Cells. Small, 2020, 16, e2002887. 273 10.0 4 Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS 274 5.1 19 Applied Energy Materials, 2020, 3, 7231-7238. Surface Passivation of Allâ€Inorganic CsPbI₂Br with a Fluorinated Organic Ammonium Salt 275 5.8 61 for Perovskite Solar Cells with Efficiencies over 16%. Solar Rrl, 2020, 4, 2000321. Barrier Designs in Perovskite Solar Cells for Longâ€Term Stability. Advanced Energy Materials, 2020, 10, 84 2001610. Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific 277 5.8 31 Defects. Solar Rrl, 2020, 4, 2000308. 278 High-Efficiency Perovskite Solar Cells. Chemical Reviews, 2020, 120, 7867-7918. 47.7 1,480 Stabilizing Organic–Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20%. 279 3.6 30 Frontiers in Chemistry, 2020, 8, 592. Reduced Self-Doping of Perovskites Induced by Short Annealing for Efficient Solar Modules. Joule, 280 24.0 2020, 4, 1949-1960 281 The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 2020, 5, 809-827. 48.7 224 Effect of embedded chalcogenide quantum dots in PbBr2 film on CsPbBr3 inorganic perovskite solar 5.8 cells. Journal of Industrial and Engineering Chemistry, 2020, 90, 281-286. Effects of the methylammonium ion substitution by 5-ammoniumvaleric acid in lead trihalide perovskite solar cells: a combined experimental and theoretical investigation. New Journal of 283 4 2.8 Chemistry, 2020, 44, 14642-14649. Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 5017-5023. 284 Fabrication of Waterâ€Repellent Platinum(II) Complexâ€Based Photon Downshifting Layers for Perovskite 285 19.5 5 Solar Cells by Ultrasonic Spray Deposition. Advanced Energy Materials, 2020, 10, 2001238. Dopantâ€Free and Greenâ€Solventâ€Processable Holeâ€Transporting Materials for Highly Efficient Inverted Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000327. 5.8 16 Optical Property Behaviors of CsPbBr₃ Colloidal Nanoparticles in a Ligand-Assisted 287 3.0 12 Reprecipitation Process. Crystal Growth and Design, 2020, 20, 4855-4860. Bifunctional Surface Engineering on SnO₂ Reduces Energy Loss in Perovskite Solar Cells. 239 ACS Energy Letters, 2020, 5, 2796-2801. Improved Quantum Efficiency by Advanced Light Management in Nanotextured Solution-Processed 289 6.6 27 Perovskite Solar Cells. ACS Photonics, 2020, 7, 2589-2600. Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar 290 Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.

#	Article	IF	CITATIONS
291	Simple one-step synthesis of a two-dimensional perovskite consisting of perfluoroalkyl-based ammonium spacers using acetone as the solvent. Chemical Communications, 2020, 56, 10293-10296.	4.1	3
292	Quantitative Specifications to Avoid Degradation during E-Beam and Induced Current Microscopy of Halide Perovskite Devices. Journal of Physical Chemistry C, 2020, 124, 18961-18967.	3.1	4
293	PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACI-Mediated Grown FA _{0.94} MA _{0.06} PbI ₃ Perovskite. ACS Applied Materials & Interfaces, 2020, 12, 37197-37207.	8.0	62
294	Roll-transferred graphene encapsulant for robust perovskite solar cells. Nano Energy, 2020, 77, 105182.	16.0	24
295	Aliovalent Doping and Surface Grafting Enable Efficient and Stable Leadâ€Free Blueâ€Emitting Perovskite Derivative. Advanced Optical Materials, 2020, 8, 2000779.	7.3	68
296	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	17.4	307
297	A temperature gradient-induced directional growth of a perovskite film. Journal of Materials Chemistry A, 2020, 8, 17019-17024.	10.3	7
298	Compositional Engineering of Chloride Ionâ€Doped CsPbBr 3 Halides for Highly Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000362.	5.8	26
299	An artificial photosynthetic system with CO ₂ -reducing solar-to-fuel efficiency exceeding 20%. Journal of Materials Chemistry A, 2020, 8, 18310-18317.	10.3	31
300	The Stabilization of Formamidinium Lead Triâ€lodide Perovskite through a Methylammoniumâ€Based Additive for Highâ€Efficiency Solar Cells. Solar Rrl, 2020, 4, 2000348.	5.8	23
301	Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 2020, 26, e00210.	3.3	18
302	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	2.5	91
303	Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells. Nature Communications, 2020, 11, 5525.	12.8	15
304	Low-temperature fabrication of carbon-electrode based, hole-conductor-free and mesoscopic perovskite solar cells with power conversion efficiency > 12% and storage-stability > 220 days. Applied Physics Letters, 2020, 117, .	3.3	15
305	Bromine Incorporation and Suppressed Cation Rotation in Mixed-Halide Perovskites. ACS Nano, 2020, 14, 15107-15118.	14.6	23
306	The <i>J</i> – <i>V</i> Hysteresis Behavior and Solutions in Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000586.	5.8	27
307	Ordered array structures for efficient perovskite solar cells. Engineering Reports, 2020, 2, e12319.	1.7	6
308	Non-equivalent Tl doping for high performance perovskite solar cells: Crystal quality improvement with enhanced p-type character. Journal of Power Sources, 2020, 479, 228818.	7.8	4

#	Article	IF	CITATIONS
309	Recent Advances of Dopant-Free Polymer Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 10282-10302.	5.1	50
310	Size Modulation and Heterovalent Doping Facilitated Hybrid Organic and Perovskite Quantum Dot Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2020, 3, 11359-11367.	5.1	14
311	Environmental Sustainability of Mixed Cation Perovskite Materials in Photovoltaics Manufacturing. ACS Sustainable Chemistry and Engineering, 2020, 8, 16537-16548.	6.7	18
312	High Performance Tandem Solar Cells with Inorganic Perovskite and Organic Conjugated Molecules to Realize Complementary Absorption. Journal of Physical Chemistry Letters, 2020, 11, 9596-9604.	4.6	35
313	Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells. RSC Advances, 2020, 10, 38736-38745.	3.6	12
314	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	8.6	63
315	Enhancement of 3D/2D Perovskite Solar Cells Using an F4TCNQ Molecular Additive. ACS Applied Energy Materials, 2020, 3, 8205-8215.	5.1	28
316	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 22181-22185.	2.0	47
317	The Application of Graphene Derivatives in Perovskite Solar Cells. Small Methods, 2020, 4, 2000507.	8.6	35
318	Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002176.	21.0	55
319	Beyond Strain: Controlling the Surface Chemistry of CsPbI ₃ Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials, 2020, 32, 7850-7860.	6.7	23
320	TiO ₂ Colloidâ€Spray Coated Electronâ€Transporting Layers for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001799.	19.5	45
321	Large-Grained All-Inorganic Bismuth-Based Perovskites with Narrow Band Gap via Lewis Acid–Base Adduct Approach. ACS Applied Materials & Interfaces, 2020, 12, 43876-43884.	8.0	30
322	Impact of Tin Fluoride Additive on the Properties of Mixed Tinâ€Lead Iodide Perovskite Semiconductors. Advanced Functional Materials, 2020, 30, 2005594.	14.9	48
323	2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nature Nanotechnology, 2020, 15, 934-940.	31.5	258
324	Efficient Nonlead Double Perovskite Solar Cell with Multiple Hole Transport Layers. ACS Applied Energy Materials, 2020, 3, 9594-9599.	5.1	23
325	A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy and Environmental Science, 2020, 13, 4334-4343.	30.8	147
326	Molecular Engineering of Organic Spacer Cations for Efficient and Stable Formamidinium Perovskite Solar Cell. Advanced Energy Materials, 2020, 10, 2001759.	19.5	48

#	Article	IF	CITATIONS
327	Additive Engineering Toward Highâ€Performance CsPbl ₃ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000380.	5.8	29
328	Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615-1620.	12.6	1,122
329	Heteroleptic Tin-Antimony Sulfoiodide for Stable and Lead-free Solar Cells. Matter, 2020, 3, 1701-1713.	10.0	29
330	High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials Science and Engineering Reports, 2020, 142, 100579.	31.8	139
331	Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy, 2020, 77, 105237.	16.0	92
332	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	10.3	27
333	Recent Advances on the Modulation of Electrocatalysts Based on Transition Metal Nitrides for the Rechargeable Zn-Air Battery. , 2020, 2, 1423-1434.		111
334	Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites. Advanced Materials, 2020, 32, e2002585.	21.0	151
335	Grain Boundary Defect Passivation of Triple Cation Mixed Halide Perovskite with Hydrazine-Based Aromatic lodide for Efficiency Improvement. ACS Applied Materials & Interfaces, 2020, 12, 41312-41322.	8.0	45
336	Antimony doped lead-free double perovskites (Cs ₂ NaBi _{1â^'x} Sb _x Cl ₆) with enhanced light absorption and tunable emission. Journal of Materials Chemistry C, 2020, 8, 13603-13611.	5.5	45
337	Gradient Engineered Light Absorption Layer for Enhanced Carrier Separation Efficiency in Perovskite Solar Cells. Nanoscale Research Letters, 2020, 15, 127.	5.7	2
338	Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Advanced Materials Interfaces, 2020, 7, 2000950.	3.7	94
339	Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA _{1–<i>x</i>} MA _{<i>x</i>} PbI ₃ . ACS Energy Letters, 2020, 5, 3053-3061.	17.4	49
340	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 21997-22001.	13.8	149
341	Effect of Passivation on the Interface between Perovskite and Donor–Acceptor Copolymer-based Hole-transport Layer in Perovskite Solar Cells. Chemistry Letters, 2020, 49, 1341-1344.	1.3	6
342	Interface passivation strategy improves the efficiency and stability of organic–inorganic hybrid metal halide perovskite solar cells. Journal of Materials Research, 2020, 35, 2166-2189.	2.6	4
343	Defect Tolerance and Intolerance in Metalâ€Halide Perovskites. Advanced Energy Materials, 2020, 10, 2001959.	19.5	85
344	Novel amphiphilic corannulene additive for moisture-resistant perovskite solar cells. Chemical Communications, 2020, 56, 11997-12000.	4.1	15

#	Article	IF	Citations
345	Small Molecule Modulator at the Interface for Efficient Perovskite Solar Cells with High Shortâ€Circuit Current Density and Hysteresis Free. Advanced Electronic Materials, 2020, 6, 2000604.	5.1	62
346	Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 17681-17692.	13.7	83
347	lonic moieties in organic and hybrid semiconducting devices: influence on energy band structures and functions. Journal of Materials Chemistry C, 2020, 8, 13953-13971.	5.5	7
348	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	30.8	235
349	Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects. Materials Horizons, 2020, 7, 2791-2809.	12.2	65
350	Simultaneous hole transport and defect passivation enabled by a dopant-free single polymer for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 21036-21043.	10.3	23
351	Precise Control of Perovskite Crystallization Kinetics via Sequential Aâ€ S ite Doping. Advanced Materials, 2020, 32, e2004630.	21.0	122
352	Modification Engineering in SnO ₂ Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Advanced Functional Materials, 2020, 30, 2004209.	14.9	98
353	Recent Progress in Metal Halide Perovskiteâ€Based Tandem Solar Cells. Advanced Materials, 2020, 32, e2002228.	21.0	39
354	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	38.1	371
355	Improving the Fill Factor of Perovskite Solar Cells by Employing an Amine-tethered Diketopyrrolopyrrole-Based Polymer as the Dopant-free Hole Transport Layer. ACS Applied Energy Materials, 2020, 3, 9600-9609.	5.1	26
356	Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000408.	5.8	43
357	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	8.0	24
358	Introducing Ion Migration and Light-Induced Secondary Ion Redistribution for Phase-Stable and High-Efficiency Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 40364-40371.	8.0	21
359	Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers. Advanced Science, 2020, 7, 2001014.	11.2	43
360	Effective Surface Treatment for High-Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92%. Nano-Micro Letters, 2020, 12, 170.	27.0	41
361	Dualâ€lonâ€Diffusion Induced Degradation in Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002342.	14.9	86
362	How machine learning can help select capping layers to suppress perovskite degradation. Nature Communications, 2020, 11, 4172.	12.8	75

#	ARTICLE Stress Formation During <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>In</mml:mi></mml:math> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"</mml:math 	IF	CITATIONS
363	overflow="scroll"> <mml:mi>Ga</mml:mi> Interdiffusion in Thin-Film <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>Cu</mml:mi><mml:mi>In</mml:mi></mml:mrow><mml:r< td=""><td>3.8 mrow><mr< td=""><td>2 nl:mn>1</td></mr<></td></mml:r<></mml:msub></mml:math 	3.8 mrow> <mr< td=""><td>2 nl:mn>1</td></mr<>	2 nl:mn>1
364	Perovskite modules with 99% geometrical fill factor using point contact interconnections design. Progress in Photovoltaics: Research and Applications, 2020, 28, 1120-1127.	8.1	21
365	Enhancing the Interface Contact of Stacking Perovskite Solar Cells with Hexamethylenediammonium Diiodide-Modified PEDOT:PSS as an Electrode. ACS Applied Materials & Interfaces, 2020, 12, 42321-42327.	8.0	9
366	Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Materials, 2020, 12, .	7.9	88
367	Deep Mining Stable and Nontoxic Hybrid Organic–Inorganic Perovskites for Photovoltaics via Progressive Machine Learning. ACS Applied Materials & Interfaces, 2020, 12, 57821-57831.	8.0	20
368	Performance Promotion through Dual-Interface Engineering of CuSCN Layers in Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 27977-27984.	3.1	12
369	Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 57165-57173.	8.0	24
370	Double Electron Transport Layer and Optimized CsPbI ₃ Nanocrystal Emitter for Efficient Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28277-28284.	3.1	25
371	Highly Efficient and Air-Stable Heterostructured Perovskite Quantum Dot Solar Cells Using a Solid-State Cation-Exchange Reaction. ACS Applied Materials & Interfaces, 2020, 12, 57124-57133.	8.0	21
372	Heat dissipation effects on the stability of planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5059-5067.	30.8	44
373	Substrate-dependent Growth of CH ₃ NH ₃ PbI ₃ Films Deposited by Vacuum Evaporation. Journal of Physics: Conference Series, 2020, 1637, 012080.	0.4	2
374	Introducing ammonium salt into hole transporting materials for perovskite solar cells. Chemical Communications, 2020, 56, 14471-14474.	4.1	14
375	Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells. Energies, 2020, 13, 5572.	3.1	66
376	Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402.	12.8	71
377	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	21.0	39
378	Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells. Small, 2020, 16, e2004877.	10.0	35
379	Stable and Efficient Tin-Based Perovskite Solar Cell via Semiconducting–Insulating Structure. ACS Applied Energy Materials, 2020, 3, 10447-10452.	5.1	31
380	Unraveling Doping Capability of Conjugated Polymers for Strategic Manipulation of Electric Dipole Layer toward Efficient Charge Collection in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001560.	14.9	38

#	Article	IF	CITATIONS
381	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	19.5	321
382	A Dopantâ€Free Hole Transporting Layer for Efficient and Stable Planar Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000147.	2.4	3
383	In Situ Study of Sputtering Nanometer-Thick Gold Films onto 100-nm-Thick Spiro-OMeTAD Films: Implications for Perovskite Solar Cells. ACS Applied Nano Materials, 2020, 3, 5987-5994.	5.0	10
384	Stretchable Hole Extraction Layer for Improved Stability in Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 8004-8010.	6.7	13
385	Analysis of the Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weights: Morphology <i>versus</i> Kinetics. ACS Applied Energy Materials, 2020, 3, 6853-6859.	5.1	28
386	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	21.0	69
387	Carbon nanotubes to outperform metal electrodes in perovskite solar cells <i>via</i> dopant engineering and hole-selectivity enhancement. Journal of Materials Chemistry A, 2020, 8, 11141-11147.	10.3	51
388	Elucidating the role of TiCl ₄ post-treatment on percolation of TiO ₂ electron transport layer in perovskite solar cells. Journal Physics D: Applied Physics, 2020, 53, 385501.	2.8	6
389	Tuning Surface Wettability of Buffer Layers by Incorporating Polyethylene Glycols for Enhanced Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 26670-26679.	8.0	20
390	In Situ Formation of Compact PbI ₂ Shell Boosts the Efficiency and Thermostability of Perovskite Solar Cells. Small, 2020, 16, e2001866.	10.0	5
391	Perovskite solar cells prepared under infrared irradiation during fabrication process in air ambience. Journal of Materials Science: Materials in Electronics, 2020, 31, 9535-9542.	2.2	3
392	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	8.6	22
393	Nonâ€Conjugated Polymer Based on Polyethylene Backbone as Dopantâ€Free Holeâ€Transporting Material for Efficient and Stable Inverted Quasiâ€2D Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000184.	5.8	12
394	Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells Using Phenylethylammonium Iodide. ACS Applied Materials & Interfaces, 2020, 12, 24827-24836.	8.0	27
395	Preventing phase segregation in mixed-halide perovskites: a perspective. Energy and Environmental Science, 2020, 13, 2024-2046.	30.8	221
396	Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances, 2020, 1, 292-309.	5.4	35
397	Highly Stable and Efficient Perovskite Solar Cells with 22.0% Efficiency Based on Inorganic–Organic Dopantâ€Free Double Hole Transporting Layers. Advanced Functional Materials, 2020, 30, 1908462.	14.9	59
398	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	2.8	20

#	Article	IF	CITATIONS
399	Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2003295.	14.9	100
400	Enhanced near-ultraviolet and visible light absorption of organic-inorganic halide perovskites by co-doping with cesium and barium: Insight from first-principles calculations. Journal of Solid State Chemistry, 2020, 289, 121477.	2.9	4
401	Methylammonium Polyiodides in Perovskite Photovoltaics: From Fundamentals to Applications. Frontiers in Chemistry, 2020, 8, 418.	3.6	3
402	Mixed single-layer and self-alignment technology of organic light-emitting diodes and multi-functional integration in organic devices. Japanese Journal of Applied Physics, 2020, 59, SO0802.	1.5	1
403	Energetics and Energy Loss in 2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000687.	19.5	68
404	Formamidinium-Based Perovskite Solar Cells with Enhanced Moisture Stability and Performance via Confined Pressure Annealing. Journal of Physical Chemistry C, 2020, 124, 12249-12258.	3.1	23
405	Exploring Structure-Property Relationships in a Bio-Inspired Family of Bipodal and Electronically-Coupled Bistriphenylamine Dyes for Dye-Sensitized Solar Cell Applications. Molecules, 2020, 25, 2260.	3.8	10
406	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	16.0	99
407	Titanium Nitride Electron-Conductive Contact for Silicon Solar Cells By Radio Frequency Sputtering from a TiN Target. ACS Applied Materials & Interfaces, 2020, 12, 26177-26183.	8.0	27
408	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	3.0	34
409	Stable and efficient air-processed perovskite solar cells employing low-temperature processed compact In2O3 thin films as electron transport materials. Journal of Alloys and Compounds, 2020, 836, 155460.	5.5	19
410	Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. Solar Rrl, 2020, 4, 2000205.	5.8	38
411	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	19.1	22
412	Enhanced efficiency and stability of p-i-n perovskite solar cells using PMMA doped PTAA as hole transport layers. Synthetic Metals, 2020, 265, 116428.	3.9	22
413	Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nature Communications, 2020, 11, 2678.	12.8	143
414	Nonâ€Uniform Chemical Corrosion of Metal Electrode of p–i–n Type of Perovskite Solar Cells Caused by the Diffusion of CH ₃ NH ₃ I. Energy Technology, 2020, 8, 2000250.	3.8	13
415	Large-scale synthesis of CH3NH3BF4 crystal and its application on CH3NH3PbBrx(BF4)(3-x) perovskite thin films. Chemical Physics Letters, 2020, 754, 137638.	2.6	8
416	A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes. Journal of Alloys and Compounds, 2020, 845, 155311.	5.5	23

#	Article	IF	CITATIONS
417	Unravelling the Mechanism of Ionic Fullerene Passivation for Efficient and Stable Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2015-2022.	17.4	38
418	A Thioxanthenothioxanthene-based Hole Transporter with 2D Molecular Stacking for Efficient and Thermostable Perovskite Solar Cells. , 2020, 2, 691-698.		10
419	Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Research, 2020, 13, 2203-2208.	10.4	32
420	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chinese Chemical Letters, 2020, 31, 3055-3064.	9.0	52
421	Critical review of recent progress of flexible perovskite solar cells. Materials Today, 2020, 39, 66-88.	14.2	169
422	Surface modification of all-inorganic halide perovskite nanorods by a microscale hydrophobic zeolite for stable and sensitive laser humidity sensing. Nanoscale, 2020, 12, 13360-13367.	5.6	21
423	Direct observation of continuous networks of †sol†gel' processed metal oxide thin film for organic and perovskite photovoltaic modules with long-term stability. Journal of Materials Chemistry A, 2020, 8, 18659-18667.	10.3	6
424	Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale, 2020, 12, 14369-14404.	5.6	99
425	Porous Anatase TiO ₂ Nanocrystal Derived from the Metal–Organic Framework as Electron Transport Material for Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6180-6187.	5.1	20
426	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	19.5	62
427	Effect of the incorporation of poly(ethylene oxide) copolymer on the stability of perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 9697-9706.	5.5	8
428	Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. Reports on Progress in Physics, 2020, 83, 086502.	20.1	48
429	Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite. Journal of Luminescence, 2020, 226, 117471.	3.1	20
430	Dual Interfacial Engineering Enables Efficient and Reproducible CsPbI ₂ Br All-Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 31659-31666.	8.0	38
431	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	2.8	23
432	Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 14106-14113.	10.3	18
433	Perovskite Test: A High Throughput Method to Screen Ambient Encapsulation Conditions. Energy Technology, 2020, 8, 2000041.	3.8	4
434	Photon recycling in halide perovskite solar cells for higher efficiencies. MRS Bulletin, 2020, 45, 439-448.	3.5	20

#	Article	IF	CITATIONS
435	Post-treatment techniques for high-performance perovskite solar cells. MRS Bulletin, 2020, 45, 431-438.	3.5	11
436	A Cuâ€Doping Strategy to Enhance Photoelectric Performance of Selfâ€Powered Holeâ€Conductorâ€Free Perovskite Photodetector for Optical Communication Applications. Advanced Materials Technologies, 2020, 5, 2000260.	5.8	23
437	Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Lightâ€Absorbing Layer. Solar Rrl, 2020, 4, 2000240.	5.8	53
438	Single walled carbon nanotube incorporated Titanium dioxide and Poly(3-hexylthiophene) as electron and hole transport materials for perovskite solar cells. Materials Letters, 2020, 276, 128174.	2.6	8
439	Spectrally robust series/parallel-connected triple-junction photovoltaic cells used for artificial photosynthesis. Journal of Applied Physics, 2020, 127, .	2.5	8
440	Two-dimensional materials in perovskite solar cells. JPhys Energy, 2020, 2, 031003.	5.3	27
441	Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells. Frontiers of Optoelectronics, 2020, 13, 265-271.	3.7	10
442	External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells. Journal of Applied Physics, 2020, 127, .	2.5	15
443	Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nature Communications, 2020, 11, 2871.	12.8	131
444	Influence of polytetrafluoroethylene (PTFE) on photovoltaic performance and perovskite solar cell stability. Sustainable Energy and Fuels, 2020, 4, 4257-4263.	4.9	13
445	Ligand modification of Cu ₂ ZnSnS ₄ nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%. Journal of Materials Chemistry A, 2020, 8, 12080-12088.	10.3	25
446	Nanocarbon. , 2020, , 131-155.		0
447	Tetrahydrofuran as Solvent for P3HT/F4-TCNQ Hole-Transporting Layer to Increase the Efficiency and Stability of FAPbI3-Based Perovskite Solar Cell. Journal of Physical Chemistry C, 2020, 124, 14099-14104.	3.1	12
448	Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5115-5119.	4.6	34
449	Improved stability and efficiency of polymer-based selenium solar cells through the usage of tin(<scp>iv</scp>) oxide in the electron transport layers and the analysis of aging dynamics. Physical Chemistry Chemical Physics, 2020, 22, 14838-14845.	2.8	7
450	Destructive reverse bias pinning in perovskite/silicon tandem solar modules caused by perovskite hysteresis under dynamic shading. Sustainable Energy and Fuels, 2020, 4, 4067-4075.	4.9	16
451	Micro―and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. Advanced Materials, 2020, 32, e2000597.	21.0	62
452	PEDOT:PSSâ€Metal Oxide Composite Electrode with Regulated Wettability and Work Function for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Optical Materials, 2020, 8, 2000216.	7.3	34

	CITATION	Report	
#	Article	IF	CITATIONS
453	Stabilizing High Efficiency Perovskite Solar Cells with 3D-2D Heterostructures. Joule, 2020, 4, 975-979.	24.0	37
454	Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells. Nano Energy, 2020, 76, 104999.	16.0	20
455	Boosting Efficiency and Stability of Planar Inverted (FAPbI 3) x (MAPbBr 3) 1â^' x Solar Cells via FAPbI 3 and MAPbBr 3 Crystal Powders. Solar Rrl, 2020, 4, 2000091.	5.8	19
456	Surface Ligands Management for Efficient CsPbBrl ₂ Perovskite Nanocrystal Solar Cells. Solar Rrl, 2020, 4, 2000102.	5.8	25
457	A General Wet Transferring Approach for Diffusion-Facilitated Space-Confined Grown Perovskite Single-Crystalline Optoelectronic Thin Films. Nano Letters, 2020, 20, 2747-2755.	9.1	34
458	Bifunctional Effects of Trichloro(octyl)silane Modification on the Performance and Stability of a Perovskite Solar Cell via Microscopic Characterization Techniques. ACS Applied Energy Materials, 2020, 3, 3302-3309.	5.1	11
459	Grain Growth of MAPbI ₃ via Diethylammonium Bromide Induced Grain Mergence. ACS Applied Materials & Interfaces, 2020, 12, 16707-16714.	8.0	10
460	Toward perovskite nanocrystalline solar cells: progress and potential. Journal of Materials Chemistry C, 2020, 8, 5321-5334.		22
461	Dynamic casting in combination with ramped annealing process for implementation of inverted planar Ag3Bil6 rudorffite solar cells. Journal of Power Sources, 2020, 453, 227903.		20
462	Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy, 2020, 72, 104663.	16.0	103
463	Temperature-Dependent Optical Band Gap in CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2490-2496.	4.6	173
464	Methylamine-Dimer-Induced Phase Transition toward MAPbI ₃ Films and High-Efficiency Perovskite Solar Modules. Journal of the American Chemical Society, 2020, 142, 6149-6157.	13.7	59
465	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	48.7	445
466	How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%. Advanced Materials, 2020, 32, e2000080.	21.0	134
467	Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Solar Energy Materials and Solar Cells, 2020, 210, 110502.	6.2	107
468	Effect of the Hole Transporting/Active Layer Interface on the Perovskite Solar Cell Stability. ACS Applied Energy Materials, 2020, 3, 3282-3292.	5.1	29
469	Selfâ€Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910620.	14.9	68
470	Toward Stable Perovskite Solar Cell Architectures: Robustness Against Temperature Variations of Real-World Conditions. IEEE Journal of Photovoltaics, 2020, 10, 777-784.	2.5	6

#	Article	IF	CITATIONS
471	Cesium carbonate modified electron transport layer for improving the photoelectric conversion efficiency of planar perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 112, 105014.	4.0	10
472	Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. Journal of Materials Chemistry A, 2020, 8, 6546-6554.	10.3	30
473	Improved performance of lead-tin mixed perovskite solar cells with PEDOT:PSS treated by hydroquinone. Solar Energy, 2020, 201, 589-595.	6.1	17
474	Stabilized and Operational PbI ₂ Precursor Ink for Large-Scale Perovskite Solar Cells via Two-Step Blade-Coating. Journal of Physical Chemistry C, 2020, 124, 8129-8139.	3.1	23
475	Hybrid Perovskiteâ€Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting. Advanced Energy Materials, 2020, 10, 2000361.	19.5	79
476	Synthesis of a side-chain hole transporting polymer through Mitsunobu post-functionalization for efficient inverted perovskite solar cells. Polymer Chemistry, 2020, 11, 2883-2888.	3.9	5
477	Revealing the Mechanism of Doping of <i>spiro</i> -MeOTAD via Zn Complexation in the Absence of Oxygen and Light. ACS Energy Letters, 2020, 5, 1271-1277.	17.4	29
478	Multi-component engineering to enable long-term operational stability of perovskite solar cells. JPhys Energy, 2020, 2, 024008.	5.3	13
479	Facile Deposition of Mesoporous PbI2 through DMF:DMSO Solvent Engineering for Sequentially Deposited Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 3358-3368.	5.1	11
480	Strongly Enhanced Photoluminescence and Photoconductivity in Erbium-Doped MAPbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2020, 124, 8992-8998.	3.1	26
481	From Metallic Lead Films to Perovskite Solar Cells through Lead Conversion with Polyhalide Solutions. ACS Applied Materials & Interfaces, 2020, 12, 20456-20461.	8.0	12
482	Spontaneously Selfâ€Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000173.	19.5	126
483	Alkyl side-chain dependent self-organization of small molecule and its application in high-performance organic and perovskite solar cells. Nano Energy, 2020, 72, 104708.	16.0	20
484	Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3186-3192.	5.1	37
485	Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Journal of Materials Chemistry A, 2020, 8, 7309-7316.	10.3	28
486	Synergistic Reinforcement of Builtâ€In Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 1909755.	14.9	47
487	Selfâ€Assembled Ionic Liquid for Highly Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. ChemSusChem, 2020, 13, 2779-2785.	6.8	31
488	Effective Carbon Composite Electrode for Low ost Perovskite Solar Cell with Inorganic CuIn _{0.75} Ga _{0.25} S ₂ Hole Transport Material. Solar Rrl, 2020, 4, 1900564.	5.8	34

#	Article	IF	CITATIONS
489	Dopant-free X-shaped D-A type hole-transporting materials for p-i-n perovskite solar cells. Dyes and Pigments, 2020, 178, 108334.	3.7	16
490	Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49, 1653-1687.	38.1	364
491	Aâ€5ite Cation Engineering of Metal Halide Perovskites: Version 3.0 of Efficient Tinâ€Based Leadâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000794.	14.9	81
492	Impacts of the Hole Transport Layer Deposition Process on Buried Interfaces in Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100103.	5.6	17
493	Metal-Free Hybrid Organic–Inorganic Perovskites for Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 5938-5947.	4.6	12
494	Effect of structural and temperature variations on perovskite/Mg2Si based monolithic tandem solar cell structure. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	25
495	Improving the efficiency of perovskite solar cells by additive engineering with ditetrabutylammonium dichromate. Organic Electronics, 2020, 85, 105845.	2.6	5
496	High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO ₂ as an electron transport layer. Materials Advances, 2020, 1, 617-624.	5.4	30
497	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	12.6	461
498	<i>In Situ</i> Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Letters, 2020, 20, 5799-5806.	9.1	67
499	Redox-inactive samarium(III) acetylacetonate as dopant enabling cation substitution and interfacial passivation for efficient and stable CsPbI2Br perovskite solar cells. APL Materials, 2020, 8, 071102.	5.1	12
500	Defect Passivation in Perovskite Solar Cells by Cyanoâ€Based Ï€â€Conjugated Molecules for Improved Performance and Stability. Advanced Functional Materials, 2020, 30, 2002861.	14.9	87
501	Significance of Ambient Temperature Control for Highly Reproducible Layered Perovskite Light-Emitting Diodes. ACS Photonics, 2020, 7, 2489-2497.	6.6	15
502	Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials, 2020, 8, .	5.1	57
503	Perovskite nanogels: synthesis, properties, and applications. Journal of Materials Chemistry C, 2020, 8, 12355-12379.	5.5	7
504	Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications, 2020, 28, 629-638.	8.1	461
505	Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 101359.	4.1	105
506	Graded energy band engineering for efficient perovskite solar cells. Nano Select, 2020, 1, 152-168.	3.7	19

#	Article	IF	CITATIONS
507	High-temperature induced iodide and bromide ions filling lattice for high efficient all-inorganic perovskite solar cells. Journal of Alloys and Compounds, 2020, 848, 156247.	5.5	11
508	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	21.0	148
509	A mixed hole transport material employing a highly planar conjugated molecule for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5163-5170.	10.3	40
510	Inverted devices are catching up. Nature Energy, 2020, 5, 123-124.	39.5	14
511	Bandâ€Edge Luminescence from Oxide and Halide Perovskite Semiconductors. Chemistry - an Asian Journal, 2020, 15, 709-717.	3.3	6
512	Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. Journal of Colloid and Interface Science, 2020, 568, 255-263.	9.4	25
513	D–π–D molecular semiconductors for perovskite solar cells: the superior role of helical <i>versus</i> planar π-linkers. Chemical Science, 2020, 11, 3418-3426.	7.4	30
514	Interlayerâ€Sensitized Linear and Nonlinear Photoluminescence of Quasiâ€2D Hybrid Perovskites Using Aggregationâ€Induced Enhanced Emission Active Organic Cation Layers. Advanced Functional Materials, 2020, 30, 1909375.	14.9	21
515	Influence of Functional Diamino Organic Cations on the Stability, Electronic Structure, and Carrier Transport Properties of Three-Dimensional Hybrid Halide Perovskite. Journal of Physical Chemistry C, 2020, 124, 6796-6810.	3.1	12
516	Defect Control Strategy by Bifunctional Thioacetamide at Low Temperature for Highly Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12883-12891.	8.0	24
517	Control of Crystal Symmetry Breaking with Halogen-Substituted Benzylammonium in Layered Hybrid Metal-Halide Perovskites. Journal of the American Chemical Society, 2020, 142, 5060-5067.	13.7	65
518	Simplified Compact Perovskite Solar Cells with Efficiency of 19.6% via Interface Engineering. Energy and Environmental Materials, 2020, 3, 5-11.	12.8	10
519	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	30.8	420
520	Size-Dependent Pressure-Response of the Photoluminescence of CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 1975-1980.	4.6	35
521	Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. JPhys Materials, 2020, 3, 025003.	4.2	20
522	Efficient Perovskite Solar Cells by Reducing Interfaceâ€Mediated Recombination: a Bulky Amine Approach. Advanced Energy Materials, 2020, 10, 2000197.	19.5	198
523	Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule, 2020, 4, 644-657.	24.0	69
524	Surface Engineering of Low-Temperature Processed Mesoporous TiO ₂ via Oxygen Plasma for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12648-12655.	8.0	33

#	Article	IF	CITATIONS
525	Semi-transparent perovskite solar cells with a cross-linked hole transport layer. Nano Energy, 2020, 71, 104635.	16.0	49
526	Dopantâ€Free Organic Holeâ€Transporting Material for Efficient and Stable Inverted Allâ€Inorganic and Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e1908011.	21.0	195
527	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	19.5	256
528	Chemical stability for humidity control during the processing of solar cells with halide perovskites. Materials Science in Semiconductor Processing, 2020, 112, 105022.	4.0	3
529	Enhanced stability and efficiency of perovskite solar cells via bifunctional group passivation with thiosalicylic acid. Organic Electronics, 2020, 81, 105681.	2.6	18
530	Core/Shell Quantum Dots Solar Cells. Advanced Functional Materials, 2020, 30, 1908762.	14.9	98
531	A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 2020, 198, 665-688.	6.1	321
532	Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells. Solar Rrl, 2020, 4, 2000060.	5.8	23
533	Reproducible Dry Stamping Transfer of PEDOT:PSS Transparent Top Electrode for Flexible Semitransparent Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10527-10534.	8.0	40
534	Molecularly engineered hole-transport material for low-cost perovskite solar cells. Chemical Science, 2020, 11, 2429-2439.	7.4	29
535	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	31.8	67
536	Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Progress in Materials Science, 2020, 110, 100639.	32.8	38
537	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	47.7	152
538	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	17.4	52
539	Halide perovskites: current issues and new strategies to push material and device stability. JPhys Energy, 2020, 2, 021005.	5.3	40
540	Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability. Solar Energy Materials and Solar Cells, 2020, 208, 110417.	6.2	15
541	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Longâ€Term Stable Perovskite Solar Cell. Advanced Science, 2020, 7, 1903368.	11.2	85
542	Polaron hopping barriers and rates in semiconducting polymers. Physical Chemistry Chemical Physics, 2020, 22, 4032-4042.	2.8	7

#	Article	IF	CITATIONS
543	Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10, 14.	2.3	9
544	Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells. Journal of Energy Chemistry, 2020, 48, 217-225.	12.9	45
545	In Situ Observation of Vapor-Assisted 2D–3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. Nano Letters, 2020, 20, 1296-1304.	9.1	65
546	Large-Scale Synthesis of Uniform PbI ₂ (DMSO) Complex Powder by Solvent Extraction Method for Efficient Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 8233-8239.	8.0	22
547	Efficient CsSnI ₃ -based inorganic perovskite solar cells based on a mesoscopic metal oxide framework <i>via</i> incorporating a donor element. Journal of Materials Chemistry A, 2020, 8, 4118-4124.	10.3	75
548	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	19.5	202
549	Three-Dimensional Laser-Assisted Patterning of Blue-Emissive Metal Halide Perovskite Nanocrystals inside a Glass with Switchable Photoluminescence. ACS Nano, 2020, 14, 3150-3158.	14.6	102
550	Hole Transport Materials in Conventional Structural (n–i–p) Perovskite Solar Cells: From Past to the Future. Advanced Energy Materials, 2020, 10, 1903403.	19.5	192
551	High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903487.	19.5	210
552	Surface Modification of TiO2 for Perovskite Solar Cells. Trends in Chemistry, 2020, 2, 148-162.	8.5	91
553	Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy, 2020, 70, 104502.	16.0	55
554	Fine Structure of the Optical Absorption Resonance in Cs ₂ AgBiBr ₆ Double Perovskite Thin Films. ACS Energy Letters, 2020, 5, 559-565.	17.4	45
555	In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 7690-7700.	8.0	12
556	Bottom-up synthesis of bright fluorescent, moisture-resistant methylammonium lead bromide@poly(3-bromothiophene). New Journal of Chemistry, 2020, 44, 2053-2058.	2.8	4
557	Superior Textured Film and Process Tolerance Enabled by Intermediate tate Engineering for Highâ€Efficiency Perovskite Solar Cells. Advanced Science, 2020, 7, 1903009.	11.2	22
558	Graded Bandgap Perovskite with Intrinsic n–p Homojunction Expands Photon Harvesting Range and Enables All Transport Layerâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903347.	19.5	50
559	Solutionâ€Processable 2D Materials Applied in Lightâ€Emitting Diodes and Solar Cells. Advanced Materials Technologies, 2020, 5, 1900972.	5.8	40
560	A study on solution-processable tetrabenzomonoazaporphyrin hole transport material for pervoskite solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 015007.	1.5	1

# 561	ARTICLE Metaâ€Stable Molecular Configuration Enables Thermally Stable and Solution Processable Organic Charge Transporting Materials. Advanced Functional Materials, 2020, 30, 2000729.	IF 14.9	CITATIONS 3
562	A Crossâ€Linked PCBM Interlayer for Efficient and UVâ€Stable Methylammoniumâ€Free Perovskite Solar Cells. Energy Technology, 2020, 8, 2000224.		9
563	Tuning spin-orbit coupling towards enhancing photocurrent in hybrid organic-inorganic perovskites by using mixed organic cations. Organic Electronics, 2020, 81, 105671.	2.6	10
564	Rapid Microwaveâ€Annealing Process of Hybrid Perovskites to Eliminate Miscellaneous Phase for High Performance Photovoltaics. Advanced Science, 2020, 7, 2000480.	11.2	34
565	Influence of Chloride/Iodide Ratio in MAPbI3-xClx Perovskite Solar Devices: Case of Low Temperature Processable AZO Sub-Layer. Energies, 2020, 13, 1927.	3.1	11
566	Photoactive Znâ€Chlorophyll Hole Transporterâ€Sensitized Leadâ€Free Cs ₂ AgBiBr ₆ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000166.	5.8	58
567	Stable Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5058-5066.		95
568			26
569			14
570	A Bioinspired Wireless Epidermal Photoreceptor for Artificial Skin Vision. Advanced Functional Materials, 2020, 30, 2000381.		24
571	Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000778.	14.9	103
572	A Thermally Induced Perovskite Crystal Control Strategy for Efficient and Photostable Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000033.	5.8	22
573	Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coordination Chemistry Reviews, 2020, 415, 213316.	18.8	21
574	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.		257
575	Interfacial electric field enhanced charge density for robust triboelectric nanogenerators by tailoring metal/perovskite Schottky junction. Nano Energy, 2020, 73, 104747.	16.0	42
576	Growth control and defect passivation toward efficient and low-temperature processed carbon based CsPbIBr2 solar cell. Organic Electronics, 2020, 83, 105731.	2.6	24
577	Vapor-deposited all inorganic CsPbBr3 thin films and interface modification with C8-BTBT for high performance photodetector. Results in Physics, 2020, 17, 103087.	4.1	21
578	Computational study of stack/terminal topologies for perovskite based bifacial tandem solar cells. Solar Energy, 2020, 203, 1-9.	6.1	15

#	Article	IF	CITATIONS
579	High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212, 110555.	6.2	36
580	Photoactivated transition metal dichalcogenides to boost electron extraction for all-inorganic tri-brominated planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 7784-7791.	10.3	31
581	Aged sol-gel solution-processed texture tin oxide for high-efficient perovskite solar cells. Nanotechnology, 2020, 31, 315205.	2.6	8
582	The growth of methylammonium lead iodide perovskites by close space vapor transport. RSC Advances, 2020, 10, 16125-16131.	3.6	11
583	Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Applied Physics Reviews, 2020, 7, .	11.3	150
584	A reaction-and-assembly approach using monoamine zinc porphyrin for highly stable large-area perovskite solar cells. Science China Chemistry, 2020, 63, 777-784.	8.2	19
585	Pyridine Bridging Diphenylamine-Carbazole with Linking Topology as Rational Hole Transporter for Perovskite Solar Cells Fabrication. ACS Applied Materials & Interfaces, 2020, 12, 22881-22890.	8.0	38
586	Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing. Applied Sciences (Switzerland), 2020, 10, 1917.	2.5	2
587	Poly(3â€hexylthiophene)/Gold Nanorod Composites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000109.	5.8	10
588	Highâ€Efficiency CsPbl ₂ Br Perovskite Solar Cells with Dopantâ€Free Poly(3â€hexylthiophene) Hole Transporting Layers. Advanced Energy Materials, 2020, 10, 2000501.	19.5	69
589	Morphology Control of Doped Spiroâ€MeOTAD Films for Air Stable Perovskite Solar Cells. Small, 2020, 16, e1907513.	10.0	16
590	Additiveâ€Assisted Hotâ€Casting Free Fabrication of Dion–Jacobson 2D Perovskite Solar Cell with Efficiency Beyond 16%. Solar Rrl, 2020, 4, 2000087.	5.8	49
591	Large organic cation incorporation induces vertical orientation growth of Sn-based perovskites for high efficiency solar cells. Chemical Engineering Journal, 2020, 402, 125133.	12.7	25
592	Tungsten-Doped Zinc Oxide and Indium–Zinc Oxide Films as High-Performance Electron-Transport Layers in N–l–P Perovskite Solar Cells. Polymers, 2020, 12, 737.	4.5	10
593	Spatially Resolved Performance Analysis for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1904001.	19.5	30
594	Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency. Advanced Energy Materials, 2020, 10, 2000615.	19.5	76
595	Superior Stability and Emission Quantum Yield (23% ± 3%) of Single‣ayer 2D Tin Perovskite TEA ₂ SnI ₄ via Thiocyanate Passivation. Small, 2020, 16, e2000903.	10.0	19
596	Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells. Chemical Engineering Journal, 2020, 396, 125010.	12.7	19

		CITATION R	EPORT	
#	Article		IF	Citations
597	Charge-transport layer engineering in perovskite solar cells. Science Bulletin, 2020, 65, 1	237-1241.	9.0	115
598	Zwitterion-Stabilizing Scalable Bladed α-Phase Cs _{0.1} FA _{0.9} Pbl for Efficient Inverted Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engin 8, 7020-7030.		6.7	27
599	Perovskite Solar Cells: A Porous Graphitic Carbon based Hole Transporter/Counter Electr Material Extracted from an Invasive Plant Species Eichhornia Crassipes. Scientific Report 6835.		3.3	38
600	Synchronous surface and bulk composition management for red-shifted light absorption suppressed interfacial recombination in perovskite solar cells. Journal of Materials Chemi 8, 9743-9752.	and stry A, 2020,	10.3	22
601	Perovskite CsPbBr ₃ crystals: growth and applications. Journal of Materials (2020, 8, 6326-6341.	Chemistry C,	5.5	87
602	Ligandâ€Modulated Excess PbI ₂ Nanosheets for Highly Efficient and Stable Cells. Advanced Materials, 2020, 32, e2000865.	Perovskite Solar	21.0	136
603	Accurately Stoichiometric Regulating Oxidation States in Hole Transporting Material to B Hole Mobility of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000127.	Inhance the	5.8	5
604	Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 20 393-411.	21, 52,	12.9	132
605	Biopolymer passivation for high-performance perovskite solar cells by blade coating. Journal of Energy Chemistry, 2021, 54, 45-52.		12.9	29
606	Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D hybrid dimension structu and stable solar cells. Chemical Engineering Journal, 2021, 403, 125724.	ire for efficient	12.7	33
607	Multifunctional dopamine-assisted preparation of efficient and stable perovskite solar ce of Energy Chemistry, 2021, 54, 291-300.	lls. Journal	12.9	42
608	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and P Solar Cells. Advanced Materials, 2021, 33, e1905245.	erovskite	21.0	30
609	A crosslinked polymer as dopant-free hole-transport material for efficient n-i-p type perov cells. Journal of Energy Chemistry, 2021, 55, 211-218.	vskite solar	12.9	29
610	Improved interfacial property by small molecule ethanediamine for high performance inv perovskite solar cells. Journal of Energy Chemistry, 2021, 54, 467-474.	erted planar	12.9	12
611	Natural passivation of the perovskite layer by oxygen in ambient air to improve the effici stability of perovskite solar cells simultaneously. Organic Electronics, 2021, 88, 106007.	ency and	2.6	11
612	Perovskite Passivation Strategies for Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, .		5.8	23
613	Enamineâ€Based Crossâ€Linkable Holeâ€Transporting Materials for Perovskite Solar Cel	ls. Solar Rrl, 2021, 5,	5.8	11
614	Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovs cells by interface engineering with ultraviolet absorber. Chemical Engineering Journal, 20 126548.	kite solar 21, 404,	12.7	29

		CITATION RE	PORT	
#	Article		IF	CITATIONS
615	Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050.		12.0	43
616	A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar ce efficiencies exceeding 22%. Nano Energy, 2021, 79, 105462.	Ils with	16.0	72
617	Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Applie Materials, 2021, 3, 60-92.	d Polymer	4.4	43
618	Acetone-assisted precursor engineering enables low-temperature fabrication of CsPbI2Br for efficient solar cells. Journal of Power Sources, 2021, 482, 228965.	perovskite	7.8	31
619	Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance. Advanced Functional Materials, 2021, 31, 2007473.		14.9	40
620	Laser writing of CsPbBr3 nanocrystals mediated by closely-packed Au nanoislands. Applied Surface Science, 2021, 538, 148143.		6.1	9
621	Allâ€Inorganic CsPbl ₃ Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930.		14.9	101
622	Effects of guanidinium cations on structural, optoelectronic and photovoltaic properties of perovskites. Journal of Energy Chemistry, 2021, 58, 48-54.		12.9	21
623	Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction. Science China Chemistry, 2021, 64, 41-51.		8.2	55
624	Composition optimization of lead-free double perovskite Cs2AgIn1-xBixCl6 for efficient and stable photoluminescence. Journal of Alloys and Compounds, 2021, 854, 156930.		5.5	15
625	Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar c cross-linked grain encapsulation. Journal of Energy Chemistry, 2021, 56, 455-462.	ells with	12.9	31
626	A charge-separated interfacial hole transport semiconductor for efficient and stable perov cells. Organic Electronics, 2021, 88, 105988.	vskite solar	2.6	4
627	Spatial configuration engineering of perylenediimide-based non-fullerene electron transpo materials for efficient inverted perovskite solar cells. Journal of Energy Chemistry, 2021, 5		12.9	20
628	Solar energy technologies: principles and applications. , 2021, , 3-42.			7
629	Pyrene-Cored Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. E the Chemical Society of Japan, 2021, 94, 632-640.	3ulletin of	3.2	5
630	Recent progress of minimal voltage losses for high-performance perovskite photovoltaics Energy, 2021, 81, 105634.	. Nano	16.0	48
631	Mixed Group 14–15 Metalates as Model Compounds for Doped Lead Halide Perovskite Chemie - International Edition, 2021, 60, 3906-3911.	s. Angewandte	13.8	11
632	Two-dimensional halide perovskite-based solar cells: Strategies for performance and stabi enhancement. FlatChem, 2021, 25, 100213.	lity	5.6	4

#	Article	IF	CITATIONS
633	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	19.5	93
634	Light Stability Enhancement of Perovskite Solar Cells Using <i>1H</i> , <i>1H</i> , <i>2H</i> , <i>2H</i> â€Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5, 2000650.	5.8	7
635	Lowâ€Temperatureâ€Deposited TiO ₂ Nanopillars for Efficient and Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001512.	3.7	11
636	A Review on Scaling Up Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008621.	14.9	143
637	Selfâ€Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses. Advanced Materials, 2021, 33, e2005557.	21.0	109
638	Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells. Annual Review of Condensed Matter Physics, 2021, 12, 95-109.	14.5	25
639	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	19.5	118
640	Tailoring organic bulk-heterojunction for charge extraction and spectral absorption in CsPbBr3 perovskite solar cells. Science China Materials, 2021, 64, 798-807.	6.3	17
641	Direct Observation of Photoinduced Ion Migration in Lead Halide Perovskites. Advanced Functional Materials, 2021, 31, 2008777.	14.9	41
642	In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. Helvetica Chimica Acta, 2021, 104, .	1.6	15
643	Efficient designing of triphenylamine-based hole transport materials with outstanding photovoltaic characteristics for organic solar cells. Journal of Materials Science, 2021, 56, 5113-5131.	3.7	86
644	Highly luminescent CH3NH3PbBr3 quantum dots with 96.5% photoluminescence quantum yield achieved by synergistic combination of single-crystal precursor and capping ligand optimization. Journal of Alloys and Compounds, 2021, 859, 157842.	5.5	5
645	Ni,Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2021, 94, 376-383.	5.8	8
646	Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110870.	6.2	12
647	Conjugated polyelectrolyte doped perovskite films with enhanced photovoltaic performance and stability. Chemical Engineering Journal, 2021, 417, 128068.	12.7	8
648	Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells. Joule, 2021, 5, 183-196.	24.0	308
649	Multi-source cation/anion doping towards efficient carbon-based CsPbIBr2 solar cells with superior open voltage up to 1.37ÂV. Solar Energy Materials and Solar Cells, 2021, 221, 110918.	6.2	21
650	Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer. Nano Energy, 2021, 82, 105685.	16.0	28

#	Article	IF	CITATIONS
651	9.7%-efficient Sb ₂ (S,Se) ₃ solar cells with a dithieno[3,2- <i>b</i> : 2′,3′- <i>d</i>]pyrrole-cored hole transporting material. Energy and Environmental Science, 2021, 14, 359-364.	30.8	70
652	Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A, 2021, 9, 1574-1582.	10.3	126
653	Gemischte Gruppeâ€14â€15â€Metallate als Modellverbindungen für dotierte Bleihalogenidperowskite. Angewandte Chemie, 2021, 133, 3952-3956.	2.0	0
654	A Scalable Integrated Dopantâ€Free Heterostructure to Stabilize Perovskite Solar Cell Modules. Advanced Energy Materials, 2021, 11, 2003301.	19.5	43
655	Insights into Largeâ€Scale Fabrication Methods in Perovskite Photovoltaics. Advanced Energy and Sustainability Research, 2021, 2, 2000046.	5.8	27
656	Transparent and Colored Solar Photovoltaics for Building Integration. Solar Rrl, 2021, 5, 2000614.	5.8	27
657	Perovskite surface management by thiol and amine copper porphyrin for stable and clean solar cells. Chemical Engineering Journal, 2021, 409, 128167.	12.7	25
658	Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Letters, 2021, 6, 208-215.	17.4	67
659	All-inorganic CsPbBr ₃ perovskite: a promising choice for photovoltaics. Materials Advances, 2021, 2, 646-683.	5.4	100
660	Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 67-76.	5.5	171
661	Undoped 2,2′,7,7′-tetrakis (N,N-p-dimethoxy-phenylamino)-9,9′-spirobifluorene and PbS binary hole-transporter for efficient and stable planar perovskite solar cells. Journal of Power Sources, 2021, 481, 229149.	7.8	7
662	Dual Interfacial Modification Engineering for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000652.	5.8	4
663	Defect mitigation using <scp>d</scp> -penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12, 2050-2059.	7.4	88
664	Conjugated copolymers as doping- and annealing-free hole transport materials for highly stable and efficient p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2269-2275.	10.3	15
665	A review on power conversion efficiency of lead iodide perovskite-based solar cells. Materials Today: Proceedings, 2021, 46, 5570-5574.	1.8	14
666	Cross-linkable fullerene interfacial contacts for enhancing humidity stability of inverted perovskite solar cells. Rare Metals, 2021, 40, 1691-1697.	7.1	8
667	Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy, 2021, 80, 105526.	16.0	130
668	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	14.9	37

#	Article	IF	CITATIONS
669	Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive. Journal of Energy Chemistry, 2021, 57, 593-600.	12.9	30
670	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	8.6	63
671	Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy, 2021, 79, 105394.	16.0	56
672	Recent progress in the piezoelectricity of molecular ferroelectrics. Materials Chemistry Frontiers, 2021, 5, 44-59.	5.9	43
673	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	27.5	800
674	SMART Perovskite Growth: Enabling a Larger Range of Process Conditions. ACS Energy Letters, 2021, 6, 650-658.	17.4	14
675	Carbon nanotubes in high-performance perovskite photovoltaics and other emerging optoelectronic applications. Journal of Applied Physics, 2021, 129, .	2.5	15
676	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	5.8	6
677	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	4.9	11
678	Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq1 .	l 0.78431 0.8	4 rgBT /Over
679	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	38.1	96
680	Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy and Environmental Science, 2021, 14, 5875-5893.	30.8	180
681	Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy and Environmental Science, 2021, 14, 1563-1572.	30.8	55
682	Crystallization in one-step solution deposition of perovskite films: Upward or downward?. Science Advances, 2021, 7, .	10.3	165
683	Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors. Chinese Chemical Letters, 2021, 32, 489-492.	9.0	22
684	Printing Highâ€Efficiency Perovskite Solar Cells in Highâ€Humidity Ambient Environment—An In Situ Guided Investigation. Advanced Science, 2021, 8, 2003359.	11.2	40
685	Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental Science, 2021, 14, 5161-5190.	30.8	255
687	Interface of Sn-doped AgAlTe2 and LiInTe2: A theoretical model of tandem intermediate band absorber. Applied Physics Letters, 2021, 118, .	3.3	6

#	Article	IF	CITATIONS
688	Elemental Pb initiated in situ Cl doping for improved photovoltaic performances of perovskite. Journal of Renewable and Sustainable Energy, 2021, 13, 013503.	2.0	3
689	Low-Cost, High-Performance Organic Small Molecular Hole-Transporting Materials for Perovskite Solar Cells. Chinese Journal of Organic Chemistry, 2021, 41, 1447.	1.3	5
690	Highly efficient and stable planar perovskite solar cells with K ₃ [Fe(CN) ₆]-doped spiro-OMeTAD. Journal of Materials Chemistry C, 2021, 9, 7726-7733.	5.5	20
691	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
692	Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nature Energy, 2021, 6, 63-71.	39.5	365
693	Synthesis of spirodithienogermole with triphenylamine units as a dopant-free hole-transporting material for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 2001-2007.	5.5	7
694	A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics. Journal of Materials Chemistry A, 2021, 9, 15294-15300.	10.3	27
695	Improved efficiency and carrier dynamic transportation behavior in perovskite solar cells with CuInS ₂ quantum dots as hole-transport materials. Dalton Transactions, 2021, 50, 8837-8844.	3.3	6
696	Ambient processed (110) preferred MAPbI ₃ thin films for highly efficient perovskite solar cells. Nanoscale Advances, 2021, 3, 2056-2064.	4.6	15
697	Soft annealing effect on the properties of sputter grown Cu2ZnSnS4 (CZTS) thin films for solar cell applications. Materials Today: Proceedings, 2021, 34, 690-696.	1.8	5
698	Polymeric hole-transporting material with a flexible backbone for constructing thermally stable inverted perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7241-7250.	5.9	6
699	A carbon-quantum-dot-hybridized NiO _{<i>x</i> sub> hole-transport layer enables efficient and stable planar p–i–n perovskite solar cells with high open-circuit voltage. Journal of Materials Chemistry C, 2021, 9, 12213-12223.}	5.5	7
700	Co-evaporation of CH ₃ NH ₃ PbI ₃ : How Growth Conditions Impact Phase Purity, Photostriction, and Intrinsic Stability. ACS Applied Materials & Interfaces, 2021, 13, 2642-2653.	8.0	14
701	Polymers and interfacial modifiers for durable perovskite solar cells: a review. Journal of Materials Chemistry C, 2021, 9, 12509-12522.	5.5	18
702	Proton sponge lead halides containing 1D polyoctahedral chains. CrystEngComm, 2021, 23, 1126-1139.	2.6	7
703	Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P–l–N Vacuumâ€Processed MAPbI ₃ Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000065.	5.8	20
704	Ambient Prepared Mesoporous Perovskite Solar Cells with Longer Stability. Journal of Electronic Materials, 2021, 50, 1535-1543.	2.2	2
705	Visualization of halide perovskite crystal growth processes by <i>in situ</i> heating WAXS measurements. Chemical Communications, 2021, 57, 2685-2688.	4.1	1

#	Article	IF	CITATIONS
706	Carbonâ€Based Printable Perovskite Solar Cells with a Mesoporous TiO ₂ Electron Transporting Layer Derived from Metal–Organic Framework NH ₂ â€MILâ€125. Energy Technology, 2021, 9, 2000957.	3.8	11
707	Cadmium doping for improving the efficiency and stability of carbon-based CsPbIBr ₂ all-inorganic perovskite solar cells. New Journal of Chemistry, 2021, 45, 9243-9250.	2.8	12
708	Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells. Nanoscale Advances, 2021, 3, 2305-2315.	4.6	25
709	Drastic Change of Surface Morphology of Cesium–Formamidinium Perovskite Solar Cells by Antisolvent Processing. ACS Applied Energy Materials, 2021, 4, 1069-1077.	5.1	4
710	Perovskite solar cells as modern nano tools and devices in solar power energy. , 2021, , 377-427.		5
711	Selective Defect Passivation and Topographical Control of 4â€Dimethylaminopyridine at Grain Boundary for Efficient and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003382.	19.5	82
712	Trimethylsulfonium lead triiodide (TMSPbI ₃) for moisture-stable perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 4327-4335.	4.9	11
713	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	5.5	2
714	Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582.	21.0	182
715	Boosting the performance of MA-free inverted perovskite solar cells <i>via</i> multifunctional ion liquid. Journal of Materials Chemistry A, 2021, 9, 12746-12754.	10.3	44
716	Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. Journal of Materials Chemistry C, 2021, 9, 439-455.	5.5	24
717	Buried Interfaces in Halide Perovskite Photovoltaics. Advanced Materials, 2021, 33, e2006435.	21.0	214
718	Water and oxygen co-induced microstructure relaxation and evolution in CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2021, 23, 17242-17247.	2.8	5
719	Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells. Nanoscale, 2021, 13, 5652-5659.	5.6	7
720	Perovskite solar cells. , 2021, , 249-281.		5
721	Advances in SnO ₂ -based perovskite solar cells: from preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9, 19554-19588.	10.3	88
722	Highly Stable Ag–Au Core–Shell Nanowire Network for ITOâ€Free Flexible Organic Electrochromic Device. Advanced Functional Materials, 2021, 31, 2010022.	14.9	40
723	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chemical Science, 2021, 12, 7231-7247.	7.4	31

#	Article	IF	CITATIONS
724	Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 198403-198403.	0.5	0
725	Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: from aging to degradation. Journal of Materials Chemistry A, 2021, 9, 6732-6748.	10.3	26
726	Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO ₂ . Energy and Environmental Science, 2021, 14, 3447-3454.	30.8	115
727	Efficient defect passivation with niacin for high-performance and stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	5.5	10
728	A saddle-shaped <i>o</i> -tetraphenylene based molecular semiconductor with a high glass transition temperature for perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9927-9936.	10.3	6
729	Optimizing kesterite solar cells from Cu ₂ ZnSnS ₄ to Cu ₂ CdGe(S,Se) ₄ . Journal of Materials Chemistry A, 2021, 9, 9882-9897.	10.3	18
730	Correlations between Electrochemical Ion Migration and Anomalous Device Behaviors in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1003-1014.	17.4	39
731	Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI ₂ Br for Stable All-Inorganic Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 778-788.	17.4	71
732	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	5.1	11
733	Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy, 2021, 80, 105564.	16.0	26
734	Antisolvent engineering on low-temperature processed CsPbI ₃ inorganic perovskites for improved performances of solar cells. Nanotechnology, 2021, 32, 185402.	2.6	11
735	Device design for highâ€efficiency monolithic twoâ€terminal, fourâ€terminal mechanically stacked, and fourâ€terminal optically coupled perovskiteâ€silicon tandem solar cells. International Journal of Energy Research, 2021, 45, 10538-10545.	4.5	15
736	Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells. Advanced Materials, 2021, 33, e2007431.	21.0	64
737	Vertical 2D/3D Heterojunction of Tin Perovskites for Highly Efficient HTM-Free Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 2041-2048.	5.1	26
738	Band Engineering via Gradient Molecular Dopants for CsFA Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010572.	14.9	12
739	Stable tin perovskite solar cells enabled by widening the time window for crystallization. Science China Materials, 2021, 64, 1849-1857.	6.3	10
740	Highâ€Efficiency Quasiâ€⊋D Perovskite Solar Cells Incorporating 2,2′â€Biimidazolium Cation. Solar Rrl, 2021, 5, 2000700.	5.8	9
741	Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells. Matter, 2021, 4, 635-653.	10.0	109

#	Article	IF	CITATIONS
742	Improving Holeâ€Conductorâ€Free Fully Printable Mesoscopic Perovskite Solar Cells' Performance with Enhanced Openâ€Circuit Voltage via the Octyltrimethylammonium Chloride Additive. Solar Rrl, 2021, 5, 2000825.	5.8	6
743	Methylammonium Chloride reduces the bandgap width and trap densities for efficient perovskite photodetectors. Journal of Materials Science, 2021, 56, 9242-9253.	3.7	11
744	Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chemistry of Materials, 2021, 33, 1540-1570.	6.7	65
745	Fast Optical Reflectance Measurements during Spin Coating and Annealing of Organic–Inorganic Perovskite Precursor Solutions. Physica Status Solidi (B): Basic Research, 2021, 258, 2000479.	1.5	2
746	Recent Progress in the Semiconducting Oxide Overlayer for Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003119.	19.5	9
747	Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar Rrl, 2021, 5, 2000713.	5.8	17
748	Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient Inverted Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1045-1054.	17.4	54
749	Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 7405-7415.	8.0	27
750	Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopantâ€Free Hole Transporting Material for Stable Perovskite Solar Cells with >21 % Efficiency. Angewandte Chemie, 2021, 133, 6364-6369.	2.0	11
751	Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopantâ€Free Hole Transporting Material for Stable Perovskite Solar Cells with >21 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 6294-6299.	13.8	101
752	Colorimetric Determination of Chloridion in Domestic Water Based on the Wavelength Shift of CsPbBr3 Perovskite Nanocrystals via Halide Exchange. Journal of Analysis and Testing, 2021, 5, 3-10.	5.1	17
753	Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587-593.	27.8	1,972
754	Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 925-933.	17.4	52
755	Factors influencing the nucleation and crystal growth of solution-processed organic lead halide perovskites: a review. Journal Physics D: Applied Physics, 2021, 54, 163001.	2.8	35
756	Imideâ€Functionalized Triarylamineâ€Based Donorâ€Acceptor Polymers as Hole Transporting Layers for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2100332.	14.9	38
757	Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. Small, 2021, 17, e2005640.	10.0	20
758	Ambient-Air-Stable Lead-Free CsSnI ₃ Solar Cells with Greater than 7.5% Efficiency. Journal of the American Chemical Society, 2021, 143, 4319-4328.	13.7	105
759	Using Social Media in Tourist Sentiment Analysis: A Case Study of Andalusia during the Covid-19 Pandemic. Sustainability, 2021, 13, 3836.	3.2	25

#	Article	IF	CITATIONS
760	Nonpolar Solventâ€Dispersible Alkylated Reduced Graphene Oxide for Hole Transport Material in nâ€iâ€p Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100087.	5.8	7
761	Influence of donor units on spiro[fluorene-9,9′-xanthene]-based dopant-free hole transporting materials for perovskite solar cells. Solar Energy, 2021, 216, 180-187.	6.1	18
762	Thermodynamic limit of tandem solar cells under different solar spectra and their perovskite top solar cell. Optical Materials, 2021, 113, 110819.	3.6	10
763	Chiralityâ€Ðependent Circular Photogalvanic Effect in Enantiomorphic 2D Organic–Inorganic Hybrid Perovskites. Advanced Materials, 2021, 33, e2008611.	21.0	48
764	Doubleâ€layered SnO ₂ /NH ₄ Cl‣nO ₂ for efficient planar perovskite solar cells with improved operational stability. Nano Select, 2021, 2, 1779-1787.	3.7	17
765	Additive Engineering toward Highâ€Performance Tin Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100034.	5.8	34
766	<i>p</i> â€Type Charge Transfer Doping of Graphene Oxide with (NiCo) _{1â^'<i>y</i>} Fe _{<i>y</i>} O _{<i>x</i>} for Air‣table, Allâ€Inorganic CsPblBr ₂ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 10608-10613.	13.8	89
767	Commercial Carbon-Based all-Inorganic Perovskite Solar Cells with a High Efficiency of 13.81%: Interface Engineering and Photovoltaic Performance. ACS Applied Energy Materials, 2021, 4, 3255-3264.	5.1	12
768	Leadâ€Free Cs ₂ SnI ₆ Perovskites for Optoelectronic Applications: Recent Developments and Perspectives. Solar Rrl, 2021, 5, 2000830.	5.8	25
769	3-[3-(4-chlorophenyl)-2-(4-fluorophenyl)-2H-isoindol-1-yl]-1-phenylpyrrolidine-2,5-dione as a candidate for solar cells applications. Molecular Crystals and Liquid Crystals, 2021, 718, 16-24.	0.9	0
770	Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021, 11, 295.	2.2	23
771	Review of Interface Passivation of Perovskite Layer. Nanomaterials, 2021, 11, 775.	4.1	25
772	Recycling and recovery of perovskite solar cells. Materials Today, 2021, 43, 185-197.	14.2	58
773	Multifunctional <scp>CNT</scp> : <scp>TiO₂</scp> additives in <scp>spiroâ€OMeTAD</scp> layer for highly efficient and stable perovskite solar cells. EcoMat, 2021, 3, e12099.	11.9	53
774	Impact of Auger recombination on performance limitation of perovskite solar cell. Solar Energy, 2021, 217, 342-353.	6.1	27
775	High performance perovskite LEDs via SPR and enhanced hole injection by incorporated MoS ₂ . Journal Physics D: Applied Physics, 2021, 54, 214002.	2.8	8
776	Perovskite with inhomogeneous composition: Presence of the Cl-rich layer improves the device performance. Chemical Physics Letters, 2021, 767, 138362.	2.6	3
777	2D Phase Purity Determines Charge-Transfer Yield at 3D/2D Lead Halide Perovskite Heterojunctions. Journal of Physical Chemistry Letters, 2021, 12, 3312-3320.	4.6	13

#	Article	IF	CITATIONS
778	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advanced Science, 2021, 8, e2004036.	11.2	56
779	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	14.9	96
780	A Coadditive Strategy for Blocking Ionic Mobility in Methylammoniumâ€Free Perovskite Solar Cells and Highâ€Stability Achievement. Solar Rrl, 2021, 5, 2100010.	5.8	26
781	<i>p</i> â€Type Charge Transfer Doping of Graphene Oxide with (NiCo) _{1â^<i>y</i>} Fe _{<i>y</i>} O _{<i>x</i>} for Airâ€Stable, Allâ€Inorganic CsPblBr ₂ Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 10702-10707.	2.0	6
782	Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1539-1572.	2.8	18
783	A Synergistic Precursor Regulation Strategy for Scalable Fabrication of Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000613.	2.4	3
784	Oneâ€Source Strategy Boosting Dopantâ€Free Hole Transporting Layers for Highly Efficient and Stable CsPbl ₂ Br Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010696.	14.9	50
785	Efficient strategies to improve the performance of 6,12-dihydroindeno[1,2-b]fluorine core based hole transport materials. Solar Energy, 2021, 217, 93-104.	6.1	5
786	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	10.0	61
787	Metalâ€Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and Stable Perovskite Solar Cells. Small Methods, 2021, 5, e2001248.	8.6	33
788	Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies. Advanced Functional Materials, 2021, 31, 2010623.	14.9	44
789	A patterned titania nanorod array enables high fill factor in perovskite solar cells. Journal of Energy Chemistry, 2021, 63, 391-392.	12.9	2
790	Perspective on Predominant Metal Oxide Charge Transporting Materials for High-Performance Perovskite Solar Cells. Frontiers in Materials, 2021, 8, .	2.4	9
791	Enhancement of the Photovoltaic Potential in Mimosa pudica-Based Dye for Sensitization of the Working Electrode in the Construction of Solar Cell. Journal of Solar Energy Engineering, Transactions of the ASME, 2021, 143, .	1.8	1
792	Perovskite/InGaAs tandem cell exceeding 29% efficiency via optimizing spectral splitter based on RF sputtered ITO/Ag/ITO ultra-thin structure. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114618.	2.7	8
793	Mild water intake orients crystal formation imparting high tolerance on unencapsulated halide perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100395.	5.6	8
794	Efficient and Stable Perovskite Solar Cells Achieved by Using Bifunctional Interfacial Materials to Modify SnO ₂ and MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Simultaneously. ACS Applied Energy Materials, 2021, 4, 3794-3802.	5.1	10
795	High-Efficiency, Low-Hysteresis Planar Perovskite Solar Cells by Inserting the NaBr Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 20251-20259.	8.0	15

#	Article	IF	CITATIONS
796	Molecularly Engineered Cyclopenta[2,1- <i>b</i> ;3,4- <i>b</i> ′]dithiophene-Based Hole-Transporting Materials for High-Performance Perovskite Solar Cells with Efficiency over 19%. ACS Applied Energy Materials, 2021, 4, 4719-4728.	5.1	21
797	Simulation of steady-state characteristics of heterojunction perovskite solar cells in wxAMPS. Optik, 2021, 232, 166382.	2.9	2
798	Innovation of Materials, Devices, and Functionalized Interfaces in Organic Spintronics. Advanced Functional Materials, 2021, 31, 2100550.	14.9	47
799	Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society, 2021, 143, 5855-5866.	13.7	59
800	Inâ€Depth Comparative Study of Cathode Interfacial Layer for Stable Inverted Perovskite Solar Cell. ChemSusChem, 2021, 14, 2393-2400.	6.8	3
801	Evident Enhancement of Efficiency and Stability in Perovskite Solar Cells with Triphenylamine-Based Macromolecules on the CuSCN Hole-Transporting Layer. Journal of Electronic Materials, 2021, 50, 3962-3971.	2.2	11
802	Current status and perspective of colored photovoltaic modules. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e403.	4.1	15
803	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity. Advanced Materials, 2021, 33, e2005760.	21.0	107
804	Centralâ€Core Engineering of Dopantâ€Free Hole Transport Materials for Efficient nâ€iâ€p Structured Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100184.	5.8	14
805	Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy Letters, 2021, 6, 1901-1911.	17.4	17
806	Potential of AgBil ₄ rudorffites for indoor photovoltaic energy harvesters in autonomous environmental nanosensors. Japanese Journal of Applied Physics, 2021, 60, SCCE06.	1.5	20
807	Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5061-5073.	6.7	29
808	Molecular Engineering of Polymeric Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3526-3534.	5.1	5
809	Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters. ACS Applied Energy Materials, 2021, 4, 4029-4037.	5.1	12
810	Passivation of Bulk and Interface Defects in Sputtered-NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells: A Facile Interfacial Engineering Strategy with Alkali Metal Halide Salts. ACS Applied Energy Materials, 2021, 4, 4530-4540.	5.1	25
811	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	17.4	76
812	Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7, .	10.3	165
813	Fully Inorganic CsSnI ₃ Mesoporous Perovskite Solar Cells with High Efficiency and Stability via Coadditive Engineering. Solar Rrl, 2021, 5, 2100069.	5.8	29

#	Article	IF	CITATIONS
814	When iodide meets bromide: Halide mixing facilitates the light-induced decomposition of perovskite absorber films. Nano Energy, 2021, 86, 106082.	16.0	12
815	Aqueous solution processed tetrasulphonated copper phthalocyanine (TS-CuPc):MoO3 as an efficient hole transporting layer in organic solar cells. Materials Science in Semiconductor Processing, 2021, 125, 105637.	4.0	9
816	Perovskite solar cell with improved performance passivated by all inorganic perovskite quantum dots. Journal of Physics: Conference Series, 2021, 1885, 022019.	0.4	1
817	Solution processing of polymer solar cells: towards continuous vacuum-free production. Journal of Materials Science: Materials in Electronics, 2021, 32, 11367-11392.	2.2	1
818	Quantum Dots for Photovoltaics: A Tale of Two Materials. Advanced Energy Materials, 2021, 11, 2100354.	19.5	77
819	A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule, 2021, 5, 958-974.	24.0	55
820	Cost-effective liquid-junction solar devices with plasma-implanted Ni/TiN/CNF hierarchically structured nanofibers. Journal of Electroanalytical Chemistry, 2021, 887, 115167.	3.8	10
821	Enhanced Efficiency and Stability of NiOx-Based Perovskite Solar Cells Using [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl-Doped Poly(9-vinylcarbazole)-Modified Layer. ACS Applied Energy Materials, 2021, 4, 3812-3821.	5.1	10
822	SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 410, 128436.	12.7	32
823	Chemical Insights into Interfacial Effects in Inorganic Nanomaterials. Advanced Materials, 2021, 33, e2006159.	21.0	22
824	Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nano Energy, 2021, 82, 105742.	16.0	79
825	Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chemical Engineering Journal, 2021, 410, 128328.	12.7	83
826	Development of perovskite solar cells with >25% conversion efficiency. Joule, 2021, 5, 1033-1035.	24.0	137
827	Unified theory for light-induced halide segregation in mixed halide perovskites. Nature Communications, 2021, 12, 2687.	12.8	70
828	Ultrafast two-photon optical switch using single crystal hybrid halide perovskites. Optica, 2021, 8, 735.	9.3	10
829	Reactive modification of zinc oxide with methylammonium iodide boosts the operational stability of perovskite solar cells. Nano Energy, 2021, 83, 105774.	16.0	22
830	Operationally Stable Perovskite Light Emitting Diodes with High Radiance. Advanced Optical Materials, 2021, 9, 2100586.	7.3	13
831	Phonon-Limited Mobility and Electron–Phonon Coupling in Lead-Free Halide Double Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 4474-4482.	4.6	30

#	Article	IF	CITATIONS
832	A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives. Advanced Science, 2021, 8, 2100552.	11.2	19
833	Interfacial stabilization for inverted perovskite solar cells with long-term stability. Science Bulletin, 2021, 66, 991-1002.	9.0	45
834	Chalcogenide perovskites for photovoltaics: current status and prospects. JPhys Energy, 2021, 3, 034010.	5.3	30
835	Defect Passivation in Leadâ€Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angewandte Chemie, 2021, 133, 21804-21828.	2.0	76
836	Achieving Resistance against Moisture and Oxygen for Perovskite Solar Cells with High Efficiency and Stability. Chemistry of Materials, 2021, 33, 4269-4303.	6.7	51
837	Highâ€Performance Planar Heterojunction Perovskite Solar Cells Based on BaCl ₂ Additive and Power Conversion Efficiency of Over 21%. Advanced Electronic Materials, 2021, 7, 2100165.	5.1	5
838	Optimized bandgaps of top and bottom subcells for bifacial two-terminal tandem solar cells under different back irradiances. Solar Energy, 2021, 220, 163-174.	6.1	12
839	Evaporation Deposition Strategies for Allâ€Inorganic CsPb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Perovskite Solar Cells: Recent Advances and Perspectives. Solar Rrl, 2021, 5, 2100172.	5.8	24
840	Understanding the Effects of Fluorine Substitution in Lithium Salt on Photovoltaic Properties and Stability of Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2218-2228.	17.4	51
841	Subcell Operation and Longâ€Term Stability Analysis of Perovskiteâ€Based Tandem Solar Cells Using a Bichromatic Light Emitting Diode Light Source. Solar Rrl, 2021, 5, 2100311.	5.8	9
842	Progress of Perovskite Solar Modules. Advanced Energy and Sustainability Research, 2021, 2, 2000051.	5.8	19
843	In‣itu and Reversible Enhancement of Photoluminescence from CsPbBr ₃ Nanoplatelets by Electrical Bias. Advanced Optical Materials, 2021, 9, 2100346.	7.3	7
844	Mechanism and Timescales of Reversible pâ€Đoping of Methylammonium Lead Triiodide by Oxygen. Advanced Materials, 2021, 33, e2100211.	21.0	17
845	Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer. Solar Energy, 2021, 220, 491-497.	6.1	15
846	Femtosecond Quantum Dynamics of Excited-State Evolution of Halide Perovskites: Quantum Chaos of Molecular Cations. Journal of Physical Chemistry C, 2021, 125, 10676-10684.	3.1	1
847	Improving perovskite solar cell performance by compositional engineering via triple-mixed cations. Solar Energy, 2021, 220, 412-417.	6.1	11
848	Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101082.	19.5	21
849	A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40, 2712-2729.	7.1	138

# 850	ARTICLE Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	IF 4.5	Citations 24
851	Stable tin perovskite solar cells developed via additive engineering. Science China Materials, 2021, 64, 2645-2654.	6.3	15
852	Solar photovoltaics is ready to power a sustainable future. Joule, 2021, 5, 1041-1056.	24.0	265
853	Charge transporting materials for perovskite solar cells. Rare Metals, 2021, 40, 2690-2711.	7.1	23
854	Exceeding 19% efficiency for inverted perovskite solar cells used conventional organic small molecule TPD as hole transport layer. Applied Physics Letters, 2021, 118, .	3.3	8
855	3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule, 2021, 5, 1057-1073.	24.0	48
856	Modified P3HT materials as hole transport layers for flexible perovskite solar cells. Journal of Power Sources, 2021, 494, 229735.	7.8	23
857	Opportunities and challenges of inorganic perovskites in high-performance photodetectors. Journal Physics D: Applied Physics, 2021, 54, 293002.	2.8	35
858	Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design. Advanced Energy Materials, 2021, 11, 2003877.	19.5	49
859	Defect Passivation in Leadâ€Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 21636-21660.	13.8	183
860	Controlled growth of perovskite KMnF3 upconverting nanocrystals for near-infrared light-sensitive perovskite solar cells and photodetectors. Journal of Materials Science, 2021, 56, 14207-14221.	3.7	11
861	The selection strategy of ammonium-group organic salts in vapor deposited perovskites: From dimension regulation to passivation. Nano Energy, 2021, 84, 105893.	16.0	19
862	Plasma Oxidized Ti ₃ C ₂ T _{<i>x</i>} MXene as Electron Transport Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 32495-32502.	8.0	41
863	Additive-Assisted Interfacial Engineering for Efficient Carbon-Based Perovskite Solar Cell Incorporated Dopant-Free Polymeric Hole Conductor PBDT(S)-T1. ACS Applied Energy Materials, 2021, 4, 5821-5829.	5.1	10
864	Electronic structure of P3HT film oxidized by ultraviolet–ozone treatment. Journal of the Korean Physical Society, 2021, 79, 70.	0.7	1
865	Device Architecture Engineering: Progress toward Next Generation Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103121.	14.9	41
866	Low-cost Cu-based inorganic hole transporting materials in perovskite solar cells: Recent progress and state-of-art developments. Materials Today Chemistry, 2021, 20, 100427.	3.5	12
867	Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules. Advanced Energy Materials, 2021, 11, 2101219.	19.5	52

#	Article	IF	CITATIONS
868	Perovskite Quantum Dot Solar Cells: An Overview of the Current Advances and Future Perspectives. Solar Rrl, 2021, 5, 2100205.	5.8	12
869	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	19.5	51
870	Electrical Loss Management by Molecularly Manipulating Dopantâ€free Poly(3â€hexylthiophene) towards 16.93 % CsPbI ₂ Br Solar Cells. Angewandte Chemie, 2021, 133, 16524-16529.	2.0	18
871	Effective Piezoâ€Phototronic Enhancement of Flexible Photodetectors Based on 2D Hybrid Perovskite Ferroelectric Singleâ€Crystalline Thinâ€Films. Advanced Materials, 2021, 33, e2101263.	21.0	53
872	Additive Engineering by 6-Aminoquinoline Monohydrochloride for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7083-7090.	5.1	9
873	Investigating the effect of different Perovskite/Silicon interfaces on the intrinsic stresses. , 2021, , .		0
874	Multiple-Defect Management for Efficient Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 2404-2412.	17.4	74
875	Two-dimensional perovskites for photovoltaics. Materials Today Nano, 2021, 14, 100117.	4.6	27
876	Plasmonic dye-sensitized solar cells through collapsible gold nanofingers. Nanotechnology, 2021, 32, 355301.	2.6	3
877	Highâ€Performance Graphene/GaInP Solar Cell Prepared by Interfacial Chemical Modification with Poly(3,4â€Ethylenedioxythiophene):Poly(styrenesulfonate). Energy Technology, 2021, 9, 2100122.	3.8	1
878	A Pyrrole-Bridged Bis(oxa[5]helicene)-Based Molecular Semiconductor for Efficient and Durable Perovskite Solar Cells: Microscopic Insights. , 2021, 3, 947-955.		11
879	Reduced Defects and Enhanced Performance of (FAPbl ₃) _{0.97} (MAPbBr ₃) _{0.03} -Based Perovskite Solar Cells by Trimesic Acid Additives. ACS Omega, 2021, 6, 16151-16158.	3.5	7
880	Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells. Solar Energy, 2021, 221, 536-544.	6.1	19
881	Improving UV stability of perovskite solar cells without sacrificing efficiency through light trapping regulated spectral modification. Science Bulletin, 2021, 66, 2362-2368.	9.0	14
882	Cyclopentadieneâ€Based Holeâ€Transport Material for Costâ€Reduced Stabilized Perovskite Solar Cells with Power Conversion Efficiencies Over 23%. Advanced Energy Materials, 2021, 11, 2003953.	19.5	24
883	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature Communications, 2021, 12, 3472.	12.8	89
884	Interfacial Defect Passivation and Stress Release via Multi-Active-Site Ligand Anchoring Enables Efficient and Stable Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2526-2538.	17.4	170
885	Review on Efficiency Enhancement Using Natural Extract Mediated Dye‧ensitized Solar Cell for Sustainable Photovoltaics. Energy Technology, 2021, 9, 2001058.	3.8	12

#	Article	IF	CITATIONS
886	Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmentalâ€Dependent Impedance Spectroscopy. Advanced Science, 2021, 8, e2002510.	11.2	23
887	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	10.4	59
888	Tailored Key Parameters of Perovskite for High-Performance Photovoltaics. Accounts of Materials Research, 2021, 2, 447-457.	11.7	5
889	Electrical Loss Management by Molecularly Manipulating Dopantâ€free Poly(3â€hexylthiophene) towards 16.93 % CsPbl ₂ Br Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 16388-16393.	13.8	57
890	Recent Progress on Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	19.5	45
891	Design and Optimization of Low Lead Content- Based Mixed Sn and Pb Perovskite Solar Cell for 19.46% Efficiency. , 2021, , .		4
892	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	7.3	15
893	Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices. Advanced Materials, 2021, 33, e2006004.	21.0	86
894	Device Optimization of PIN Structured Perovskite Solar Cells: Impact of Design Variants. ACS Applied Electronic Materials, 2021, 3, 3509-3520.	4.3	15
895	Advances in cesium lead iodide perovskite solar cells: Processing science matters. Materials Today, 2021, 47, 156-169.	14.2	25
896	Effect of parasitic absorption of the plasmonic cubic nanoparticles on the performance of a plasmonic assisted halide thin-film perovskite solar cell. Solar Energy, 2021, 223, 293-301.	6.1	16
897	Importance of methylammonium iodide partial pressure and evaporation onset for the growth of co-evaporated methylammonium lead iodide absorbers. Scientific Reports, 2021, 11, 15299.	3.3	15
898	Influence of the Electric Potential on Charge Extraction and Interface Recombination in Perovskite Solar Cells. Physical Review Applied, 2021, 16, .	3.8	12
899	Multifunctional Conjugated Ligand Engineering for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2021, 33, e2100791.	21.0	99
900	Poly(3â€alkylthiophene) Films as Solventâ€Processable Photoelectrocatalysts for Efficient Oxygen Reduction to Hydrogen Peroxide. Advanced Energy and Sustainability Research, 2021, 2, 2100103.	5.8	4
901	Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules. Nano-Micro Letters, 2021, 13, 155.	27.0	40
902	Perovskite crystals redissolution strategy for affordable, reproducible, efficient and stable perovskite photovoltaics. Materials Today, 2021, 50, 199-223.	14.2	43
903	Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskiteâ€Based Photovoltaics. Energy Technology, 2021, 9, 2100204.	3.8	9

#	Article	IF	CITATIONS
904	Selenopheneâ€Based Holeâ€Transporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1006-1013.	2.8	7
905	Solvent Engineering for Controlled Crystallization and Growth of All-Inorganic Pb-Free Rudorffite Absorbers of Perovskite Solar Cells. Inorganic Chemistry, 2021, 60, 11110-11119.	4.0	6
906	Carrier management makes perovskite solar cells approaching Shockley-Queisser limit. Science Bulletin, 2021, 66, 1372-1374.	9.0	12
907	2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. CheM, 2021, 7, 1903-1916.	11.7	108
908	Chiralityâ€Dependent Secondâ€Order Nonlinear Optical Effect in 1D Organic–Inorganic Hybrid Perovskite Bulk Single Crystal. Angewandte Chemie - International Edition, 2021, 60, 20021-20026.	13.8	100
909	Solvent-Vapor Atmosphere Controls the in Situ Crystallization of Perovskites. , 2021, 3, 1172-1180.		7
910	Interfacial Molecular Doping and Energy Level Alignment Regulation for Perovskite Solar Cells with Efficiency Exceeding 23%. ACS Energy Letters, 2021, 6, 2690-2696.	17.4	96
911	Coâ€Evaporated MAPbI ₃ with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible pâ€iâ€n Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103252.	14.9	40
912	Chiralityâ€Dependent Secondâ€Order Nonlinear Optical Effect in 1D Organic–Inorganic Hybrid Perovskite Bulk Single Crystal. Angewandte Chemie, 2021, 133, 20174-20179.	2.0	8
913	Distinctive Spectroscopic Characteristics Observed in Colloidal Perovskite CsPbBr ₃ Quantum Dot. Applied Science and Convergence Technology, 2021, 30, 107-110.	0.9	1
914	Interfaces and Interfacial Carrier Dynamics in Perovskites. Journal of Physical Chemistry C, 2021, 125, 15113-15124.	3.1	8
915	Unraveling the surface state of photovoltaic perovskite thin film. Matter, 2021, 4, 2417-2428.	10.0	22
916	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	27.0	250
917	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	5.8	58
918	Low temperature open-air plasma deposition of amorphous tin oxide for perovskite solar cells. Thin Solid Films, 2021, 730, 138708.	1.8	6
919	Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2021, 2, 100475.	5.6	25
920	Zwitterionic Ionic Liquid Confer Defect Tolerance, High Conductivity, and Hydrophobicity toward Efficient Perovskite Solar Cells Exceeding 22% Efficiency. Solar Rrl, 2021, 5, 2100352.	5.8	35
921	A novel, flexible dual-mode power generator adapted for wide dynamic range of the aqueous salinity. Nano Energy, 2021, 85, 105970.	16.0	41

#	Article	IF	CITATIONS
922	1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 32894-32905.	8.0	13
923	Controllable Synthesis and Performance Modulation of 2D Covalent–Organic Frameworks. Small, 2021, 17, e2100918.	10.0	27
924	Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Science Advances, 2021, 7, .	10.3	195
925	Elucidating the Spatial Dynamics of Charge Carriers in Quasi-Two-Dimensional Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 35133-35141.	8.0	12
926	Effective Interface Defect Passivation via Employing 1â€Methylbenzimidazole for Highly Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3147-3154.	6.8	10
927	Tailoring of a Phenothiazine Core for Electrical Conductivity and Thermal Stability: Hole-Selective Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33311-33320.	8.0	20
928	A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Advanced Energy Materials, 2021, 11, 2101383.	19.5	57
929	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	3.2	75
930	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	2.0	11
931	Cul/Spiro-OMeTAD Double-Layer Hole Transport Layer to Improve Photovoltaic Performance of Perovskite Solar Cells. Coatings, 2021, 11, 978.	2.6	5
932	Thermally stable polyâ€5i tunnel junctions enabling nextâ€generation highâ€efficiency Si solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 85-95.	8.1	2
933	Lewis Base Passivation Mediates Charge Transfer at Perovskite Heterojunctions. Journal of the American Chemical Society, 2021, 143, 12230-12243.	13.7	36
935	Recent Progress on Metal Halide Perovskite Solar Minimodules. Solar Rrl, 2022, 6, 2100458.	5.8	21
936	Enhancing the Phase Stability of Formamidinium Lead Triiodide by Addition of Calcium Chloride. ECS Journal of Solid State Science and Technology, 2021, 10, 085002.	1.8	1
937	<i>m</i> -Phenylenediammonium as a New Spacer for Dion–Jacobson Two-Dimensional Perovskites. Journal of the American Chemical Society, 2021, 143, 12063-12073.	13.7	71
938	Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields. Joule, 2021, 5, 2148-2163.	24.0	63
939	Surface plasmon enhanced single-mode lasing of all inorganic perovskite microdisks. Journal of Luminescence, 2021, 236, 118093.	3.1	1
940	Metal Oxide-Induced Instability and Its Mitigation in Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 8495-8506.	4.6	22

#	ARTICLE	IF	CITATIONS
941	Highly efficient Cesium Titanium (IV) Bromide perovskite solar cell and its point defect investigation: A computational study. Superlattices and Microstructures, 2021, 156, 106946.	3.1	13
942	Immediate and Temporal Enhancement of Power Conversion Efficiency in Surface-Passivated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39178-39185.	8.0	10
943	Multifunctional Molecule Engineered SnO ₂ for Perovskite Solar Cells with High Efficiency and Reduced Lead Leakage. Solar Rrl, 2021, 5, 2100464.	5.8	26
944	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	14.9	37
945	Grain Boundaries in Methylammonium Lead Halide Perovskites Facilitate Water Diffusion. Advanced Energy and Sustainability Research, 2021, 2, 2100087.	5.8	9
946	The Nonâ€Innocent Role of Holeâ€Transporting Materials in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100514.	5.8	18
947	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303.	1.4	3
948	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	13.8	66
949	Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.	6.8	14
950	Photothermocatalytic Dry Reforming of Methane for Efficient CO ₂ Reduction and Solar Energy Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 11635-11651.	6.7	25
951	Enhance efficiency in flat and nano roughness surface perovskite solar cells with the use of index near zero materials filter. Optical and Quantum Electronics, 2021, 53, 1.	3.3	2
952	Robust Unencapsulated Perovskite Solar Cells Protected by a Fluorinated Fullerene Electron Transporting Layer. ACS Energy Letters, 2021, 6, 3376-3385.	17.4	27
953	All-inorganic CsPbBr3 perovskite solar cells with enhanced efficiency by exploiting lone pair electrons via passivation of crystal boundary using carbon nitride (g-C3N4) nanosheets. Materials Today Energy, 2021, 21, 100782.	4.7	15
954	Elastic Lattice and Excess Charge Carrier Manipulation in 1D–3D Perovskite Solar Cells for Exceptionally Longâ€Term Operational Stability. Advanced Materials, 2021, 33, e2105170.	21.0	78
955	Hole-Transport-Underlayer-Induced Crystallization Management of Two-Dimensional Perovskites for High-Performance Inverted Solar Cells. ACS Applied Energy Materials, 2021, 4, 10574-10583.	5.1	9
956	Bulky organic cations engineered lead-halide perovskites: a review on dimensionality and optoelectronic applications. Materials Today Energy, 2021, 21, 100759.	4.7	24
957	Heterostructural perovskite solar cell constructed with Li-doped p-MAPbI3/n-TiO2 PN junction. Solar Energy, 2021, 226, 446-454.	6.1	7
958	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	3.2	19

#	Article	IF	CITATIONS
959	Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5, 2420-2436.	24.0	85
960	Spiroâ€OMeTAD:Sb ₂ S ₃ Hole Transport Layer with Triple Functions of Overcoming Lithium Salt Aggregation, Longâ€Term High Conductivity, and Defect Passivation for Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100622.	5.8	30
961	All-Inorganic pâ^'n Heterojunction Solar Cells by Solution Combustion Synthesis Using N-type FeMnO3 Perovskite Photoactive Layer. Frontiers in Chemistry, 2021, 9, 754487.	3.6	6
962	Molecular passivation of MAPbI3 perovskite films follows the Langmuir adsorption rule. Applied Physics Letters, 2021, 119, .	3.3	8
963	The Trapped Charges at Grain Boundaries in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107125.	14.9	47
964	Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells. Materials Today Physics, 2021, 21, 100543.	6.0	14
965	Quantum Dots Encapsulated by ZrO ₂ Enhance the Stability of Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100776.	3.7	3
966	Series Resistance Modulation for Largeâ€Area Fully Printable Mesoscopic Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100554.	5.8	13
967	Cyclohexylammoniumâ€Based 2D/3D Perovskite Heterojunction with Funnelâ€Like Energy Band Alignment for Efficient Solar Cells (23.91%). Advanced Energy Materials, 2021, 11, 2102236.	19.5	77
968	Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000Ah. Nano Energy, 2021, 87, 106152.	16.0	41
969	Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Materials Today Energy, 2021, 21, 100724.	4.7	8
970	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	17.4	113
971	Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry, 2021, 60, 599-634.	12.9	59
972	Learning from hole-transporting polymers in regular perovskite solar cells to construct efficient conjugated polyelectrolytes for inverted devices. Chemical Engineering Journal, 2021, 420, 129735.	12.7	8
973	Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21%. Journal of Energy Chemistry, 2021, 60, 169-177.	12.9	17
974	Dual-Passivation Strategy for Improved Ambient Stability of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10025-10032.	5.1	13
975	Bifunctional Graphene Oxide Hole-Transporting and Barrier Layers for Transparent Bifacial Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 8824-8831.	5.1	8
976	Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage. Advanced Energy Materials, 2021, 11, 2102281.	19.5	58

#	Article	IF	CITATIONS
977	Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 26644-26657.	2.0	14
978	Toward Commercialization of Efficient and Stable Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100600.	5.8	16
979	Double-layered hole transport material of CuInS2/Spiro for highly efficient and stable perovskite solar cells. Organic Electronics, 2021, 96, 106249.	2.6	12
980	Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin–Lead Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45059-45067.	8.0	18
981	Multiple-Function Surface Engineering of SnO ₂ Nanoparticles to Achieve Efficient Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9142-9148.	4.6	19
982	On the Origin of Room-Temperature Amplified Spontaneous Emission in CsPbBr ₃ Single Crystals. Chemistry of Materials, 2021, 33, 7185-7193.	6.7	9
983	Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 26440-26453.	13.8	69
984	Understanding degradation mechanisms of perovskite solar cells due to electrochemical metallization effect. Solar Energy Materials and Solar Cells, 2021, 230, 111278.	6.2	20
985	Simultaneous Improvement of the Power Conversion Efficiency and Stability of Perovskite Solar Cells by Doping PMMA Polymer in Spiroâ€OMeTADâ€Based Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2100408.	5.8	14
986	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	16.0	28
987	Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem, 2021, 14, 4354-4376.	6.8	43
988	Stability Issues of Perovskite Solar Cells: A Critical Review. Energy Technology, 2021, 9, 2100560.	3.8	31
989	Favorable grain growth of thermally stable formamidinium-methylammonium perovskite solar cells by hydrazine chloride. Chemical Engineering Journal, 2022, 430, 132730.	12.7	21
990	Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32, 475204.	2.6	18
991	Quasiparticle Band Structure and Phonon-Induced Band Gap Renormalization of the Lead-Free Halide Double Perovskite Cs ₂ InAgCl ₆ . Journal of Physical Chemistry C, 2021, 125, 21689-21700.	3.1	13
992	Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules. ACS Applied Energy Materials, 2021, 4, 9525-9533.	5.1	10
993	Multiphoton upconversion and non-resonant optical nonlinearity in perovskite quantum dot doped glasses. Optics Letters, 2021, 46, 5216.	3.3	10
994	Light management in highly-textured perovskite solar cells: From full-device ellipsometry characterization to optical modelling for quantum efficiency optimization. Solar Energy Materials and Solar Cells, 2021, 230, 111144.	6.2	8

ARTICLE IF CITATIONS Perspective: approaches for layers above the absorber in perovskite solar cells for semitransparent 995 4.7 5 and tandem applications. Materials Today Energy, 2021, 21, 100729. Grazing-incidence X-ray diffraction tomography for characterizing organic thin films. Journal of 4.5 Applied Crystallography, 2021, 54, 1327-1339. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the 997 2.7 47 charge transport layers. Physica B: Condensed Matter, 2021, 618, 413187. Efficient and stable perovskite solar cells via organic surfactant interfacial passivation. Solar 998 6.1 Energy, 2021, 227, 438-446. Efficient Sb2(S,Se)3/Zn(O,S) solar cells with high open-circuit voltage by controlling sulfur content 999 6.1 32 in the absorber-buffer layers. Solar Energy, 2021, 227, 606-615. Toward high efficiency for long-term stable Cesium doped hybrid perovskite solar cells via effective 7.8 light management strategy. Journal of Power Sources, 2021, 510, 230410. Ambient-air fabrication of stable mixed cation perovskite planar solar cells with efficiencies exceeding 22% using a synergistic mixed antisolvent with complementary properties. Nano Energy, 2021, 89, 106387. 1001 16.0 14 Unraveling the hysteretic behavior at double cations-double halides perovskite - electrode interfaces. 1002 16.0 Nano Energy, 2021, 89, 106428. Organic nanocrystals induced surface passivation towards high-efficiency and stable perovskite 1003 16.0 19 solar cells. Nanó Energy, 2021, 89, 106445. 1004 Dopant-free polymer/2D/3D perovskite solar cells with high stability. Nano Energy, 2021, 90, 106521. 16.0 Introduction of 4-hydroxybenzaldehyde as interface modifier with multidimensional defects passivation effect for high-performance perovskite solar cells. Applied Surface Science, 2021, 570, 1005 6.1 9 151259. Quest for robust electron transporting materials towards efficient, hysteresis-free and stable 16.4 perovskite solar cells. Renewable and Sustainable Energy Reviews, 2021, 152, 111689. Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of 1007 12.9 1 Energy Chemistry, 2021, 63, 12-24. Reducing carrier transport barrier in anode interface enables efficient and stable inverted mesoscopic methylammonium-free perovskite solar cells. Chemical Engineering Journal, 2021, 425, 1008 12.7 131499. Simultaneously enhanced efficiency and ambient stability of inorganic perovskite solar cells by employing tetramethylammonium chloride additive in CsPbI2Br. Journal of Materials Science and 1009 10.7 22 Technology, 2022, 102, 224-231. Functional molecule modified SnO2 nanocrystal films toward efficient and moisture-stable perovskite solar cells. Journal of Alloys and Ćompounds, 2022, 890, 161912. Preparation of Micron-sized Methylamine-PbCl3 perovskite grains by controlling phase transition 1011 engineering for selective Ultraviolet-harvesting transparent photovoltaics. Journal of Colloid and 9.4 3 Interface Science, 2022, 607, 1083-1090. Self-woven monolayer polyionic mesh to achieve highly efficient and stable inverted perovskite solar 19 cells. Chemical Engineering Journal, 2022, 428, 132074.

# 1013	ARTICLE Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material. Journal of Energy Chemistry, 2022, 65, 312-318.	IF 12.9	CITATIONS
1014	A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 538-560.	12.9	33
1015	A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology. Journal of Materials Chemistry A, 2021, 9, 26650-26668.	10.3	6
1016	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	8.6	24
1017	Improved photovoltage of printable perovskite solar cells via Nb ⁵⁺ doped SnO ₂ compact layer. Nanotechnology, 2021, 32, 145403.	2.6	7
1018	Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. Journal of Materials Chemistry A, 2021, 9, 4781-4788.	10.3	21
1019	Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: a comparative study on the choice of carbon sources. Journal of Materials Chemistry C, 2021, 9, 3546-3554.	5.5	16
1020	Enhanced Moisture and Water Resistance in Inverted Perovskite Solar Cells by Poly(3-hexylthiophene). ACS Applied Energy Materials, 2021, 4, 1815-1823.	5.1	20
1021	Reduced energy loss enabled by thiophene-based interlayers for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 4138-4149.	10.3	80
1022	Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. Journal of Materials Chemistry A, 2021, 9, 4589-4625.	10.3	149
1023	Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy and Environmental Science, 2021, 14, 2419-2428.	30.8	152
1024	Electrolytes, Dyes, and Perovskite Materials in Third Generation Photovoltaic Cells. , 2022, , 621-634.		7
1025	Low-cost, universal light-harvesting coating layer for thin film solar cells by employing micro-prism films. Applied Physics Letters, 2021, 118, 023301.	3.3	1
1026	Homogeneous doping of entire perovskite solar cells <i>via</i> alkali cation diffusion from the hole transport layer. Journal of Materials Chemistry A, 2021, 9, 9266-9271.	10.3	8
1027	The crucial roles of the configurations and electronic properties of organic hole-transporting molecules to the photovoltaic performance of perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 18148-18163.	10.3	24
1028	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	30.8	69
1029	Recent Advances and Perspectives on Powderâ€Based Halide Perovskite Film Processing. Advanced Functional Materials, 2021, 31, 2007350.	14.9	33
1030	Colorful Perovskite Solar Cells: Progress, Strategies, and Potentials. Journal of Physical Chemistry Letters, 2021, 12, 1321-1329.	4.6	39

#	Article	IF	CITATIONS
1031	Rational design of D–π–D hole-transporting materials for efficient perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7824-7832.	5.9	3
1032	Small Molecules with Controllable Molecular Weights Passivate Surface Defects in Airâ€Stable pâ€iâ€n Perovskite Solar Cells. Advanced Electronic Materials, 2021, 7, 2000870.	5.1	18
1033	Towards Simplifying the Device Structure of Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000863.	14.9	67
1034	Promoting Energy Efficiency via a Selfâ€Adaptive Evaporative Cooling Hydrogel. Advanced Materials, 2020, 32, e1907307.	21.0	151
1035	Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials, 2020, 32, e1907757.	21.0	303
1036	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Realâ€Time Phaseâ€Transition Study. Advanced Materials, 2021, 33, e2006238.	21.0	30
1037	Crystallization Control of Methylammoniumâ€Free Perovskite in Twoâ€5tep Deposited Printable Tripleâ€Mesoscopic Solar Cells. Solar Rrl, 2020, 4, 2000455.	5.8	24
1038	Cesium-Trifluoroacetate Doped MA/FA-Based Perovskite Solar Cells with Inverted Planar Structure. Journal of Electronic Materials, 2020, 49, 7144-7152.	2.2	3
1039	Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 2020, 398, 125594.	12.7	85
1040	Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik, 2020, 217, 164805.	2.9	27
1041	Enhanced carrier separation efficiency and performance in planar-structure perovskite solar cells through an interfacial modifying layer of ultrathin mesoporous TiO2. Journal of Power Sources, 2020, 465, 228251.	7.8	14
1042	Well-ordered vertically aligned ZnO nanorods arrays for high-performance perovskite solar cells. Materials Research Bulletin, 2020, 130, 110935.	5.2	35
1044	Resolving Spectral Mismatch Errors for Perovskite Solar Cells in Commercial Class AAA Solar Simulators. Journal of Physical Chemistry Letters, 2020, 11, 3782-3788.	4.6	10
1045	Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials, 2020, 5, 333-350.	48.7	568
1046	Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells <i>via</i> quantum dot passivation. Journal of Materials Chemistry A, 2020, 8, 5263-5274.	10.3	67
1047	Application of small molecules based on a dithienogermole core in bulk heterojunction organic solar cells and perovskite solar cells. Materials Chemistry Frontiers, 2020, 4, 2168-2175.	5.9	8
1048	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	5.1	102
1049	Hole transport free flexible perovskite solar cells with cost-effective carbon electrodes. Nanotechnology, 2021, 32, 105205.	2.6	7

#	Article	IF	CITATIONS
1050	Theoretical investigation of halide perovskites for solar cell and optoelectronic applications*. Chinese Physics B, 2020, 29, 108401.	1.4	15
1051	Recent progress in developing efficient monolithic all-perovskite tandem solar cells. Journal of Semiconductors, 2020, 41, 051201.	3.7	19
1052	Numerical simulation analysis of effect of energy band alignment and functional layer thickness on the performance for perovskite solar cells with Cd _{1-x} Zn _x S electron transport layer. Materials Research Express, 2020, 7, 105906.	1.6	8
1053	Metal oxide charge transport layers in perovskite solar cells—optimising low temperature processing and improving the interfaces towards low temperature processed, efficient and stable devices. JPhys Energy, 2021, 3, 012004.	5.3	11
1054	Temporally decoherent and spatially coherent vibrations in metal halide perovskites. Physical Review B, 2020, 102, .	3.2	7
1055	Excitonic enhancement of optical nonlinearities in perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> CH </mml:mi> <mml:n single crystals. Physical Review Materials, 2019, 3 Large thermal expansion leads to negative thermo-optic coefficient of halide perovskite <mml:math< td=""><td>וn2.3<td>าl:ธฑา></td></td></mml:math<></mml:n </mml:msub></mml:mrow></mml:math 	וn 2.3 <td>าl:ธฑา></td>	า l:ธฑ า>
1056	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">C < /mml:mi> < mml:msub> < mml:mi mathvariant="normal">H < /mml:mi> < mml:mn> 3 < /mml:mn> < /mml:msub> < mml:mi mathvariant="normal">N < /mml:mi> < mml:msub> < mml:mi	2.4	12
1058	mathvariant="normal">H <mml:mn>3</mml:mn> <mml:mi>PbC</mml:mi> eml:msub> Vapor-assisted deposition of highly efficient, stable black-phase FAPbI ₃ perovskite solar cells. Science, 2020, 370, .	mml:mi 12.6	530
1059	Quantum dot-modified titanium dioxide nanoparticles as an energy-band tunable electron-transporting layer for open air-fabricated planar perovskite solar cells. Nanomaterials and Nanotechnology, 2020, 10, 184798042096163.	3.0	10
1060	Sb2S3 Thickness-Related Photocurrent and Optoelectronic Processes in TiO2/Sb2S3/P3HT Planar Hybrid Solar Cells. Nanoscale Research Letters, 2019, 14, 325.	5.7	10
1061	Design and simulation of perovskite solar cells with Gaussian structured gradient-index optics. Optics Letters, 2019, 44, 4865.	3.3	8
1062	Exciton photoluminescence of CsPbBr ₃ @SiO ₂ quantum dots and its application as a phosphor material in light-emitting devices. Optical Materials Express, 2020, 10, 1007.	3.0	12
1063	Research progress in large-area perovskite solar cells. Photonics Research, 2020, 8, A1.	7.0	37
1064	Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. Photonics Research, 2020, 8, A39.	7.0	34
1065	Maximizing the external radiative efficiency of hybrid perovskite solar cells. Pure and Applied Chemistry, 2020, 92, 697-706.	1.9	9
1066	Gel Permeation Chromatography Purification Process for Highly Efficient Perovskite Nanocrystal Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 393-397.	0.3	7
1067	ORGANIC-INORGANIC PEROVSKITE CH3NH3PbI3: MORPHOLOGICAL, STRUCTURAL AND PHOTOELECTROPHYSICAL PROPERTIES. Ukrainian Chemical Journal, 2019, 85, 31-41.	0.3	2
1068	Recent Advancements in Crystalline Pb-Free Halide Double Perovskites. Crystals, 2020, 10, 62.	2.2	41

#	Article	IF	CITATIONS
1069	High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO ₂ Mesoporous Scaffold. Research, 2019, 2019, 4049793.	5.7	35
1070	High throughput screening of novel tribromide perovskite materials for high-photovoltage solar cells. Journal of Materials Chemistry A, 2021, 9, 25502-25512.	10.3	8
1071	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	38.1	91
1072	Surface recrystallized stable 2D–3D graded perovskite solar cells for efficiency beyond 21%. Journal of Materials Chemistry A, 2021, 9, 26069-26076.	10.3	36
1073	Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells. Acta Chimica Sinica, 2021, 79, 1181.	1.4	5
1074	Optimization of Tunnelâ€Junction for Perovskite/Tunnel Oxide Passivated Contact (TOPCon) Tandem Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100562.	1.8	6
1075	A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 043001.	2.8	9
1076	Layered Dion–Jacobson-Type Chalcogenide Perovskite CsLaM ₂ X ₇ (M = Ta/Nb; X) Tj E ACS Applied Materials & Interfaces, 2021, 13, 48971-48980.	TQq1 1 0. 8.0	784314 rg <mark>B</mark> 1 3
1077	Unveiling the Effect of Potassium Treatment on the Mesoporous TiO ₂ / Perovskite Interface in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11488-11495.	5.1	13
1078	Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598, 444-450.	27.8	2,065
1079	Ultrafast Response (<1 µs) Perovskite Ultraviolet Photodetector via Ballâ€Milling Pretreated Single‧ource Vapor Deposition. Advanced Materials Technologies, 2022, 7, 2100392.	5.8	9
1080	ITO/SnO ₂ Interface Defect Passivation via Atomic Layer Deposited Al ₂ O ₃ for Highâ€Efficiency Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100406.	1.8	3
1081	A Peryleneâ€Based Conjugated Polymer Endows Perovskite Solar Cells with 85°C Durability: The Control of Gas Permeation. Advanced Functional Materials, 2022, 32, 2108855.	14.9	19
1082	Upscaling Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101973.	19.5	46
1083	The renaissance of polythiophene organic solar cells. Trends in Chemistry, 2021, 3, 1074-1087.	8.5	64
1084	A Highâ€Performance Photodetector Based on 1D Perovskite Radial Heterostructure. Advanced Optical Materials, 2021, 9, 2101504.	7.3	8
1085	Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced Materials, 2022, 34, e2107212.	21.0	81
1086	Ambient-environment processed perovskite solar cells: A review. Materials Today Physics, 2021, 21, 100557.	6.0	12

#	Article	IF	CITATIONS
1087	Improved Operational Stability of Perovskite Solar Cells via Au Barrier Layer Incorporation. ACS Applied Energy Materials, 2021, 4, 11062-11068.	5.1	9
1088	Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells: Recent Developments and Challenges. Energy Technology, 2021, 9, 2100691.	3.8	11
1089	Improved Photostability of Metal Halide Perovskites by microstructure modulation for Photovoltaic Application. Organic Electronics, 2021, 101, 106380.	2.6	1
1090	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	21.0	89
1091	Super Flexible Transparent Conducting Oxideâ€Free Organic–Inorganic Hybrid Perovskite Solar Cells with 19.01% Efficiency (Active Area = 1 cm ²). Solar Rrl, 2021, 5, 2100733.	5.8	10
1092	Recycling lead and transparent conductors from perovskite solar modules. Nature Communications, 2021, 12, 5859.	12.8	69
1093	Optimal Interfacial Band Bending Achieved by Fine Energy Level Tuning in Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3970-3981.	17.4	18
1094	Stable perovskite solar cells with efficiency of 22.6% via quinoxaline-based polymeric hole transport material. Science China Chemistry, 2021, 64, 2035-2044.	8.2	28
1095	Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities. Progress in Photovoltaics: Research and Applications, 2023, 31, 429-442.	8.1	18
1096	Dopant-Free Hole Transporting Material Based on Nonconjugated Adamantane for High-Performance Perovskite Solar Cells. Frontiers in Chemistry, 2021, 9, 746365.	3.6	3
1097	Progress in flexible perovskite solar cells with improved efficiency. Journal of Semiconductors, 2021, 42, 101605.	3.7	16
1098	Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Advanced Materials, 2022, 34, e2105849.	21.0	104
1099	Defect passivation of perovskites in high efficiency solar cells. JPhys Energy, 2021, 3, 042003.	5.3	13
1100	Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
1101	Atomic level insights intoÂmetal halide perovskiteÂmaterials by scanning tunneling microscopy and spectroscopy. Angewandte Chemie, 2022, 134, e202112352.	2.0	0
1102	Key photovoltaic parameters of organohalide lead perovskite quantum dot intermediate band solar cell: A numerical investigation. Materials Today Communications, 2021, 29, 102884.	1.9	1
1103	A new and simple method for simulation of lattice mismatch on the optical properties of solar cells: A combination of DFT and FDTD simulations. Solar Energy, 2021, 230, 166-176.	6.1	5
1104	Ultrafast photophysics of metal halide perovskite multiple quantum wells: device implications and reconciling band alignment. , 2019, , .		0

ARTICLE

CITATIONS

IF Electronic and magnetic properties of ABO₃ perovskites (A - Ca, Ce, Y, Na; B - Ti, Nb, Fe, Mn,) Tj ETQqQQQ rgBT (Overlock 1 1105 Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultra-thin 2D layer. , 2020, , . Capping Layers Design Guidelines for Stable Perovskite Solar Cells via Machine Learning., 2020, , . 1107 1 Dead-bolt type design for efficient and stable perovskite solar cells., 2020,,. 1108 Optimizing the Performance of Organic-Based Perovskite on Crystalline Silicon., 2020,,. 1109 2 Going beyond Alchemy: In-situ Analysis of Perovskite Growth by Optical Reflectance., 2020, , . Device Simulation of Poly (3-Hexylthiophene) HTL Based Single and Double Halide Perovskite Solar 1111 1 Cells., 2020, , . Novel Firing Stable n^{+}/p^{+} Polysilicon Tunnel Junction and its Successful Device Integration. Inorganic charge transport materials for high reliable perovskite solar cells. Ceramist, 2020, 23, 1113 0.1 1 145-165. On-device lead-absorbing tapes for sustainable perovskite solar cells. Nature Sustainability, 2021, 4, 1114 23.7 1038-1041. Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion-Jacobson 2Dâ€3D 1115 16.0 42 heterostructures. Nano Energy, 2022, 91, 106666. Phthalide and 1â€lodooctadecane Synergistic Optimization for Highly Efficient and Stable Perovskite 10.0 Solar Cells. Small, 2021, 17, e2103336. Synergetic Coâ€Modulation of Crystallization and Coâ€Passivation of Defects for FAPbI₃ 1117 14.9 38 Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2108567. Progress in Perovskite Solar Cells towards Commercializationâ€"A Review. Materials, 2021, 14, 6569. Improvement of quality and stability of MAPbI₃ films grown by post annealing under high 1119 2.8 2 pressure argon atmosphere. Journal Physics D: Applied Physics, 2021, 54, 075101. The Promise of Perovskite Solar Cells., 2022, , 388-404.

Development of encapsulation strategies towards the commercialization of perovskite solar cells. 1121 30.8 158 Energy and Environmental Science, 2022, 15, 13-55. Enhancing the stability of perovskite quantum dots CsPbX3 (X=Cl, Br, I) by encapsulation in porous 5.2 Y2O3 nanoparticles for WLED applications. Materials Research Bulletin, 2022, 146, 111592.

#	Article	IF	Citations
1123	Healing soft interface for stable and high-efficiency all-inorganic CsPbIBr2 perovskite solar cells enabled by S-benzylisothiourea hydrochloride. Chemical Engineering Journal, 2022, 430, 132781.	12.7	22
1124	Stability study of organometal halide perovskite and its enhanced X-ray scintillation from the incorporation of anodic TiO ₂ nanotubes. RSC Advances, 2020, 10, 43773-43782.	3.6	2
1125	A tailored spacer molecule in 2D/3D heterojunction for ultralow-voltage-loss and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 26829-26838.	10.3	10
1126	Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 236801.	0.5	0
1127	Characteristics of Perovskite Solar Cell with Nano-Structured MoO ₃ Hole Transfer Layer Prepared by Hydrothermal Synthesis. Korean Journal of Materials Research, 2020, 30, 81-86.	0.2	0
1128	Double-layered Halide Architecture Mixed Perovskite Solar Cell probed by Ultrafast Transient Absorption Spectroscopy. , 2021, , .		Ο
1129	Deciphering the effect of replacing thiophene with selenophene in diketopyrrolopyrrole (DPP)-based low cost hole transport materials on the performance of perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 5994-6003.	4.9	6
1133	Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: Role of the heteroatom on the photovoltaic performance of perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133371.	12.7	11
1134	An intermediate phase stability for high performance of perovskite solar cells. Matter, 2021, 4, 3377-3378.	10.0	2
1137	Homologous Bromides Treatment for Improving the Openâ€Circuit Voltage of Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106280.	21.0	26
1138	Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Lowâ€Cost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, 2101148.	5.8	14
1139	Improved Efficiency of Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Carbon by Introduction of a Dopingâ€Free Polymeric Hole Conductor. Solar Rrl, 2022, 6, 2100773.	5.8	6
1140	Enhanced photovoltaic performance of SnO2 based flexible perovskite solar cells via introducing interfacial dipolar layer and defect passivation. Journal of Power Sources, 2022, 519, 230814.	7.8	8
1141	Efficiency improvement for perovskite-inspired Cs ₃ Sb ₂ I ₉ solar cells using P3HT as the hole transport material. Sustainable Energy and Fuels, 2021, 6, 217-222.	4.9	25
1142	Interfacial fracture of hybrid organic–inorganic perovskite solar cells. Extreme Mechanics Letters, 2022, 50, 101515.	4.1	7
1143	Ionic liquids for advanced materials. Materials Today Nano, 2022, 17, 100159.	4.6	69
1144	Construction of nanostructured CH3NH3PbI3 layer for high-performance perovskite solar cells by Ar plasma etching. Materials Research Bulletin, 2022, 147, 111666.	5.2	7
1145	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	3.3	11

#	Article	IF	CITATIONS
1146	Surface‣tructured Cocatalyst Foils Unraveling a Pathway to Highâ€Performance Solar Water Splitting. Advanced Energy Materials, 2022, 12, 2102752.	19.5	11
1147	MXene-Based Materials for Solar Cell Applications. Nanomaterials, 2021, 11, 3170.	4.1	19
1148	Methodologies for >30% Efficient Perovskite Solar Cells via Enhancement of Voltage and Fill Factor. Solar Rrl, 2022, 6, 2100767.	5.8	21
1149	Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS Nano, 2021, 15, 19490-19502.	14.6	90
1150	High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2. Journal of Colloid and Interface Science, 2022, 609, 547-556.	9.4	13
1151	Donor–Acceptor Type Polymer Bearing Carbazole Side Chain for Efficient Dopantâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102697.	19.5	51
1152	Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 222-246.	12.9	29
1153	A Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalent Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	47
1154	Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalently Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	3
1155	Effect of alloying on the carrier dynamics in high-performance perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 267-274.	12.9	2
1156	Composited Film of Poly(3,4-ethylenedioxythiophene) and Graphene Oxide as Hole Transport Layer in Perovskite Solar Cells. Polymers, 2021, 13, 3895.	4.5	4
1157	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 672-683.	12.9	6
1158	Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production. Nanomaterials, 2021, 11, 3186.	4.1	10
1159	Efficient and stable all-inorganic Sb2(S, Se)3 solar cells via manipulating energy levels in MnS hole transporting layers. Science Bulletin, 2022, 67, 263-269.	9.0	28
1160	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	4.1	20
1161	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, .	5.8	8
1162	Spontaneous Construction of Multidimensional Heterostructure Enables Enhanced Hole Extraction for Inorganic Perovskite Solar Cells to Exceed 20% Efficiency. Advanced Energy Materials, 2022, 12, 2103007.	19.5	42
1163	Hole transporting materials in inorganic CsPbI3â^'Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268.	14.2	20

#	ARTICLE Interfacial Passivation and Energy Level Alignment Regulation for Selfâ€Powered Perovskite	IF	CITATIONS
1164	Photodetectors with Enhanced Performance and Stability. Advanced Materials Interfaces, 2022, 9, 2101766.	3.7	6
1165	Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics. ACS Nano, 2021, 15, 19334-19344.	14.6	18
1166	Intramolecular Noncovalent Interactionâ€Enabled Dopantâ€Free Holeâ€Transporting Materials for Highâ€Performance Inverted Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	18
1167	Intramolecular Noncovalent Interactionâ€Enabled Dopantâ€Free Holeâ€Transporting Materials for Highâ€Performance Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, e202113749.	13.8	72
1168	Charge Transport Layers in Halide Perovskite Photonic Devices. , 2021, , 1-32.		0
1170	Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews, 2021, 50, 13372-13409.	38.1	10
1171	Design of dopant-free small molecular hole transport materials for perovskite solar cells: a viewpoint from defect passivation. Journal of Materials Chemistry A, 2022, 10, 1150-1178.	10.3	44
1172	Temperatureâ€Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions. Advanced Materials, 2022, , 2108357.	21.0	9
1173	High-Hole-Mobility Metal–Organic Framework as Dopant-Free Hole Transport Layer for Perovskite Solar Cells. Nanoscale Research Letters, 2022, 17, 6.	5.7	7
1174	The Effect of Energy Level of Transport Layer on the Performance of Ambient Air Prepared Perovskite Solar Cell: A SCAPS-1D Simulation Study. Crystals, 2022, 12, 68.	2.2	13
1175	Surface molecular engineering of CsPbBr3 perovskite nanosheets for high-performance photodetector. Composites Communications, 2022, 29, 101032.	6.3	7
1176	Size-tunable MoS ₂ nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. Journal of Materials Chemistry A, 2022, 10, 3605-3617.	10.3	15
1177	Synthesis and characterization of polypyrrole encapsulated formamidinium lead bromide crystals for fluorescence memory recovery. Journal of Molecular Liquids, 2022, 349, 118485.	4.9	9
1178	A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr3 perovskite solar cell. Journal of Alloys and Compounds, 2022, 902, 163725.	5.5	11
1179	Mixing halogens improves the passivation effects of amine halide on perovskite. Electrochimica Acta, 2022, 405, 139782.	5.2	2
1180	Study on bandgap predications of ABX3-type perovskites by machine learning. Organic Electronics, 2022, 101, 106426.	2.6	21
1181	Neutron irradiated perovskite films and solar cells on PET substrates. Nano Energy, 2022, 93, 106879.	16.0	15
1182	Dual interfacial modification to improve the performance of CsPbBr3 perovskite solar cells. Materials Science in Semiconductor Processing, 2022, 141, 106450.	4.0	4

#	Article	IF	CITATIONS
1183	2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy, 2022, 94, 106914.	16.0	31
1184	Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells. Journal of Materials Science and Technology, 2022, 113, 138-146.	10.7	32
1185	A holistic sunscreen interface strategy to effectively improve the performance of perovskite solar cells and prevent lead leakage. Chemical Engineering Journal, 2022, 433, 134566.	12.7	20
1186	Low-Dimensional Lead-Free Perovskite Variants for X-Ray Detection. SSRN Electronic Journal, 0, , .	0.4	0
1187	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	46
1188	Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 2022, 7, 757-765.	17.4	114
1189	Effect of Fluorine Substitution in a Hole Dopant on the Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 741-748.	17.4	14
1190	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	5.1	9
1191	Vacuum Quenching for Large-Area Perovskite Film Deposition. ACS Applied Materials & Interfaces, 2022, 14, 2949-2957.	8.0	15
1192	Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chemical Science, 2022, 13, 2167-2183.	7.4	37
1193	Leverage of Pyridine Isomer on Phenothiazine Core: Organic Semiconductors as Selective Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5729-5739.	8.0	7
1194	Simultaneously Mitigating Anion and Cation Defects Both in Bulk and Interface for Highâ€Effective Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	2
1195	Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 6702-6713.	8.0	6
1196	Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 243-266.	4.9	59
1197	Face-on oriented hydrophobic conjugated polymers as dopant-free hole-transport materials for efficient and stable perovskite solar cells with a fill factor approaching 85%. Journal of Materials Chemistry A, 2022, 10, 3409-3417.	10.3	19
1198	Plasmonic–perovskite solar cells, light emitters, and sensors. Microsystems and Nanoengineering, 2022, 8, 5.	7.0	41
1199	Fully Scalable and Stable CsPbI ₂ Br Solar Cells Realized by an All-Spray-Coating Process. ACS Applied Materials & Interfaces, 2022, 14, 7926-7935.	8.0	18
1200	Inverted Planar Perovskite Solar Cells with High Electrical Conductivity and Efficiency by KBr-Doped PEDOT:PSS. ECS Journal of Solid State Science and Technology, 2022, 11, 025005.	1.8	3

#	Article	IF	Citations
1201	Organometal halide perovskite photovoltaics. , 2022, , 273-317.		1
1202	Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 2022, 16, 119-125.	31.4	123
1203	Facile Surface Engineering of Composite Electron Transport Layer for Highly Efficient Perovskite Solar Cells with a Fill Factor Exceeding 81%. Advanced Materials Interfaces, 2022, 9, .	3.7	2
1204	Defects and stability of perovskite solar cells: a critical analysis. Materials Chemistry Frontiers, 2022, 6, 400-417.	5.9	68
1205	Orientation Control of 2D Perovskite in 2D/3D Heterostructure by Templated Growth on 3D Perovskite. , 2022, 4, 378-384.		15
1206	Acetone complexes for high-performance perovskite photovoltaics with reduced nonradiative recombination. Materials Advances, 2022, 3, 2047-2055.	5.4	2
1207	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	12.6	216
1208	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	6.3	9
1209	Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2105635.	21.0	221
1210	All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. Nanoscale Advances, 2022, 4, 680-696.	4.6	43
1211	Stability Improvement of Perovskite Solar Cells by the Moisture-Resistant PMMA:Spiro-OMeTAD Hole Transport Layer. Polymers, 2022, 14, 343.	4.5	14
1212	Reversible Phase Transitions of all Inorganic Copper-Based Perovskites: Water-Triggered Fluorochromism for Advanced Anticounterfeiting Applications. ACS Applied Electronic Materials, 2022, 4, 225-232.	4.3	15
1213	Self-Assembled Donor–Acceptor Dyad Molecules Stabilize the Heterojunction of Inverted Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2022, 14, 6794-6800.	8.0	16
1214	Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors. Journal of the American Chemical Society, 2022, 144, 1910-1920.	13.7	37
1215	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances. Journal of the American Chemical Society, 2022, 144, 1700-1708.	13.7	88
1216	Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances. Solar Energy, 2022, 231, 684-693.	6.1	3
1217	Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.	27.8	137
1218	Bi(trifluoromethyl) Benzoic Acid-Assisted Shallow Defect Passivation for Perovskite Solar Cells with an Efficiency Exceeding 21% ACS Applied Materials & amp: Interfaces 2022, 14, 3930-3938	8.0	21

#	Article	IF	CITATIONS
1219	Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. IScience, 2022, 25, 103599.	4.1	13
1220	Effects of potassium treatment on SnO2 electron transport layers for improvements of perovskite solar cells. Solar Energy, 2022, 233, 353-362.	6.1	18
1221	Halide Ions Distribution and Charge Dynamics in Mixedâ€Halide Perovskites. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	3
1222	Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233, 421-434.	6.1	74
1223	Dual Modification Engineering via Lanthanideâ€Based Halide Quantum Dots and Black Phosphorus Enabled Efficient Perovskite Solar Cells with High Openâ€Voltage of 1.235ÂV. Advanced Functional Materials, 2022, 32, .	14.9	22
1224	A cascade bilayer electron transport layer toward efficient and stable <scp>Ruddlesdenâ€Popper</scp> perovskite solar cells. International Journal of Energy Research, 2022, 46, 8229-8239.	4.5	9
1225	Coordination polymers for emerging molecular devices. Chemical Physics Reviews, 2022, 3, .	5.7	15
1226	Emission properties of sequentially deposited ultrathin CH3NH3PbI3/MoS2 heterostructures. Current Applied Physics, 2022, 36, 27-33.	2.4	8
1227	Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today, 2022, 43, 101394.	11.9	58
1228	Surface reconstruction strategy improves the all-inorganic CsPbIBr2 based perovskite solar cells and photodetectors performance. Nano Energy, 2022, 94, 106960.	16.0	35
1229	Multi-cation hybrid stannic oxide electron transport layer for high-efficiency perovskite solar cells. Journal of Colloid and Interface Science, 2022, 614, 415-424.	9.4	9
1230	Phenylfluorenamine-functionalized poly(N-vinylcarbazole)s as dopant-free polymer hole-transporting materials for inverted quasi-2D perovskite solar cells. Journal of Energy Chemistry, 2022, 69, 123-131.	12.9	7
1231	Bulky ammonium iodide and in-situ formed 2D Ruddlesden-Popper layer enhances the stability and efficiency of perovskite solar cells. Journal of Colloid and Interface Science, 2022, 614, 247-255.	9.4	12
1232	Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells. Journal of Materials Science and Technology, 2022, 114, 165-171.	10.7	14
1235	Inhibiting Ion Migration by Guanidinium Cation Doping for Efficient Perovskite Solar Cells with Enhanced Operational Stability. Solar Rrl, 2022, 6, .	5.8	5
1236	overflow="scroll"> <mml:mi>Bi</mml:mi> c/mml:mstyle displaystyle="false" scriptlevel="0"> <mml:mtext>â^'</mml:mtext> <mml:mi>Bi</mml:mi> Dimers in Heavily <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"> <mml:mi>Bi</mml:mi></mml:math> -Doped Lead Halide Perovskites: Origin of	3.8	1
1237	Carrier Density Saturation. Physical Review Applied, 2022, 17, . Improving Hole Transport and Extraction by Interface Engineering in Perovskite Solar Cells. Energy Technology, 0, , 2101002.	3.8	1
1238	Three dimensional fluorene-based polyamides facile to transfer ion designed for near-infrared electrochromic application and detection for explosive. Chemical Engineering Journal, 2022, 437, 135108.	12.7	17

#	Article	IF	CITATIONS
1239	Non-selective adsorption of organic cations enables conformal surface capping of perovskite grains for stabilized photovoltaic operation. Cell Reports Physical Science, 2022, 3, 100760.	5.6	4
1240	Photoluminescence Enhancement in Thin Two-Dimensional Ruddlesden–Popper Perovskites by Spiro-OMeTAD. Journal of Physical Chemistry C, 0, , .	3.1	1
1241	Exploring Structural Nuances in Germanium Halide Perovskites Using Solid-State ⁷³ Ge and ¹³³ Cs NMR Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 1687-1696.	4.6	9
1242	1Â+Â1 > 2: Dual strategies of quinolinic acid passivation and DMF solvent annealing for high-performance inverted perovskite solar cell. Chemical Engineering Journal, 2022, 435, 135107.	12.7	14
1243	Conformational Order of Alkyl Side Chain of Poly(3-alkylthiophene) Promotes Hole-Extraction Ability in Perovskite/Poly(3-alkylthiophene) Heterojunction. Journal of Physical Chemistry Letters, 2021, 12, 11817-11823.	4.6	8
1244	A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nature Energy, 2022, 7, 144-152.	39.5	123
1245	All Green Solvent Engineering of Organic-Inorganic Hybrid Perovskite Layer for High-Performance Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1246	Direct atomic-scale imaging of a screw dislocation core structure in inorganic halide perovskites. Physical Chemistry Chemical Physics, 2022, 24, 6393-6397.	2.8	2
1247	å≇Œ–物é'™é'›çŸ¿è–"膜çš"宿,©ç»"æ™¶ä,Žç¨³å®šæ€§ç"ç©¶. Scientia Sinica: Physica, Mechanica Et Astr	onoumica, 2	2022, , .
1248	Stronger Binding Force Improving Surface Passivation of Perovskites for High-Performance Inverted Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1249	Encapsulation of perovskite quantum dots into a Ln ^{III} -incorporating polymer matrix to achieve white light emission. New Journal of Chemistry, 2022, 46, 6307-6313.	2.8	2
1250	Mixed-anion mixed-cation perovskite (FAPbl ₃) _{0.875} (MAPbBr ₃) _{0.125} : an <i>ab initio</i> molecular dynamics study. Journal of Materials Chemistry A, 2022, 10, 9592-9603.	10.3	4
1251	Boosting Radiation of Stacked Halide Layer for Perovskite Solar Cells With Efficiency Over 25%. SSRN Electronic Journal, 0, , .	0.4	0
1252	Resolving the backbone tilt of crystalline poly(3-hexylthiophene) with resonant tender X-ray diffraction. Materials Horizons, 2022, 9, 1649-1657.	12.2	3
1253	A triple helicene based molecular semiconductor characteristic of a fully fused conjugated backbone for perovskite solar cells. Energy and Environmental Science, 2022, 15, 1630-1637.	30.8	28
1255	Passivation of Perovskite Films Using Ionic Liquids. , 2022, , .		2
1256	Characteristics of Perovskite Solar Cells with ZnO Coated on Mesoporous TiO2 as an Electron Transfer Layer. Korean Journal of Materials Research, 2022, 32, 94-97.	0.2	2

1257Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.12.6207

#	Article	IF	CITATIONS
1258	CeTaN ₃ and CeNbN ₃ : Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps. Chemistry of Materials, 2022, 34, 2107-2122.	6.7	13
1259	Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	20
1260	Unravelling Structure and Formation Mechanisms of Ruddlesden–Popper-Phase-like Nanodomains in Inorganic Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 2117-2123.	4.6	3
1261	Ultraviolet Photocatalytic Degradation of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	16
1262	Application of metal halide perovskite photodetectors. Journal of Semiconductors, 2022, 43, 020203.	3.7	7
1263	Interfacial Energy Band Alignment Enables the Reduction of Potential Loss for Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 2144-2149.	4.6	10
1264	Sustainable Green Process for Environmentally Viable Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1154-1177.	17.4	43
1265	Construction of Stable Donor–Acceptor Type Covalent Organic Frameworks as Functional Platform for Effective Perovskite Solar Cell Enhancement. Advanced Functional Materials, 2022, 32, .	14.9	46
1266	Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Advanced Science, 2022, 9, e2200308.	11.2	40
1267	Are Metal Halide Perovskite Solar Cells Ready for Space Applications?. Journal of Physical Chemistry Letters, 2022, 13, 2908-2920.	4.6	16
1268	Neutral-Colored Semitransparent Perovskite Solar Cells with Aperture Ratios Controlled via Laser Patterning. ACS Applied Energy Materials, 2022, 5, 3660-3667.	5.1	7
1269	Understanding Instability in Formamidinium Lead Halide Perovskites: Kinetics of Transformative Reactions at Grain and Subgrain Boundaries. ACS Energy Letters, 2022, 7, 1534-1543.	17.4	45
1270	Lowâ€Temperatureâ€Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. Advanced Energy Materials, 2022, 12, .	19.5	38
1271	Organic Semiconductors for Room-Temperature Spin Valves. , 2022, 4, 805-814.		8
1272	Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	119
1273	Protonâ€ŧransferâ€induced in situ defect passivation for highly efficient wideâ€bandgap inverted perovskite solar cells. InformaÄnÃ-Materiály, 2022, 4, .	17.3	27
1274	Electrodeposition as a Versatile Preparative Tool for Perovskite Photovoltaics: Aspects of Metallization and Selective Contacts/Active Layer Formation. Solar Rrl, 0, , 2100993.	5.8	7
1275	Pyreneâ€Based Dopantâ€Free Holeâ€Transport Polymers with Fluorine Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells, Angewandte Chemie, O	2.0	4

#	Article	IF	CITATIONS
1276	Poly(<i>N</i> , <i>N</i> ′â€bisâ€4â€butylphenylâ€ <i>N</i> , <i>N</i> ′â€biphenyl)benzidine as Interfacial Pass Dopantâ€Free P3HT Hole Transport Layerâ€Based Perovskite Solar Cell in Regular Mesoscopic Architecture. Energy Technology, 2022, 10, .	ivator for 3.8	2
1277	Efficient and stable TiO2 nanorod array structured perovskite solar cells in air: Co-passivation and synergistic mechanism. Ceramics International, 2022, 48, 17950-17959.	4.8	9
1278	Temperature-Dependent Optical Properties of Perovskite Quantum Dots with Mixed-A-Cations. Micromachines, 2022, 13, 457.	2.9	5
1279	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	17.4	54
1280	Influence of Halide Choice on Formation of Lowâ€Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2022, 5, 670-682.	12.8	9
1281	Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 2022, 605, 268-273.	27.8	229
1282	Pyreneâ€Based Dopantâ€Free Holeâ€Transport Polymers with Fluorineâ€Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
1283	Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Applied Materials & Interfaces, 2022, 14, 12011-12037.	8.0	36
1284	Controlling the Decomposition of Hybrid Perovskite by a Dithienopyrrole-Based Hole Transport Layer toward Thermostable Solar Cells. , 2022, 4, 600-608.		1
1286	Sulfides as a new class of stable cost-effective materials compared to organic/inorganic hole transport materials for perovskite solar cells. Ceramics International, 2022, , .	4.8	4
1287	Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Reports Physical Science, 2022, 3, 100827.	5.6	16
1288	Structural stability and optical properties of tin-based iodide perovskite. Japanese Journal of Applied Physics, 2022, 61, 031003.	1.5	4
1289	Bulk lead-free perovskite crystal variants for X-ray detection. Radiation Physics and Chemistry, 2022, , 110111.	2.8	0
1290	Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chemical Engineering Journal, 2022, 442, 136291.	12.7	37
1291	Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	18
1292	Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Solar Energy, 2022, 236, 724-732.	6.1	21
1293	Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376, 73-77.	12.6	366
1294	Design Strategies of Hole Transport Materials by Electronic and Steric Controls for nâ€iâ€p Perovskite Solar Cells. ChemSusChem, 2022, , .	6.8	5

#	Article	IF	CITATIONS
1295	Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chemical Engineering Journal, 2022, 442, 136267.	12.7	9
1296	Ionic Liquidâ€Tuned Crystallization for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	10
1297	Structural, electronic and optoelectronic properties of asymmetric organic ligands in Dion-Jacobson phase perovskites. Solid State Communications, 2022, 350, 114761.	1.9	4
1298	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	31.4	233
1299	Multi-functional cyclic ammonium chloride additive for efficient and stable air-processed perovskite solar cells. Journal of Power Sources, 2022, 531, 231243.	7.8	10
1300	A facile strategy for high performance air-processed perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporter. Solar Energy, 2022, 237, 153-160.	6.1	2
1301	All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells. Chemical Engineering Journal, 2022, 437, 135458.	12.7	28
1302	Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook. Materials Today Advances, 2022, 14, 100232.	5.2	28
1303	Performance investigation of experimentally fabricated lead iodide perovskite solar cell via numerical analysis. Materials Research Bulletin, 2022, 151, 111802.	5.2	12
1304	Stronger binding force improving surface passivation of perovskites for High-Performance inverted solar cells. Chemical Engineering Journal, 2022, 440, 135974.	12.7	18
1305	Are Perovskite Solar Cell Potentialâ€Induced Degradation Proof?. Solar Rrl, 2022, 6, .	5.8	14
1306	Simple Polythiophene Solar Cells Approaching 10% Efficiency via Carbon Chain Length Modulation of Poly(3-alkylthiophene). Macromolecules, 2022, 55, 133-145.	4.8	33
1307	Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials, 2021, 14, 7525.	2.9	4
1308	Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: Experimental and theoretical evidence. EcoMat, 2022, 4, .	11.9	35
1309	Novel perovskite solar cell with Distributed Bragg Reflector. PLoS ONE, 2021, 16, e0259778.	2.5	8
1310	Design of a highly efficient FeS ₂ -based dual-heterojunction thin film solar cell. International Journal of Green Energy, 2022, 19, 1531-1542.	3.8	17
1311	Multi‣evel Passivation of MAPbI ₃ Perovskite for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	36
1312	Electronic Structure of (Organicâ€)Inorganic Metal Halide Perovskites: The Dilemma of Choosing the Right Functional. Advanced Theory and Simulations, 2022, 5, .	2.8	9

#	Article	IF	CITATIONS
1313	Solar-Driven Simultaneous Electrochemical CO2 Reduction and Water Oxidation Using Perovskite Solar Cells. Energies, 2022, 15, 270.	3.1	6
1314	In Situ Stabilized CsPbI ₃ for Airâ€Fabricated Inverted Inorganic Perovskite Photovoltaics with Wide Humidity Operating Window. Advanced Functional Materials, 2022, 32, .	14.9	29
1315	Chalcogenide Perovskites: Tantalizing Prospects, Challenging Materials. Advanced Optical Materials, 2022, 10, .	7.3	58
1316	Unveiling White Light Emission of a One-Dimensional Cu(I)-Based Organometallic Halide toward Single-Phase Light-Emitting Diode Applications. Journal of Physical Chemistry Letters, 2021, 12, 12345-12351.	4.6	17
1317	Improved Performance of Perovskite Solar Cells by Suppressing the Energy-Level Shift of the PEDOT:PSS Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 14590-14598.	5.1	4
1318	Polymethyl Methacrylate as an Interlayer Between the Halide Perovskite and Copper Phthalocyanine Layers for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	30
1319	Phase Control of Csâ€Pbâ€Br Derivatives to Suppress 0D Cs ₄ PbBr ₆ for Highâ€Efficiency and Stable Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Small, 2022, 18, e2106323.	10.0	27
1320	Inorganicâ€Cation Pseudohalide 2D Cs ₂ Pb(SCN) ₂ Br ₂ Perovskite Single Crystal. Advanced Materials, 2022, 34, e2104782.	21.0	20
1321	Graphene-Based Assemblies for Moist-Electric Generation. Frontiers in Energy Research, 2021, 9, .	2.3	6
1322	Stable and Efficient Pb–Ni Binary Metal Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 17112-17119.	6.7	5
1323	Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	78
1324	Understanding the Limitations of Charge Transporting Layers in Mixed Lead–Tin Halide Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	13
1325	Interface compatibility: how to outperform classical spiro-OMeTAD in perovskite solar cells with carbazole derivatives. Journal of Materials Chemistry C, 2022, 10, 7680-7689.	5.5	9
1326	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
1327	Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics. Angewandte Chemie, 0, , .	2.0	6
1328	Energy Transfer between Size-Controlled CsPbl ₃ Quantum Dots for Light-Emitting Diode Application. ACS Applied Materials & Interfaces, 2022, 14, 17691-17697.	8.0	9
1329	Perovskite synthesizability using graph neural networks. Npj Computational Materials, 2022, 8, .	8.7	16
1330	Building Bulk Heterojunction to Enhance Hole Extraction for Highâ€Performance Printable Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	6

#	Article	IF	CITATIONS
1331	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	2
1332	Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy. Science China Chemistry, 2022, 65, 1321-1329.	8.2	25
1333	Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
1334	Identifying the potentials for charge transport layers free n-p homojunction-based perovskite solar cells. Solar Energy, 2022, 238, 69-77.	6.1	12
1335	Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 107254.	16.0	17
1336	Potassium chloride templated α-FAPbI3 perovskite crystal growth for efficient planar perovskite solar cells. Organic Electronics, 2022, 106, 106527.	2.6	5
1338	Rational Design on Chemical Regulation of Interfacial Microstress Engineering by Matching Young's Modulus in a CsPbBr ₃ Perovskite Film with Mechanical Compatibility toward Enhanced Photoelectric Conversion Efficiency. ACS Applied Materials & Interfaces, 2022, 14, 20257-20267.	8.0	8
1339	A nanofibrillar conjugated polymer film as an interface layer for high-performance CsPbIBr ₂ solar cells with efficiency exceeding 11%. Sustainable Energy and Fuels, 2022, 6, 2692-2699.	4.9	4
1340	Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells. New Journal of Chemistry, 0, , .	2.8	0
1341	Surface fluoride management for enhanced stability and efficiency of halide perovskite solar cells <i>via</i> a thermal evaporation method. Journal of Materials Chemistry A, 2022, 10, 12882-12889.	10.3	5
1342	Inhibition of PbI ₂ -induced defects by doping MABr for high-performance perovskite solar cells. Nanoscale, 2022, 14, 7203-7210.	5.6	12
1343	Progress of defect and defect passivation in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 166801.	0.5	1
1344	Efficient and Stable FAâ \in Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	19.5	16
1345	Discovery of Pb-free hybrid organic–inorganic 2D perovskites using a stepwise optimization strategy. Npj Computational Materials, 2022, 8, .	8.7	9
1346	Inventions, Innovations and New Technologies. Solar Compass, 2022, , 100012.	1.6	0
1347	Simulation of the photovoltaic performance of a perovskite solar cell based on methylammonium lead iodide. Optical and Quantum Electronics, 2022, 54, .	3.3	6
1348	Microscopic Interfacial Charge Transfer at Perovskite/Hole Transport Layer Interfaces Clarified Using Pattern-Illumination Time-Resolved Phase Microscopy. Journal of Physical Chemistry C, 2022, 126, 7548-7555.	3.1	1
1349	Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule, 2022, 6, 1032-1048.	24.0	72

#	Article	IF	CITATIONS
1350	Efficient p-doping of P3HT for hole transporting materials in perovskite solar cells. Rare Metals, 2022, 41, 2575-2581.	7.1	5
1351	Perovskite Singleâ€Crystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .	5.8	19
1352	Defect Passivation through (α-Methylguanido)acetic Acid in Perovskite Solar Cell for High Operational Stability. ACS Applied Materials & Interfaces, 2022, 14, 20848-20855.	8.0	8
1353	One-dimensional perovskite-based Li-ion battery anodes with high capacity and cycling stability. Journal of Energy Chemistry, 2022, 72, 73-80.	12.9	8
1354	A Rollingâ€Mode Al/CsPbBr ₃ Schottky Junction Direct urrent Triboelectric Nanogenerator for Harvesting Mechanical and Solar Energy. Advanced Energy Materials, 2022, 12, .	19.5	35
1355	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	1.3	13
1356	Formation of a Secondary Phase in Thermally Evaporated MAPbI ₃ and Its Effects on Solar Cell Performance. ACS Applied Materials & Interfaces, 2022, 14, 34269-34280.	8.0	5
1357	Pyridine Derivatives' Surface Passivation Enables Efficient and Stable Carbon-Based Perovskite Solar Cells. , 2022, 4, 1101-1111.		30
1358	A multifunctional piperidine-based modulator for printable mesoscopic perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136967.	12.7	13
1359	A Doped Hole Transport Layer Qualified for 100°Câ€₹olerant Perovskite Solar Cells. Advanced Optical Materials, 0, , 2200515.	7.3	0
1360	Probing Ultrafast Interfacial Carrier Dynamics in Metal Halide Perovskite Films and Devices by Transient Reflection Spectroscopy. ACS Applied Materials & Interfaces, 2022, 14, 34281-34290.	8.0	5
1361	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie, 0, , .	2.0	3
1362	Chargeâ€Selective, Narrowâ€Gap Indium Arsenide Quantum Dot Layer for Highly Stable and Efficient Organic Photovoltaics. Advanced Energy Materials, 2022, 12, .	19.5	14
1363	All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges. Nanomaterials, 2022, 12, 1651.	4.1	20
1364	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	11.3	19
1365	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 2022, 9, .	11.3	33
1366	Interfacial passivation by polylactic acid in perovskite solar cells. Organic Electronics, 2022, 106, 106543.	2.6	4
1367	Study of DMSO concentration on the optical and structural properties of perovskite CH3NH3PbI3 and its use in solar cells. Journal of Solid State Chemistry, 2022, 312, 123158.	2.9	6

#	Article	IF	CITATIONS
1368	A multifunctional interlayer for highly stable and efficient perovskite solar cells based on pristine poly(3- hexylthiophene). Chemical Engineering Journal, 2022, 444, 136644.	12.7	17
1369	Bromide complimented methylammonium-free wide bandgap perovskite solar modules with high efficiency and stability. Chemical Engineering Journal, 2022, 445, 136626.	12.7	12
1370	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
1371	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
1372	Defective MWCNT Enabled Dual Interface Coupling for Carbonâ€Based Perovskite Solar Cells with Efficiency Exceeding 22%. Advanced Functional Materials, 2022, 32, .	14.9	35
1373	Ultrafast Carrier Dynamics in Wide Band Gap Mixed-Cation Perovskites: Influence of the Cs Cation. Journal of Physical Chemistry C, 2022, 126, 8787-8793.	3.1	3
1374	Synergistic Effect between NiO <i>_x</i> and P3HT Enabling Efficient and Stable Hole Transport Pathways for Regular Perovskite Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	17
1375	A review on high performance photovoltaic cells and strategies for improving their efficiency. Frontiers in Energy, 2022, 16, 548-580.	2.3	3
1376	Highly Crystalline Graphene as the Atomic 2D Blanket of a Perovskite Absorber for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2022, 14, 24864-24874.	8.0	3
1377	Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022, 144, 9500-9509.	13.7	85
1378	Challenges of Scalable Development for Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5, 6499-6515.	5.1	10
1379	Characterization of interfaces: Lessons from the past for the future of perovskite solar cells. Journal of Semiconductors, 2022, 43, 051202.	3.7	6
1380	Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Science China Chemistry, 2022, 65, 1185-1195.	8.2	5
1381	Superfast crystalline powder synthetic strategy toward scale-up of perovskite solar cells. Materials Today Energy, 2022, 27, 101049.	4.7	4
1382	Machine learning enabled development of unexplored perovskite solar cells with high efficiency. Nano Energy, 2022, 99, 107394.	16.0	27
1383	Long term stability assessment of perovskite solar cell via recycling of metal contacts under ambient conditions. Materials Letters, 2022, 322, 132490.	2.6	4
1384	Lewis base governing superfacial proton behavior of hybrid perovskite: Basicity dependent passivation strategy. Chemical Engineering Journal, 2022, 446, 137033.	12.7	26
1385	Empowering Photovoltaics with Smart Light Management Technologies. , 2022, , 1165-1248.		1

#	Article	IF	CITATIONS
1386	Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	16
1387	Toward Efficient Perovskite Solar Cells: Progress, Strategies, and Perspectives. ACS Energy Letters, 2022, 7, 2084-2091.	17.4	68
1388	A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromolecular Research, 2022, 30, 391-396.	2.4	5
1389	One-step precipitation of stable perovskite CsPbBr ₃ quantum dots in silicate glass by picosecond laser pulses. Optical Materials Express, 2022, 12, 2260.	3.0	6
1390	Backbone Randomization in Conjugated Polymer-Based Hole-Transport Materials to Enhance the Efficiencies of Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 4856-4864.	6.7	11
1391	Alkyl Diamine-Induced (100)-Preferred Crystal Orientation for Efficient Pb–Sn Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6936-6942.	5.1	12
1392	Steady-State Transporting Properties of Halide Perovskite Thin Films under 1 sun through Photo-Hall Effect Measurement. Journal of Physical Chemistry C, 0, , .	3.1	2
1393	An Innovative Anode Interface Combination for Perovskite Solar Cells with Improved Efficiency, Stability, and Reproducibility. Solar Rrl, 2022, 6, .	5.8	3
1394	Over 24% efficient MA-free CsxFA1â^'xPbX3 perovskite solar cells. Joule, 2022, 6, 1344-1356.	24.0	58
1395	Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nature Energy, 2022, 7, 528-536.	39.5	89
1396	Highâ€purity synthesis of allâ€inorganic <scp> CsPbBr ₃ </scp> perovskite powder assisted by solubilizing organic ligand and its application to perovskite solar cells. International Journal of Energy Research, 0, , .	4.5	3
1397	Elucidating Diiodomethane-Induced Improvement in Photonically Cured MAPbI ₃ Solar Cells. ACS Applied Energy Materials, 2022, 5, 7328-7334.	5.1	3
1398	Morphology modulated brookite TiO2 and BaSnO3 as alternative electron transport materials for enhanced performance of carbon perovskite solar cells. Chemical Engineering Journal, 2022, 446, 137378.	12.7	20
1399	Ionic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics. Chemical Engineering Journal, 2022, 446, 137351.	12.7	5
1400	Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles. Scientific Reports, 2022, 12, .	3.3	10
1401	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	16.4	16
1402	Cesium acetate-assisted crystallization for high-performance inverted CsPbI ₃ perovskite solar cells. Nanotechnology, 2022, 33, 375205.	2.6	7
1405	Oriented Organization of Poly(3â€Hexylthiophene) for Efficient and Stable Antimony Sulfide Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	2

#	Article	IF	CITATIONS
1406	Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nature Energy, 2022, 7, 597-607.	39.5	66
1407	2D Material and Perovskite Heterostructure for Optoelectronic Applications. Nanomaterials, 2022, 12, 2100.	4.1	13
1408	Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan. Renewable Energy, 2022, 195, 896-905.	8.9	1
1409	The effect of chloride atoms to induce organohalide perovskite intermediate crystal phase: a simulation rationale. Applied Physics Express, 2022, 15, 075504.	2.4	2
1410	Universal Surface Passivation of Organic–Inorganic Halide Perovskite Films by Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 28044-28059.	8.0	15
1411	Basic Amino Acids Modulated Neutral-pH PEDOT:PSS for Stable Blue Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 28133-28144.	8.0	18
1412	Synergistic bonding stabilized interface for perovskite solar cells with over 24% efficiency. Nano Energy, 2022, 100, 107518.	16.0	18
1413	Amorphous TiO2 film with fiber like structure: An ideal candidate for ETL of perovskite solar cells. Materials Letters, 2022, 324, 132684.	2.6	2
1414	Coordination Modulated Passivation for Stable Organic-Inorganic Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1415	Charge transport materials for mesoscopic perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 11063-11104.	5.5	10
1416	Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy and Environmental Science, 2022, 15, 3630-3669.	30.8	58
1417	Tailoring Defects Regulation in Air-Fabricated CsPbI ₃ for Efficient Inverted All-Inorganic Perovskite Solar Cells with <i>V</i> _{oc} of 1.225 V. ACS Applied Materials & Interfaces, 2022, 14, 30937-30945.	8.0	15
1418	Enhanced Thermal Stability of Lowâ€Temperature Processed Carbonâ€Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method. Energy Technology, 2022, 10, .	3.8	3
1419	Inkjet Printing Efficient Definedâ€Pixel Matrix Perovskite Lightâ€Emitting Diodes with a Polar Polymer Modification Layer. Advanced Materials Technologies, 2022, 7, .	5.8	9
1420	Oxide/Halide/Oxide Architecture for High Performance Semiâ€Transparent Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	11
1421	Predicting the formation of fractionally doped perovskite oxides by a function-confined machine learning method. Communications Materials, 2022, 3, .	6.9	7
1422	Homochiral Hybrid Organic–Inorganic Cadmium Chlorides Directed by Enantiopure Amino Acids. Inorganic Chemistry, 2022, 61, 11032-11035.	4.0	14
1423	Polyaniline/Nickle oxide hole transport layers to increase stability and efficiency of regular perovskite solar cells. International Journal of Energy Research, 2022, 46, 17285-17294.	4.5	4

#	Article	IF	Citations
1424	A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nature Communications, 2022, 13, .	12.8	16
1425	Perovskite and Polymeric Solar Cells: A Comparison of Advances and Key Challenges. Energy Technology, 2022, 10, .	3.8	1
1426	CuGaO ₂ Nanosheet Arrays as the Hole-Transport Layer in Inverted Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 10055-10063.	5.0	9
1427	Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy, 2022, 101, 107579.	16.0	46
1428	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	4.0	22
1429	A Conductive Molecular Semiconductor Composite with Over 160°C Glass Transition Temperature for Heatâ€Resistant Perovskite Solar Cells. Advanced Electronic Materials, 0, , 2200425.	5.1	2
1430	Brominated Polythiophene Reduces the Efficiency‣tabilityâ€Cost Gap of Organic and Quantum Dot Hybrid Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	17
1431	Solution-Processed SnO2 Quantum Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells. Nanomaterials, 2022, 12, 2615.	4.1	12
1432	Progress on strategies to control the built-in electric field of perovskite solar cells. Chinese Science Bulletin, 2023, 68, 39-52.	0.7	2
1433	Optically and Mechanically Engineered Antiâ€Reflective Film for Highly Efficient Rigid and Flexible Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	17
1434	Simultaneously Suppressing Charge Recombination and Decomposition of Perovskite Solar Cells by Conjugated Covalent Organic Frameworks. Advanced Energy Materials, 2022, 12, .	19.5	23
1435	Management of Donor and Acceptor Building Blocks in Dopantâ€Free Polymer Hole Transport Materials for Highâ€Performance Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
1436	Photo Stabilization of pâ€iâ€n Perovskite Solar Cells with Bathocuproine: MXene. Small, 2022, 18, .	10.0	8
1437	Enhanced Efficiency and Stability of nâ€iâ€p Perovskite Solar Cells by Incorporation of Fluorinated Graphene in the Spiroâ€OMeTAD Hole Transport Layer. Advanced Energy Materials, 2022, 12, .	19.5	41
1438	Fill Factor Losses and Deviations from the Superposition Principle in Lead Halide Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	22
1439	24.11% High Performance Perovskite Solar Cells by Dual Interfacial Carrier Mobility Enhancement and Chargeâ€Carrier Transport Balance. Advanced Energy Materials, 2022, 12, .	19.5	21
1440	Progress of Solution-Processed Metal Oxides as Charge Transport Layers towards Efficient and Stable Perovskite Solar Cells and Modules. Materials Today Nano, 2022, , 100252.	4.6	2
1441	Management of Donor and Acceptor Building Blocks in Dopantâ€Free Polymer Hole Transport Materials for Highâ€Performance Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	1

#	Article	IF	CITATIONS
1443	Integrated Idealâ€Bandgap Perovskite/Bulkâ€Heterojunction Solar Cells with Efficiencies > 24%. Advanced Materials, 2022, 34, .	21.0	23
1444	Coordination modulated passivation for stable organic-inorganic perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138740.	12.7	12
1445	Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells. Chinese Journal of Chemical Engineering, 2022, 50, 29-42.	3.5	2
1446	High-efficiency Sb2(S,Se)3 solar cells with MoO3 as a hole-transport layer. Journal of Alloys and Compounds, 2022, 927, 166842.	5.5	7
1447	Passivation of perovskite layer surface states with pyridine in flexible and printed perovskite solar cells. Flexible and Printed Electronics, 2022, 7, 035012.	2.7	2
1448	Gain and loss energy generation of perovskite/sc-Si tandem solar cells with series and parallel configurations compared with sc-Si solar cell under real environmental factors based on detailed balance limit. Optical Materials, 2022, 132, 112789.	3.6	0
1449	2D Ruddlesden-Popper perovskite ferroelectric film for high-performance, self-powered and ultra-stable UV photodetector boosted by ferro-pyro-phototronic effect and surface passivation. Nano Energy, 2022, 102, 107714.	16.0	14
1450	Efficient surface treatment based on an ionic imidazolium hexafluorophosphate for improving the efficiency and stability of perovskite solar cells. Applied Surface Science, 2022, 604, 154486.	6.1	4
1451	Estimation of performance limit for bifacial single-junction solar cell. Optics and Laser Technology, 2022, 156, 108500.	4.6	1
1452	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials, 2023, 11, 61-77.	2.2	1
1453	Impacts of 0D Cs4PbI6 phase in all-inorganic CsPbI3 perovskites on their physical, optical properties and photovoltaic performances. Thin Solid Films, 2022, 759, 139485.	1.8	0
1454	Improving the order of crystalline regions of poly(3-hexylthiophene) by crystallization from the self-nucleation domains. Thermochimica Acta, 2022, 717, 179352.	2.7	1
1455	Correlation between detailed balance limit and actual environmental factors for perovskite/crystalline Si tandem solar cells with different structures. Materials Science in Semiconductor Processing, 2022, 152, 107085.	4.0	2
1456	Hole transport free carbon-based high thermal stability CsPbl _{1.2} Br _{1.8} solar cells with an amorphous InGaZnO ₄ electron transport layer. Physical Chemistry Chemical Physics, 2022, 24, 18896-18904.	2.8	2
1457	Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15725-15780.	5.5	17
1458	Simultaneous ambient long-term conductivity promotion, interfacial modification, ion migration inhibition and anti-deliquescence by MWCNT:NiO in spiro-OMeTAD for perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 22592-22604.	10.3	9
1459	Growth optimization of single-phase novel colloidal perovskite Cs ₃ Bi ₂ I ₉ nanocrystals and Cs ₃ Bi ₂ I ₉ @SiO ₂ core–shell nanocomposites for bio-medical application. Biomaterials Science, 2022, 10, 5956-5967.	5.4	5
1460	Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. , 2022, 1, 220006-220006.		17

#	Article	IF	Citations
1461	Recent advances of crosslinkable organic semiconductors in achieving solution-processed and stable optoelectronic devices. Journal of Materials Chemistry A, 2022, 10, 18542-18576.	10.3	12
1462	Governing Pbl ₆ octahedral frameworks for high-stability perovskite solar modules. Energy and Environmental Science, 2022, 15, 4404-4413.	30.8	14
1463	The Versatility of Polymers in Perovskite Solar Cells. Journal of Materials Chemistry C, O, , .	5.5	2
1464	Lamination methods for the fabrication of perovskite and organic photovoltaics. Materials Horizons, 2022, 9, 2473-2495.	12.2	6
1465	Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy and Environmental Science, 2022, 15, 4700-4709.	30.8	86
1466	Effects of Thin Film Morphology of Polymer Hole Transfer Material on Photovoltaic Performance of Perovskite Solar Cells. Celal Bayar Universitesi Fen Bilimleri Dergisi, 0, , .	0.5	0
1467	Surface-Plasmonic-Coupled Photodetector Based on MAPbI ₃ Perovskites with Au Nanoparticles: Significantly Enhanced Photoluminescence and Photodetectivity. ACS Applied Electronic Materials, 2022, 4, 4560-4568.	4.3	5
1468	Recent Progress on Heterojunction Engineering in Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	23
1469	Impact of Polymeric Hole‧elective Layers on Chemical Inductance in Inverted Perovskite Solar Cells. Energy Technology, 0, , 2200624.	3.8	1
1470	Balancing Lattice Strain by Embedded Ionic Liquid for the Stabilization of Formamidinium-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 43298-43307.	8.0	4
1471	Configurable Organic Charge Carriers toward Stable Perovskite Photovoltaics. Chemical Reviews, 2022, 122, 14954-14986.	47.7	26
1472	Comparative architecture in monolithic perovskite/silicon tandem solar cells. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	3
1473	Bilayer metal halide perovskite for efficient and stable solar cells and modules. Materials Futures, 2022, 1, 042102.	8.4	19
1474	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	21.0	67
1475	Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Science Advances, 2022, 8, .	10.3	34
1476	Molecular Regulation of Perylenediimide and Fluoreneâ€Based Cathode Interfacial Materials for Efficient Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	5
1477	Fluorination of Carbazole-Based Polymeric Hole-Transporting Material Improves Device Performance of Perovskite Solar Cells with Fill Factor up to 82%. ACS Applied Energy Materials, 2022, 5, 12049-12058.	5.1	5
1478	Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nature Energy, 2022, 7, 794-807.	39.5	89

#	Article	IF	CITATIONS
1479	Recent Progress on Defect Passivation of Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	9
1480	Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science, 2022, 377, 1227-1232.	12.6	75
1481	Defect Passivation via Isoxazole Doping in Perovskite Solar Cells. ACS Omega, 2022, 7, 34278-34285.	3.5	2
1482	Interfaced Structures between Halide Perovskites: From Basics to Construction to Optoelectronic Applications. Advanced Energy Materials, 2023, 13, .	19.5	6
1483	Self-Powered and Low-Noise Perovskite Photodetector Enabled by a Novel Dopant-Free Hole-Transport Material with Bottom Passivation for Underwater Blue Light Communications. ACS Applied Materials & Interfaces, 2022, 14, 46809-46818.	8.0	5
1484	Scalable Twoâ€Step Production of Highâ€Efficiency Perovskite Solar Cells and Modules. Solar Rrl, 2023, 7,	5.8	14
1485	Defect Passivation by a Sulfur ontaining Lewis Base for Efficient Printable Mesoscopic Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
1486	Interfacial Engineering for Highâ€Performance PTAAâ€Based Inverted 3D Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
1487	Facile Synthesized Acetamidine Thiocyanate with Synergistic Passivation and Crystallization for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
1488	Improving the efficiency and stability of perovskite solar cell through tetrabutylammonium hexafluorophosphate post-treatment assisted top surface defect passivation. Solar Energy Materials and Solar Cells, 2022, 248, 112011.	6.2	4
1489	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
1490	Energy Technology Based on Conductive Polymers. , 2022, , 205-273.		0
1491	Performance limitations imposed by the TCO heterojunction in high efficiency perovskite solar cells. Energy and Environmental Science, 2022, 15, 5202-5216.	30.8	7
1492	Unveiling Ultrafast Carrier Extraction in Highly Efficient 2D/3D Bilayer Perovskite Solar Cells. ACS Photonics, 2022, 9, 3584-3591.	6.6	5
1493	MXene Based Nanocomposites for Recent Solar Energy Technologies. Nanomaterials, 2022, 12, 3666.	4.1	3
1494	Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	54
1495	Light-tunable three-phase coexistence in mixed halide perovskites. Physical Review B, 2022, 106, .	3.2	0
1496	é¢å'é«~稳定性墴¯³èƒ½ç"µæ±å¼€å'的墌–物钙钛矿稳定 性æå‡ç–ç•¥. Science China Materials,	2022,65	3140-3201

#	Article	IF	CITATIONS
1497	Highâ€Performance Inverted Perovskite Solar Cells Enhanced via Partial Replacement of Dimethyl Sulfoxide with <i>N</i> â€Methylâ€2â€Pyrrolidinone. Solar Rrl, 2022, 6, .	5.8	5
1498	Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency. Journal of Materials Science and Technology, 2023, 140, 33-57.	10.7	5
1499	Active Manipulation of Luminescent Dynamics via Au NPs sPbBr ₃ Interfacial Engineering. Laser and Photonics Reviews, 2023, 17, .	8.7	6
1500	Elucidating the Origins of High Preferential Crystal Orientation in Quasiâ€2D Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	8
1501	Water-Repelling Dopant-Free Hole-Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 14948-14954.	6.7	7
1502	Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. Polymer, 2022, 261, 125411.	3.8	2
1503	High-Efficiency Perovskite Solar Cells with Sputtered Metal Contacts. ACS Applied Materials & Interfaces, 2022, 14, 50731-50738.	8.0	0
1504	Photo-induced force microscopy applied to electronic devices and biosensors. Materials Today: Proceedings, 2023, 72, 3904-3910.	1.8	0
1505	Side chain engineering and film uniformity: two key parameters for the rational design of dopant-free polymeric hole transport materials for efficient and stable perovskite solar cells. Materials Today Chemistry, 2022, 26, 101218.	3.5	3
1506	Benzotriazole based polymers with different side chains employed as dopant-free hole-transporting materials for high-efficiency perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 17734-17742.	5.5	3
1507	Simultaneous interfacial and bulk defect passivation and interface energy band alignment optimization via In(SCN2H4)3Cl3 diffusion doping for inverted perovskite solar cells. Chemical Engineering Journal, 2023, 454, 140160.	12.7	5
1508	Additive Engineering of the CuSCN Hole Transport Layer for High-Performance Perovskite Semitransparent Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 52223-52232.	8.0	8
1509	Cuttingâ€Edge Studies Toward Commercialization of Large Area Solutionâ€Processed Perovskite Solar Cells. Advanced Materials Technologies, 2023, 8, .	5.8	4
1510	Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells. Frontiers of Optoelectronics, 2022, 15, .	3.7	19
1511	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	8.2	53
1512	Formation of Highly Efficient Perovskite Solar Cells by Applying Li-Doped CuSCN Hole Conductor and Interface Treatment. Nanomaterials, 2022, 12, 3969.	4.1	0
1513	Dualâ€Phase Stabilized Perovskite Nanowires for Reduced Defects and Longer Carrier Lifetime. Advanced Functional Materials, 2023, 33, .	14.9	3
1514	Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT. Nature Communications, 2022, 13, .	12.8	30

#	Article	IF	CITATIONS
1515	Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes. Advanced Functional Materials, 0, , 2210627.	14.9	1
1516	The Electronic Properties of a 2D Ruddlesdenâ€Popper Perovskite and its Energy Level Alignment with a 3D Perovskite Enable Interfacial Energy Transfer. Advanced Functional Materials, 2023, 33, .	14.9	14
1517	Solvent choice enables 2D:3D bilayers toward stable perovskite solar cells. Joule, 2022, 6, 2454-2457.	24.0	2
1518	Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nature Communications, 2022, 13, .	12.8	25
1519	Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. Advanced Science, 2022, 9, .	11.2	11
1520	Recent progress of scalable perovskite solar cells and modules. , 2022, 1, 100010.		14
1521	Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science, 2022, 378, 747-754.	12.6	81
1522	Advanced phase change hydrogel integrating metal-organic framework for self-powered thermal management. Nano Energy, 2023, 105, 108009.	16.0	13
1523	Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 2022, 21, 1396-1402.	27.5	74
1524	Underlying Interface Defect Passivation and Charge Transfer Enhancement via Sulfonated Hole-Transporting Materials for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 53331-53339.	8.0	5
1525	Exploring the fluorination effect mechanism on charge transport in organic solar cells. Solar Energy, 2022, 248, 160-170.	6.1	6
1526	Cyano-4′-Pentylbipheny dopant strategy for P3HT-Based CsPbI3 perovskite solar cells with a record efficiency and preeminent stability. Chemical Engineering Journal, 2023, 455, 140831.	12.7	8
1527	Improving efficiency of polymer hole transport layer based perovskite solar cells via interfacial modification. Synthetic Metals, 2023, 292, 117247.	3.9	1
1529	Finite perovskite hierarchical structures <i>via</i> ligand confinement leading to efficient inverted perovskite solar cells. Energy and Environmental Science, 2023, 16, 557-564.	30.8	20
1530	Over 25% efficiency and stable bromine-free RbCsFAMA-based quadruple cation perovskite solar cells enabled by an aromatic zwitterion. Journal of Materials Chemistry A, 2023, 11, 1170-1179.	10.3	12
1531	Interface engineering of organic hole transport layer with facile molecular doping for highly efficient perovskite solar cells. Journal of Power Sources, 2023, 556, 232428.	7.8	3
1532	ZnPc/CsPbBr3 QDs collaborative interface modification to improve the performance of CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2023, 251, 112157.	6.2	2
1533	Enhancing the efficiency and stability of 2D-3D perovskite solar cells with embedded interface passivation with diammonium cation spacer. Solar Energy Materials and Solar Cells, 2023, 251, 112135.	6.2	4

#	Article	IF	CITATIONS
1534	Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews, 2022, 51, 10016-10063.	38.1	11
1535	Universal surface tailoring of perovskite nanocrystals <i>via</i> organic pseudohalide ligands applicable to green and blue light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 18226-18233.	5.5	0
1536	Highly Improved Efficiency and Stability of 2D Perovskite Solar Cells via Bifunctional Inorganic Salt KPF ₆ Modified NiO _{<i>x</i>} Hole Transport Layer. Advanced Energy and Sustainability Research, 0, , 2200151.	5.8	2
1537	Scalable Production of High Performance Flexible Perovskite Solar Cells via Film-Growth-Megasonic-Spray-Coating System. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1223-1234.	4.9	3
1538	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	10
1539	Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%. Joule, 2023, 7, 112-127.	24.0	27
1540	Comparative study of hole transporting layers commonly used in high-efficiency perovskite solar cells. Journal of Materials Science, 2022, 57, 21172-21191.	3.7	5
1541	Deciphering the Morphology Change and Performance Enhancement for Perovskite Solar Cells Induced by Surface Modification. Advanced Science, 2023, 10, .	11.2	5
1542	Nexuses Between the Chemical Design and Performance of Small Molecule Dopantâ€Free Hole Transporting Materials in Perovskite Solar Cells. Small, 2023, 19, .	10.0	19
1543	METAL OXIDE ELECTRON TRANSPORT MATERIALS IN PEROVSKITE SOLAR CELLS: A REVIEW. European Journal of Materials Science and Engineering, 2022, 7, 225-260.	0.1	0
1544	Laserâ€Triggered Vaporâ€Phase Anion Exchange on Allâ€Inorganic Perovskites for Multicolor Patterns and Microfabrications. Advanced Optical Materials, 2023, 11, .	7.3	9
1545	Modulating Residual Lead Iodide via Functionalized Buried Interface for Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 666-676.	17.4	34
1546	An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development. Energies, 2023, 16, 190.	3.1	3
1547	Nucleation Regulation and Anchoring of Halide Ions in Allâ€Inorganic Perovskite Solar Cells Assisted by CuInSe ₂ Quantum Dots. Advanced Functional Materials, 2023, 33, .	14.9	4
1548	Reconstructing the amorphous and defective surface for efficient and stable perovskite solar cells. Science China Materials, 0, , .	6.3	2
1549	Solar utilization beyond photosynthesis. Nature Reviews Chemistry, 2023, 7, 91-105.	30.2	54
1550	Engineering Stable Leadâ€Free Tin Halide Perovskite Solar Cells: Lessons from Materials Chemistry. Advanced Materials, 2023, 35, .	21.0	13
1551	Recent Progress and Challenges of Bismuthâ€Based Halide Perovskites for Emerging Optoelectronic Applications. Advanced Optical Materials, 2023, 11, .	7.3	19

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1552	Recent progress in perovskite solar cells: material science. Science China Chemistry, 202	.3, 66, 10-64.	8.2	53
1553	Thermally Stable Perovskite Solar Cells by All-Vacuum Deposition. ACS Applied Materials Interfaces, 2023, 15, 772-781.	&	8.0	7
1554	Butanediammonium Salt Additives for Increasing Functional and Operando Stability of Light-Harvesting Materials in Perovskite Solar Cells. Nanomaterials, 2022, 12, 4357.		4.1	2
1555	Key role of residual lead iodide in two-step processed perovskite layer for high performar perovskite solar cells. Applied Physics Letters, 2023, 122, .	nce	3.3	2
1556	Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Adv Energies, 2023, 16, 889.	'ances.	3.1	10
1557	Unraveling Its Intrinsic Role of CH ₃ NH ₃ Cl Doping for Efficient of Perovskite Solar Cells from Fine Insight by Ultrafast Chargeâ€Transfer Dynamics. Sola	Enhancement r Rrl, 2023, 7, .	5.8	4
1558	Stacking Interactions and Photovoltaic Performance of Cs ₂ AgBiBr _{6< Perovskite. Solar Rrl, 2023, 7, .}	/sub>	5.8	4
1559	Extending the Absorption Spectra and Enhancing the Charge Extraction by the Organic I Heterojunction for CsPbBr ₃ Perovskite Solar Cells. ACS Sustainable Chemis Engineering, 2023, 11, 718-725.	Bulk try and	6.7	6
1560	Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule, 2023, 7, 257-271.		24.0	23
1561	The rise of halide perovskite semiconductors. Light: Science and Applications, 2023, 12,		16.6	26
1562	Understanding the Degradation Factors, Mechanism and Initiatives for Highly Efficient P Solar Cells. ChemNanoMat, 2023, 9, .	erovskite	2.8	5
1563	Surface-modification-induced synergies of crystal growth and defect passivation toward solar cells with efficiency exceeding 17%. Chemical Engineering Journal, 2023, 457, 141		12.7	6
1564	Room temperature slot-die coated perovskite layer modified with sulfonyl-γ-AApeptide f performance perovskite solar devices. Chemical Engineering Journal, 2023, 457, 141199		12.7	7
1565	Heterocyclic amino acid molecule as a multifunctional interfacial bridge for improving th and stability of quadruple cation perovskite solar cells. Nano Energy, 2023, 107, 108154		16.0	23
1566	Modification of perovskite/HTL interface with cooperative polymers bilayer (PTB7-Th/P3F perovskite solar cell efficiency and stability. Materials Science in Semiconductor Process 107309.		4.0	1
1567	A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State N Spectroscopy. Journal of the American Chemical Society, 2023, 145, 978-990.	IMR	13.7	6
1568	Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar C 2023, 16, 266.	ells. Energies,	3.1	6
1569	Dopantâ€Free Twoâ€Dimensional Hole Transport Small Molecules Enable Efficient Perov Advanced Energy Materials, 2023, 13, .	skite Solar Cells.	19.5	20

#	Article	IF	CITATIONS
1570	Halide-based perovskites in photonics: From photocatalysts to highly efficient optoelectronic devices. , 2023, , 547-600.		1
1571	Spectral Splitting as a Route to Promote Total Efficiency of Hybrid Photovoltaic Thermal with a Halide Perovskite Cell. Solar Rrl, 0, , 2201072.	5.8	1
1572	Synergistic Effects of Interfacial Energy Level Regulation and Stress Relaxation via a Buried Interface for Highly Efficient Perovskite Solar Cells. ACS Nano, 2023, 17, 2802-2812.	14.6	19
1573	Improving Ultraviolet Stability of Perovskite Solar Cells via Singlet Fission <scp>Downâ€Conversion</scp> ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1057-1065.	4.9	7
1574	Development of Indium-Tin Oxide Thin Films on PAMAM Dendrimer Layers for Perovskite Solar Cells Application. Minerals, Metals and Materials Series, 2023, , 27-38.	0.4	0
1575	2D Covalent Organic Frameworks Based on Heteroacene Units. Small, 2023, 19, .	10.0	11
1576	Fast and Balanced Charge Transport Enabled by Solutionâ€Processed Metal Oxide Layers for Efficient andÂStable Inverted Perovskite Solar Cells. Energy and Environmental Materials, 2024, 7, .	12.8	0
1577	Looking for a Safe Bridge: Synthesis of P3HT-Bridge-TBO Block-Copolymers and Their Performance in Perovskite Solar Cells. Organics, 2023, 4, 97-108.	1.3	1
1578	P3HT vs Spiro-OMeTAD as a hole transport layer for halide perovskite indoor photovoltaics and self-powering of motion sensors. JPhys Materials, 2023, 6, 024004.	4.2	1
1579	Device Structures of Perovskite Solar Cells: A Critical Review. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	3
1580	Alkyl Chain Lengthâ€Dependent Amineâ€Induced Crystallization for Efficient Interface Passivation of Perovskite Solar Cells. Advanced Materials Interfaces, 2023, 10, .	3.7	3
1581	Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602.	4.9	1
1582	Symmetric acridine bridging hole transport material for perovskite solar cell. Dyes and Pigments, 2023, 213, 111158.	3.7	0
1583	Removing residual PbI2 on the perovskite surface for efficient solar cells. Chemical Engineering Journal, 2023, 464, 142720.	12.7	6
1584	Improving the stability and performance of hybrid perovskite solar cells based on 1D/3D mixed-dimensional structure by multiple cation doping. Optical Materials, 2023, 139, 113781.	3.6	1
1585	Enhanced moisture-resistant and highly efficient perovskite solar cells via surface treatment with long-chain alkylammonium iodide. Applied Surface Science, 2023, 623, 157003.	6.1	2
1586	Femtosecond laser direct-writing of perovskite nanocrystals in glasses. Journal of Non-Crystalline Solids: X, 2023, 18, 100182.	1.2	0
1587	Efficient planar mixed-cation perovskite photovoltaics with low-temperature-processed indium sulfide as electron transport material. Solid-State Electronics, 2023, 204, 108640.	1.4	0

#	Article	IF	CITATIONS
1588	Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance. Inorganics, 2023, 11, 168.	2.7	6
1589	Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules. Journal of Energy Chemistry, 2023, 80, 689-710.	12.9	16
1590	Reduced hysteresis and enhanced air stability of low-temperature processed carbon-based perovskite solar cells by surface modification. Electrochimica Acta, 2023, 443, 141935.	5.2	12
1591	Instability of solution-processed perovskite films: origin and mitigation strategies. Materials Futures, 2023, 2, 012102.	8.4	11
1592	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectronics: From Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	7.3	4
1593	Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nature Communications, 2023, 14, .	12.8	66
1594	Highly Efficient and Stable FAâ€Based Quasiâ€2D Ruddlesden–Popper Perovskite Solar Cells by the Incorporation of βâ€Fluorophenylethanamine Cations. Advanced Materials, 2023, 35, .	21.0	23
1595	Shedding Light on the Moisture Stability of Halide Perovskite Thin Films. Energy Technology, 2023, 11, .	3.8	14
1596	Scanning Electrochemical Microscope Studies of Charge Transfer Kinetics at the Interface of the Perovskite/Hole Transport Layer. Journal of Nanotechnology, 2023, 2023, 1-12.	3.4	0
1597	Grapheneâ€Like Monoelemental 2D Materials for Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	13
1598	Halogenated Holeâ€Transport Molecules with Enhanced Isotropic Coordination Capability Enable Improved Interface and Light Stability of Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	14
1599	Orientation control of two-dimensional perovskite (CH ₃ (CH ₂) ₃ 3) ₃) ₂ (CH ₃ na^2 1Pb _n 1 _{3n+1} (n = 2) thin films by thermal annealing. Japanese Journal of Applied Physics. 2023. 62. SK1007.	3)<	sup>
1600	Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 213.	1.3	0
1601	Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions. Korean Journal of Materials Research, 2022, 32, 419-424.	0.2	0
1602	Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nature Energy, 2023, 8, 284-293.	39.5	23
1603	Facet Engineering for Decelerated Carrier Cooling in Polyhedral Perovskite Nanocrystals. Nano Letters, 2023, 23, 1946-1953.	9.1	6
1604	<i>In Situ</i> and <i>Operando</i> Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical Reviews, 2023, 123, 3160-3236.	47.7	15
1605	Theoretical Selection of 2D Perovskite for Constructing Efficient Heterojunction Solar Cells. , 2023, 5, 970-978.		5

#	Article	IF	CITATIONS
1606	Low-cost and LiTFSI-free diphenylamine-substituted hole transporting materials for highly efficient perovskite solar cells and modules. Materials Chemistry Frontiers, 2023, 7, 2241-2250.	5.9	2
1607	Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nature Energy, 2023, 8, 372-380.	39.5	76
1608	Metalâ€Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. Small, 2023, 19, .	10.0	24
1609	Strain-Induced Modification of Photoluminescence in Quasi-2D Perovskite Thin Films. Journal of Physical Chemistry C, 2023, 127, 6371-6379.	3.1	1
1610	Anti-corrosion strategy to improve the stability of perovskite solar cells. Nanoscale, 2023, 15, 8473-8490.	5.6	2
1611	Explainable machine learning for predicting the band gaps of ABX3 perovskites. Materials Science in Semiconductor Processing, 2023, 161, 107427.	4.0	4
1612	Clinical Characterization and Outcomes of Patients with Hypercreatinemia Affected by COVID-19. Healthcare (Switzerland), 2023, 11, 944.	2.0	0
1613	Charge transport modelling of perovskite solar cells accounting for non-Boltzmann statistics in organic and highly-doped transport layers. JPhys Energy, 2023, 5, 025007.	5.3	0
1614	Enhancement of photovoltaic performance of solvent-free dye-sensitized solar cells with doped poly(3-hexylthiophene). Journal of Industrial and Engineering Chemistry, 2023, 123, 428-435.	5.8	1
1615	Highly Efficient 2D/3D Mixed-Dimensional Cs2PbI2Cl2/CsPbI2.5Br0.5 Perovskite Solar Cells Prepared by Methanol/Isopropanol Treatment. Nanomaterials, 2023, 13, 1239.	4.1	4
1616	Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nature Communications, 2023, 14, .	12.8	15
1617	Transport Layer Material and Thickness Optimization of Csâ, TiBrâ,† Based Solar Cell. , 2022, , .		0
1618	Highly Stable n–i–p Structured Formamidinium Tin Triiodide Solar Cells through the Stabilization of Surface Sn ²⁺ Cations. Advanced Functional Materials, 2023, 33, .	14.9	3
1619	How organic chemistry can affect perovskite photovoltaics. Cell Reports Physical Science, 2023, 4, 101358.	5.6	5
1620	Organic ligands/dyes as photon-downshifting materials for clean energy. , 2023, , 265-280.		0
1621	Two-Dimensional Hybrid Dion–Jacobson Germanium Halide Perovskites. Chemistry of Materials, 2023, 35, 3265-3275.	6.7	15
1622	Numerical Analysis in DFT and SCAPS-1D on the Influence of Different Charge Transport Layers of CsPbBr ₃ Perovskite Solar Cells. Energy & Fuels, 2023, 37, 6078-6098.	5.1	61
1623	The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 2023, 214, 112076.	3.5	9

#	Article	IF	CITATIONS
1624	Carbon-Based Sb2(S, Se)3 Solar Cells. Inorganics, 2023, 11, 159.	2.7	5
1625	Numerical Analysis of Stable (FAPbI3)0.85(MAPbBr3)0.15-Based Perovskite Solar Cell with TiO2/ZnO Double Electron Layer. Nanomaterials, 2023, 13, 1313.	4.1	8
1626	Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in covalent organic frameworks. Nano Research, 2023, 16, 9387-9397.	10.4	2
1627	Spontaneous Internal Encapsulation via Dual Interfacial Perovskite Heterojunction Enables Highly Efficient and Stable Perovskite Solar Cells. Nano Letters, 2023, 23, 3484-3492.	9.1	8
1628	Dynamic self-assembly of small molecules enables the spontaneous fabrication of hole conductors at perovskite/electrode interfaces for over 22% stable inverted perovskite solar cells. Materials Horizons, 2023, 10, 2609-2617.	12.2	10
1629	Preparation and performance of CsPbBr3 nanocrystals in a fluorophosphate glass matrix. Journal of Nanoparticle Research, 2023, 25, .	1.9	1
1630	Binary hole transport layer enables stable perovskite solar cells with PCE exceeding 24%. , 2023, 1, 100004.		9
1631	Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nature Energy, 2023, 8, 515-525.	39.5	51
1632	Nanographene Coupled with Interfacial Pyrene Derivatives for Thermally Stable Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 2267-2275.	17.4	4
1633	Seedâ€Assisted Growth of Tin Oxide Transport Layer for Efficient Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	3
1634	Understanding the impact of surface roughness: changing from FTO to ITO to PEN/ITO for flexible perovskite solar cells. Scientific Reports, 2023, 13, .	3.3	7
1635	"Metal Halide Perovskite Solar Modules: The Challenge of Upscaling and Commercializing This Technology― , 2023, , 297-321.		0
1636	Advances in Organometallic Perovskites Enabled Radiation Detection Technologies. , 2023, , 111-140.		0
1637	Hybrid composites for optoelectronics. , 2023, , 253-276.		0
1638	A simulation study of all inorganic lead-free CsSnBr3 tin halide perovskite solar cell. Materials Today: Proceedings, 2023, , .	1.8	4
1639	Development of Perovskite (MACl)0.33FA0.99MA0.01Pb(I0.99Br0.01)3 Solar Cells via n-Octylammonium Iodide Surface Passivation. Nanomaterials, 2023, 13, 1492.	4.1	0
1640	Effective interface treatment by zirconium acetylacetonate for inverted methylammonium-rich perovskite solar cells. Materials Today Physics, 2023, 35, 101106.	6.0	2
1641	Solutionâ€Processed Metal Ion Polyelectrolytes as Hole Transport Materials for Efficient Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2023, 10, .	3.7	3

#	Article	IF	CITATIONS
1642	Stepping toward Portable Optoelectronics with SnO ₂ Quantum Dot-Based Electron Transport Layers. ACS Omega, 2023, 8, 21212-21222.	3.5	3
1643	Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering. Energies, 2023, 16, 3621.	3.1	0
1644	Versatile Selfâ€Assembled Molecule Enables Highâ€Efficiency Wideâ€Bandgap Perovskite Solar Cells and Organic Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	23
1645	Buried interface defects passivation of perovskite film by choline halide for high performance inverted perovskite solar cells with efficiency exceeding 22%. Journal of Alloys and Compounds, 2023, 959, 170478.	5.5	3
1646	Efficient carbon electrode perovskite solar cells with robust buffer interfaces. Journal of Materials Research and Technology, 2023, 24, 8162-8170.	5.8	7
1647	Chemical Design of Organic Interface Modifiers for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	5
1648	Improved Power Conversion Efficiency and Stability of Perovskite Solar Cells Induced by Molecular Interaction with Poly(ionic liquid) Additives. ACS Applied Materials & Interfaces, 2023, 15, 26872-26881.	8.0	2
1649	A Novel Multiâ€Functional Thiopheneâ€Based Organic Cation as Passivation, Crystalline Orientation, and Organic Spacer Agent for Lowâ€Dimensional 3D/1D Perovskite Solar Cells. Advanced Optical Materials, 2023, 11, .	7.3	1
1650	Highâ€Performance Perovskite Solar Cells with Low Open ircuit Voltage Loss and Excellent Stability after pâ€Fâ€PEAI Posttreatment. Energy Technology, 0, , .	3.8	0
1651	Thermally stable and efficient CsF-doped All-Inorganic CsPbIBr2 perovskite solar cells exceeding 15% PCE. Inorganic Chemistry Communication, 2023, 153, 110862.	3.9	1
1652	Advances on the Application of Wide Bandâ€Gap Insulating Materials in Perovskite Solar Cells. Small Methods, 2023, 7, .	8.6	5
1653	Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction – A review. , 2023, 2, e9120082.		12
1654	钙钛矿åå±,å≇é~³ç"µæ±ä,电è•ä¼è³⁄4"ææ−™çš"ç"究进展. Science China Materials, 2023, 66, 2107-2127.	6.3	1
1655	Tunable Molecular Packing of Dopant-Free Hole-Transport Polymers for Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 2878-2885.	17.4	10
1656	Selective coordination of polyazin sapanisertib with halide vacancy for printable mesoscopic perovskite solar cells. Chinese Chemical Letters, 2023, 34, 108629.	9.0	1
1657	Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance. Nature Communications, 2023, 14, .	12.8	10
1658	Development of less toxic perovskite materials for solar cell applications. , 2023, , 645-669.		0
1659	Efficient and stable hole-transporting-layer-free perovskite solar cells by introducing propionyl chloride passivator. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	1

#	Article	IF	CITATIONS
1660	A conjugated Donor-acceptor blend passivation interlayer for the high-performance carbon-based perovskite solar cells. Organic Electronics, 2023, 121, 106867.	2.6	0
1662	Improving perovskite/P3HT interface without an interlayer: Impact of perovskite surface topography on photovoltaic performance of P3HT-based perovskite solar cells. Materials Today Communications, 2023, 36, 106418.	1.9	2
1663	A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nature Energy, 2023, 8, 714-724.	39.5	33
1664	Selfâ€Assembly of 0D/3D Perovskite Bi‣ayer from a Microâ€Emulsion Ink. Advanced Energy Materials, 2023, 13, .	19.5	1
1665	High-performance flexible organic field effect transistors with print-based nanowires. Microsystems and Nanoengineering, 2023, 9, .	7.0	1
1666	Synergistic Defect Passivation by Metformin Halides for Improving Perovskite Solar Cell Performance. Journal of Physical Chemistry C, 2023, 127, 11845-11853.	3.1	3
1667	A review on the engineering of hole-transporting materials for perovskite solar cells with high efficiency and high stability. Dyes and Pigments, 2023, 218, 111449.	3.7	2
1668	Recent Progresses on <scp>Dopantâ€Free</scp> Organic Hole Transport Materials toward Efficient and Stable Perovskite Solar Cells ^{â€} . Chinese Journal of Chemistry, 2023, 41, 3133-3166.	4.9	2
1669	Suppression of Undesired Losses in Organometal Halide Perovskiteâ€Based Photoanodes for Efficient Photoelectrochemical Water Splitting. Advanced Energy Materials, 2023, 13, .	19.5	2
1670	Synergistic Optimization of Buried Interface by Multifunctional Organic–Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	27.0	3
1671	基于Cs2AgBiBr6ååŒ−物åŒé'™é'›çŸįå≇é~³ç"µæ±çš"ç"ç©¶èį›å±•. Laser and Optoelectronics Progress, 202	3, 6.0 , 070	00004.
1672	A Review on Buried Interface of Perovskite Solar Cells. Energies, 2023, 16, 5015.	3.1	4
1673	Dual Crossâ€Linked Functional Layers for Stable and Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	1
1674	Small carbazole-based molecules as hole transporting materials for perovskite solar cells. Journal of Molecular Graphics and Modelling, 2023, 122, 108504.	2.4	4
1675	Augmenting stability and performance in perovskite solar cells: A critical review on perovskite-polymer synergy. Solar Energy, 2023, 257, 266-306.	6.1	4
1676	Perovskite solar cell's efficiency, stability and scalability: A review. Materials Science for Energy Technologies, 2023, 6, 437-459.	1.8	5
1678	Volatile Dualâ€Solvent Assisted Intermediate Phase Regulation for Antiâ€Solventâ€Free Perovskite Photovoltaics. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
1679	Volatile Dualâ€Solvent Assisted Intermediate Phase Regulation for Antiâ€Solventâ€Free Perovskite Photovoltaics. Angewandte Chemie, 2023, 135, .	2.0	2

#	ARTICLE Modeling and Comparative Performance Analysis of Perovskite Solar Cells with Planar or Nanorod <mml:math <="" display="inline" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
1680	overflow="scroll"> <mml:msub><mml:mrow><mml:mi>Sn</mml:mi><mml:mi mathvariant="normal">O</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub> Electron-Transport Layers. Physical Review Applied, 2023, 19, .	3.8	0
1681	Solvent engineering for the formation of high-quality perovskite films:a review. Results in Engineering, 2023, 18, 101158.	5.1	1
1682	Development of a new hole transport material for perovskite solar cells. Applied Physics Letters, 2023, 122, .	3.3	0
1683	The stability of inorganic perovskite solar cells: from materials to devices. Materials Futures, 2023, 2, 032101.	8.4	2
1684	Understanding the influence of Cu ions implantation towards highly efficient MAPbBr3 perovskite solar cells. Optical Materials, 2023, 140, 113806.	3.6	7
1685	Mixed perovskites (2D/3D)-based solar cells: a review on crystallization and surface modification for enhanced efficiency and stability. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	12
1686	Combination of Poly(3-butylthiophene) Hole-Transporting Layer and Butylammonium Interface Passivation to Improve an Inorganic Perovskite Solar Cell. ACS Applied Polymer Materials, 2023, 5, 4100-4105.	4.4	0
1687	Energy Yield Prediction of Bifacial Perovskite/Silicon Tandem Photovoltaic Modules. Solar Rrl, 0, , .	5.8	ο
1688	Void-free buried interface for scalable processing of p-i-n-based FAPbI3 perovskite solar modules. Joule, 2023, 7, 1574-1592.	24.0	7
1689	Ionâ€Diffusion Management Enables Allâ€Interface Defect Passivation of Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	15
1690	Perovskite Solar Module: Promise and Challenges in Efficiency, Meta tability, and Operational Lifetime. Advanced Electronic Materials, 2023, 9, .	5.1	2
1691	A review on organic hole transport materials for perovskite solar cells: Structure, composition and reliability. Materials Today, 2023, 67, 518-547.	14.2	5
1692	Bright future by controlling αĴ´ phase junction of formamidinium lead iodide doped by imidazolium for solar cells: Insight from experimental, DFT calculations and SCAPS simulation. Surfaces and Interfaces, 2023, 40, 103159.	3.0	11
1693	Progress, challenges, and further trends of all perovskites tandem solar cells: A comprehensive review. Materials Today, 2023, 67, 399-423.	14.2	3
1694	Organic Bromide Salts Interface Modification for Highâ€Efficiency Perovskite Solar Cells with Printed Carbon Electrode. Energy Technology, 2023, 11, .	3.8	1
1695	Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	27.0	1
1696	A dual functional molecule for perovskite/P3HT interface to achieve stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 16363-16369.	10.3	2
1697	Multilateral Passivation Strategy in Post-Synthetic Flexible Metal–Organic Frameworks for Enhancing Perovskite Solar Cells. Inorganic Chemistry, 2023, 62, 11690-11700.	4.0	3

#	Article	IF	CITATIONS
1698	Surface Defects Passivation with Organic Salt for Highly Stable and Efficient Lead-Free Cs ₃ Sb ₂ I ₉ Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 10294-10302.	5.1	3
1699	Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nature Sustainability, 2023, 6, 1455-1464.	23.7	12
1700	Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells with 25.05% Efficiency. Advanced Materials, 2023, 35, .	21.0	28
1701	Towards Commercialization of Perovskite Solar Cells: Fabrication, Lifetime, and Lead Toxicity. , 0, 52, 76-92.		0
1702	Phthalimide additive-promoted ambient fabrication of inorganic CsPbI2Br perovskite for highly efficient and stable solar cells. Journal of Alloys and Compounds, 2023, 965, 171441.	5.5	3
1703	Passivation strategies for enhancing device performance of perovskite solar cells. Nano Energy, 2023, 115, 108731.	16.0	16
1704	SnF ₂ â€Doped Cs ₂ SnI ₆ Ordered Vacancy Double Perovskite for Photovoltaic Applications. Solar Rrl, 2023, 7, .	5.8	2
1705	Performance prediction and optimization of perovskite solar cells based on the Bayesian approach. Solar Energy, 2023, 262, 111853.	6.1	1
1706	啿⁰çfè',å'制å‡é˜´ç¦»åæ¯"例啿ާçš"Sb2(S,Se)3薄膜用于é«~性èf½å≇€~³èf½ç"µæ±. Science China M	lat e r s als, 0,	,0
1707	Focus on perovskite emitters in blue light-emitting diodes. Light: Science and Applications, 2023, 12, .	16.6	14
1707 1708	Focus on perovskite emitters in blue light-emitting diodes. Light: Science and Applications, 2023, 12, . Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023, 122, 106892.	16.6 2.6	14 2
1708	Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023, 122, 106892. Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials	2.6	2
1708 1709	Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023, 122, 106892. Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials Chemistry A, 0, , . Allâ€Perovskite Tandem Solar Cells: Rapid Development of Thin Film Photovoltaic Technology. Advanced	2.6 10.3	2 0
1708 1709 1710	Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023, 122, 106892. Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials Chemistry A, 0, , . Allâ€Perovskite Tandem Solar Cells: Rapid Development of Thin Film Photovoltaic Technology. Advanced Sustainable Systems, 0, , . Performance optimisation of n-i-p type CH < sub>3 NH < sub>3 Pbl < sub>3 based perovskite solar cells using SCAPS 1-D device simulation. International Journal of Ambient Energy,	2.6 10.3 5.3	2 0 0
1708 1709 1710 1711	Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023, 122, 106892. Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials Chemistry A, 0, , . Allâ€Perovskite Tandem Solar Cells: Rapid Development of Thin Film Photovoltaic Technology. Advanced Sustainable Systems, 0, , . Performance optimisation of n-i-p type CH ₃ NH ₃ Pbl ₃ based perovskite solar cells using SCAPS 1-D device simulation. International Journal of Ambient Energy, 2023, 44, 2372-2385. Enhancing Stability and Efficiency of Perovskite Solar Cells with a Bilayer Hole Transporting Layer of	 2.6 10.3 5.3 2.5 	2 0 0 1
1708 1709 1710 1711	Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023, 122, 106892. Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials Chemistry A, 0, , . Allâ€Perovskite Tandem Solar Cells: Rapid Development of Thin Film Photovoltaic Technology. Advanced Sustainable Systems, 0, , . Performance optimisation of n-i-p type CH ₃ NH ₃ Pbl ₃ based perovskite solar cells using SCAPS 1-D device simulation. International Journal of Ambient Energy, 2023, 44, 2372-2385. Enhancing Stability and Efficiency of Perovskite Solar Cells with a Bilayer Hole Transporting Layer of Nickel Phthalocyanine and Poly(3â€Hexylthiophene). Advanced Energy Materials, 2023, 13, . Designing of dimethylfluorene-based hole transport materials for high-performance	 2.6 10.3 5.3 2.5 19.5 	2 0 0 1 3

#	Article	IF	CITATIONS
1716	MASCN Surface Treatment to Reduce Phase Transition Temperature and Regulate Strain for Efficient and Stable α-FAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 38496-38506.	8.0	0
1717	Bifunctional trifluorophenylacetic acid additive for stable and highly efficient flexible perovskite solar cell. InformaÄnÄ-MateriÄįly, 2023, 5, .	17.3	7
1718	Screenâ€Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Advanced Science, 2023, 10, .	11.2	5
1719	Recent progress of two-dimensional Ruddlesden–Popper perovskites in solar cells. Materials Chemistry Frontiers, 0, , .	5.9	1
1720	Porous Lead Iodide Layer Promotes Organic Amine Salt Diffusion to Achieve High Performance pâ€iâ€n Flexible Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	5
1721	Crystallization Control for Ambient Printed FAâ€Based Lead Triiodide Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	4
1722	Enhanced Interface Compatibility by Ionic Dendritic Molecules To Achieve Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 41109-41120.	8.0	0
1723	Dualâ€Interface Engineering in Perovskite Solar Cells with 2D Carbides. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1724	Defect Passivation and Lithium Ion Coordination Via Hole Transporting Layer Modification for High Performance Inorganic Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	2
1725	Dualâ€Interface Engineering in Perovskite Solar Cells with 2D Carbides. Angewandte Chemie, 2023, 135, .	2.0	0
1726	Highly Efficient and Stable Inverted Perovskite Solar Cell Using Pure δâ€FAPbI ₃ Single Crystals. Small, 2023, 19, .	10.0	1
1727	Unveiling and overcoming the interfacial degradation between CuSCN and metal electrodes in perovskite solar cells. Journal of Materials Chemistry A, O, , .	10.3	0
1728	Polymer Boosts High Performance Perovskite Solar Cells: A Review. Advanced Optical Materials, 2024, 12, .	7.3	0
1729	Postâ€Treatment of Metal Halide Perovskites: From Morphology Control, Defect Passivation to Band Alignment and Construction of Heterostructures. Advanced Energy Materials, 2023, 13, .	19.5	9
1730	Unlocking Ultraâ€High Performance in Immersed Solar Water Splitting with Optimised Energetics. Advanced Energy Materials, 2023, 13, .	19.5	4
1731	Exploration of the photovoltaic properties of oxide-based double perovskite Bi ₂ FeCrO ₆ using an amalgamation of DFT with spin–orbit coupling effect and SCAPS-1D simulation approaches. New Journal of Chemistry, 2023, 47, 18640-18658.	2.8	0
1732	Helical Polycyclic Heteroaromatic as Hole Transport Material for Perovskite Solar Cell: Remarkable Impact of Alkyl Substitution Position. Advanced Energy Materials, 2023, 13, .	19.5	5
1733	Phase-Engineering of Layered Nickel Hydroxide for Synthesizing High-Quality NiO _{<i>x</i>} Nanocrystals for Efficient Inverted Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 38444-38453.	8.0	2

#	Article	IF	CITATIONS
1734	2D MXenes Nanosheets for Advanced Energy Conversion and Storage Devices: Recent Advances and Future Prospects. Chemical Record, 2024, 24, .	5.8	1
1735	Mitigating the Heterointerface Driven Instability in Perovskite Photovoltaics. ACS Energy Letters, 2023, 8, 3604-3613.	17.4	3
1736	Lattice Dynamics and Thermal Transport in Semiconductors with Anti-Bonding Valence Bands. Journal of the American Chemical Society, 2023, 145, 18506-18515.	13.7	1
1737	A helicene-based semiconducting polymer for stable and efficient perovskite solar cells. Matter, 2023, 6, 4013-4031.	10.0	2
1738	Constructing Highâ€Performance Solar Cells and Photodetectors with a Dopingâ€Free Polythiophene Hole Transport Material. Advanced Functional Materials, 0, , .	14.9	1
1740	é«~å"è^`æ—é"…é'™é'›çŸ¿çº³ç±³ç‰‡çš"啿ާå^¶å¤åŠåŀ光特性ç"ç©¶. Guangxue Xuebao/Acta Optica Sini	c a,.2 023,	43), 16230 <mark>2</mark> 2
1741	Synergistic transition metal ion co-doping and multiple functional additive passivation for realizing 25.30% efficiency perovskite solar cells. Energy and Environmental Science, 2023, 16, 5243-5254.	30.8	6
1742	Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Research, 2024, 17, 1500-1507.	10.4	1
1743	Investigating the Effect of Cross-Conjugation Patterns on the Optoelectronic Properties of 7,7′lsoindigo-Based Materials. Electronics (Switzerland), 2023, 12, 3313.	3.1	3
1744	A literature overview of cell layer materials for perovskite solar cells. MRS Communications, 2023, 13, 1076-1086.	1.8	1
1745	An Fe ₃ O ₄ based hole transport bilayer for efficient and stable perovskite solar cells. Energy Advances, 0, , .	3.3	0
1746	Visualization of Hot Carrier Dynamics in a Single CsPbBr3 Perovskite Microplate Using Femtosecond Kerr-Gated Wide-Field Fluorescence Spectroscopy. Nanomaterials, 2023, 13, 2701.	4.1	0
1747	Multifunctional Interface Treatment of Phosphate for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 9994-10004.	5.1	3
1748	Highly efficient and durable planar carbon-based perovskite solar cells enabled by polystyrene modified hole-transporting layers. Journal of Colloid and Interface Science, 2023, 652, 463-469.	9.4	0
1749	Influence of Cu/In loading ratio in grain size of the CuInS ₂ films for CuInS ₂ -based solar cells. , 2023, , .		0
1750	A Comprehensive Review on Third-Generation Photovoltaic Technologies. Journal of Chemical Engineering Research Updates, 0, 10, 1-17.	0.1	0
1751	Fundamental understanding of stability for halide perovskite photovoltaics: The importance of interfaces. CheM, 2024, 10, 35-47.	11.7	4
1752	Synergic effects of incorporating black phosphorus for interfacial engineering in perovskite solar cells. Surfaces and Interfaces, 2023, 43, 103531.	3.0	1

#	Article	IF	CITATIONS
1753	Constructing robust heterointerfaces for carrier viaduct <i>via</i> interfacial molecular bridges enables efficient and stable inverted perovskite solar cells. Energy and Environmental Science, 2023, 16, 5792-5804.	30.8	7
1754	Hydrovoltaic Effect Coupling with Capacitor Amplification: A Mode for Sensitive Self-Powered Electrochemical Sensing. Analytical Chemistry, 2023, 95, 12595-12599.	6.5	0
1755	Passivating SnO2/perovskite interface via guanide hydrochloride toward efficient and stable n-i-p perovskite solar cells. Journal of Colloid and Interface Science, 2023, 652, 612-618.	9.4	2
1756	Morphology, dynamic disorder, and charge transport in an indoloindole-based hole-transporting material from a multi-level theoretical approach. Faraday Discussions, 0, , .	3.2	0
1757	A DFT computational design and exploration of direct band gap silver-thallium double perovskites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 298, 116846.	3.5	1
1758	Organic halide salts and PbI2 in improving the efficiency of perovskite solar cells. Energy Reports, 2023, 9, 62-73.	5.1	0
1759	Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy and Environmental Science, 2023, 16, 5423-5433.	30.8	20
1761	Unlocking the Ambient Temperature Effect on FAâ€Based Perovskites Crystallization by In Situ Optical Method. Advanced Materials, 0, , .	21.0	3
1762	Highâ€Performance Indoor Perovskite Solar Cells by Selfâ€Suppression of Intrinsic Defects via a Facile Solventâ€Engineering Strategy. Small, 2024, 20, .	10.0	2
1763	Evaluation of single photon-emission in a small area for organic light-emitting diodes. Japanese Journal of Applied Physics, 0, , .	1.5	0
1764	Tailoring doped organic nanoparticles as selective hole transporters for printed non-fullerene organic solar cells. Nano Energy, 2023, 118, 108956.	16.0	0
1765	Additiveâ€Free Spiroâ€OMeTAD@P3HT Composite/NiO <i>x</i> Holeâ€Transporting Bilayer for Efficient (19%), Stable, and Fully Solutionâ€Processed Carbonâ€Electrodeâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
1766	Liquidâ€Phase Transfer of Organic–Inorganic Halide Perovskite Films for TEM Investigation and Planar Heterojunction Fabrication. Advanced Optical Materials, 0, , .	7.3	1
1767	Light and Force Multifunctional Detector Based on the Interfacial Polarization of the ITO/MAPbBr ₃ Schottky Junction. Advanced Optical Materials, 2024, 12, .	7.3	0
1768	Tuning the Pore Structures in TiO ₂ Thin Films by Polymer Templates for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	0
1769	Tailoring the interface by a multifunctional amphiphilic molecule enabled 24.84%-efficiency and stable perovskite solar cells. Nano Energy, 2023, 118, 109003.	16.0	2
1770	Bottom interface passivation with benzylamine thiocyanate for improving the performance of inverted perovskite solar cells. Solid-State Electronics, 2023, 210, 108799.	1.4	0
1771	Comparative performance analysis of perovskite/CIGS-based double absorber layer solar cell with BaSi2 as a BSF layer. Journal of Optics (India), 0, , .	1.7	2

Сіт	۸ті	ON	Dr	рт
CLL.	ЯΠ		INL	 IC I

#	Article	IF	CITATIONS
1772	Ferrocene Derivatives for Improving the Efficiency and Stability of MAâ€Free Perovskite Solar Cells from the Perspective of Inhibiting Ion Migration and Releasing Film Stress. Advanced Science, 2023, 10, .	11.2	3
1773	Benzodithiopheneâ€Thienothiadiazole Copolymers as Dopantâ€Free Holeâ€Transporting Layers Enabling Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
1774	Guidelines for Designing Water‣table Hybrid Lead Bromide Perovskites with Broad Emission. Advanced Optical Materials, 0, , .	7.3	0
1775	Trimethyl Ammoniumâ€Assisted Interfacial Modification for Efficient and Stable Wideâ€Bandgap Perovskite Solar Cells. Energy Technology, 0, , .	3.8	0
1776	Defect passivation by a betaine-based zwitterionic molecule for high-performance p-i-n methylammonium-based perovskite solar cells. Solar Energy Materials and Solar Cells, 2024, 264, 112615.	6.2	0
1777	Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Optical Materials, 0, , .	7.3	4
1778	Interface Engineering with Formamidinium Salts for Improving Ambient-Processed Inverted CsPbl ₃ Photovoltaic Performance: Intermediate- vs Post-Treatment. ACS Applied Materials & Interfaces, 2023, 15, 51350-51359.	8.0	0
1779	Recent studies on small molecular and polymeric <scp>holeâ€transporting</scp> materials for <scp>highâ€performance</scp> perovskite solar cells. Journal of the Chinese Chemical Society, 2023, 70, 2046-2063.	1.4	4
1780	Data-driven solution for supersonic aerodynamics analysis of Perovskite solar cells considering the velocity of sound and Mach number. Mechanics of Advanced Materials and Structures, 0, , 1-24.	2.6	0
1781	Mismatch of Quasi–Fermi Level Splitting and <i>V</i> _{oc} in Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	5
1782	Structural, electronic, optical, elastic, thermodynamic and thermal transport properties of Cs ₂ AgInCl ₆ and Cs ₂ AgSbCl ₆ double perovskite semiconductors using a first-principles study. Physical Chemistry Chemical Physics, 2023, 25, 31848-31868.	2.8	0
1783	Solution fabrication methods and optimization strategies of CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry C, 0, , .	5.5	0
1784	Impact of a Shortâ€Pulse Highâ€Intense Proton Irradiation on Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2024, 34, .	14.9	1
1785	Enhanced efficiency and stability of electron transport layer in perovskite tandem solar cells: Challenges and future perspectives. Solar Energy, 2023, 266, 112185.	6.1	0
1786	Advances in Hole Transport Materials for Layered Casting Solar Cells. Polymers, 2023, 15, 4443.	4.5	1
1787	Humidityâ€Induced Reversible Crystallization of Laserâ€Printing Perovskite Quantum Dots in Glass. Laser and Photonics Reviews, 2024, 18, .	8.7	1
1788	Effect of Chloride Incorporation on the Intermediate Phase and Film Morphology of Methylammonium Lead Halide Perovskites. ACS Omega, 2023, 8, 42711-42721.	3.5	0
1789	A-site cation engineering of cesium and MAPb0.5Sn0.5I3 perovskite: the properties and optoelectronic performance analysis using DFT calculations. SN Applied Sciences, 2023, 5, .	2.9	0

#	Article	IF	CITATIONS
1790	A comprehensive study of mechanically stacked tandem photovoltaic devices: Materials selection and efficiency analysis using SCAPS. Energy Conversion and Management, 2024, 300, 117904.	9.2	0
1791	Chalcogenide Perovskite, An Emerging Photovoltaic Material: Current Status and Future Perspectives. ChemistrySelect, 2023, 8, .	1.5	1
1792	Improvement of the performance of carbon based all-inorganic perovskite solar cells by using ammonium acetate modified rutile TiO2 nanorods array as the electron transport layer. Surfaces and Interfaces, 2023, 43, 103563.	3.0	0
1793	Auxiliary Buriedâ€Interface Passivation Toward Stable and Lowâ€Recombinationâ€Loss Perovskite Photovoltaics. Small Science, 0, , .	9.9	0
1794	Molecular Cooperation of Ionâ€Free Ternary Complexes Enhances Efficiency and Stability of Perovskite Solar Cells. Small Science, 0, , .	9.9	0
1795	Achieving a high open-circuit voltage of 1.339 V in 1.77 eV wide-bandgap perovskite solar cells <i>via</i> self-assembled monolayers. Energy and Environmental Science, 2024, 17, 202-209.	30.8	5
1796	Interfacial Modulation through Mixedâ€Dimensional Heterostructures for Efficient and Hole Conductorâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2024, 34, .	14.9	1
1797	Spiro [Fluorene-9, 9′- Xanthene]-based Hole Shuttle Materials for Effective Defect Passivation in Perovskite Solar Cells. Journal of Materials Chemistry A, 0, , .	10.3	0
1798	Dimensional Engineering of 2D/3D Perovskite Halides for Efficient and Stable Solar Cells. Indian Institute of Metals Series, 2024, , 431-456.	0.3	0
1799	Synthesis and structure-dependent optical properties of two new organic–inorganic hybrid antimony(<scp>iii</scp>) chlorides. Dalton Transactions, 0, , .	3.3	0
1800	ï€-ï€ stacking constructing efficient charge channels for perovskite photovoltaics. Science Bulletin, 2023, , .	9.0	0
1801	Tailored Succinic Acidâ€Derived Molecular Structures toward 25.41%â€Efficiency and Stable Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	1
1803	Poly(3â€hexylthiophene)/perovskite Heterointerface by Spinodal Decomposition Enabling Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	0
1804	Functionalâ€Groupâ€Induced Single Quantum Well Dion–Jacobson 2D Perovskite for Efficient and Stable Inverted Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	3
1805	Highâ€Throughput Deposition of Recyclable SnO ₂ Electrodes toward Efficient Perovskite Solar Cells. Small, 0, , .	10.0	0
1806	A review on conventional perovskite solar cells with organic dopant-free hole transport materials: roles of chemical structure and interfacial materials in efficient devices. Journal of Materials Chemistry C, 0, , .	5.5	0
1807	A Homopolymer of Xanthenoxantheneâ€Based Polycyclic Heteroaromatic for Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 2024, 136, .	2.0	0
1808	A Homopolymer of Xanthenoxantheneâ€Based Polycyclic Heteroaromatic for Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0

#	Article	IF	CITATIONS
1809	A Chelatingâ€Agentâ€Passivated Electron Transport Layer for Efficient Perovskite Solar Cells with Enhanced Reproducibility. Advanced Functional Materials, 0, , .	14.9	0
1810	Enhanced Performances of Photodetectors by Reducing Light Reflection Based on Two-Dimensional CsPbBr ₃ Composite Structures. ACS Applied Electronic Materials, 0, , .	4.3	0
1811	Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chloride. Chinese Chemical Letters, 2023, , 109425.	9.0	0
1812	Bilayer 2D-3D Perovskite Heterostructures for Efficient and Stable Solar Cells. ACS Nano, 2024, 18, 67-88.	14.6	0
1813	Fabrication of 1D/3D heterostructure perovskite layers by tetrabutylammonium tetrafluoroborate for high-performance devices. Organic Electronics, 2024, 125, 106984.	2.6	0
1814	Minireview and Perspectives of Liquid Crystals in Perovskite Solar Cells. Energy & Fuels, 0, , .	5.1	0
1815	Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy, 2024, 9, 172-183.	39.5	5
1816	Advancing perovskite solar cell commercialization: Bridging materials, vacuum deposition, and Al-assisted automation. , 2024, 3, 100103.		0
1817	A Comprehensive Review on Defects-Induced Voltage Losses and Strategies toward Highly Efficient and Stable Perovskite Solar Cells. Photonics, 2024, 11, 87.	2.0	0
1818	Selective reactivity-assisted sacrificial additive coating for surface passivation of wide bandgap perovskite solar cells with cesium tetrafluoroborate. Journal of Materials Chemistry A, 2024, 12, 4290-4298.	10.3	0
1819	Solution-Processed Organic LEDs and Perovskite LEDs. , 2024, , 239-282.		0
1820	Enhancing Efficiency and Intrinsic Stability of Largeâ€Area Bladeâ€Coated Wideâ€Bandgap Perovskite Solar Cells Through Strain Release. Advanced Functional Materials, 2024, 34, .	14.9	0
1821	Supramolecular Aza Crown Ether Modulator for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2024, 34, .	14.9	0
1822	Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells. Energy Reports, 2024, 11, 1171-1190.	5.1	1
1823	Revealing the impact of buried interfacial nanostructure in perovskite solar cells. Solar Energy, 2024, 268, 112330.	6.1	0
1824	Machine learning guided rapid discovery of narrow-bandgap inorganic halide perovskite materials. Applied Physics A: Materials Science and Processing, 2024, 130, .	2.3	0
1825	Device Physics and Design Principles of Mixedâ€Đimensional Heterojunction Perovskite Solar Cells. Small Science, 2024, 4, .	9.9	0
1826	Construction of perovskite homojunction for highly efficient perovskite solar cells by SCAPS-1D. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 301, 117196.	3.5	Ο

#	Article	IF	CITATIONS
1827	Bicyclopentadithiophene-Based Organic Semiconductor for Stable and High-Performance Perovskite Solar Cells Exceeding 22%. ACS Applied Materials & Interfaces, 2024, 16, 6162-6175.	8.0	0
1829	Cyanuric Acid-Functionalized Perovskite Nanocrystals toward Low Interface Impedance, High Environmental Stability, and Superior Electrochemiluminescence. ACS Applied Materials & Interfaces, 2024, 16, 7531-7542.	8.0	0
1830	Review of flexible perovskite solar cells for indoor and outdoor applications. Materials for Renewable and Sustainable Energy, 2024, 13, 155-179.	3.6	0
1831	Enhancing electron extraction and transport in inorganic perovskite solar cells via additional built-in potential of SnO2-BiFeO3 nano-heterostructure. Chemical Engineering Science, 2024, 288, 119839.	3.8	0
1832	Buried Interfaceâ€The Key Issues for High Performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 0, , .	14.9	0
1833	The impact of moisture on the stability and degradation of perovskites in solar cells. Materials Advances, 2024, 5, 2200-2217.	5.4	0
1834	Enhanced Efficiency and Stability of Inverted CsPbI ₂ Br Perovskite Solar Cells via Fluorinated Organic Ammonium Salt Surface Passivation. Langmuir, 0, , .	3.5	0
1835	Benzoyl Sulfonyl Molecules for Bilateral Passivation and Crystalline Regulation at Buried Interfaces toward Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 0, , .	14.9	0
1836	Recent Advances in Poly(3â€hexylthiophene) and Its Applications in Perovskite Solar Cells. Energy Technology, 2024, 12, .	3.8	0
1837	Enhancing the crystallinity and stability of perovskite solar cells with 4-tert-butylpyridine induction for efficiency exceeding 24%. Journal of Energy Chemistry, 2024, 93, 1-7.	12.9	0
1838	Indolineâ€Based Dopantâ€Free Hole Transporting Material with Edgeâ€on Orientation for High Performance Perovskite Solar Cells. Solar Rrl, 2024, 8, .	5.8	0
1839	Improve the Charge Carrier Transporting in Twoâ€Dimensional Ruddlesden–Popper Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	0
1840	A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Advances, 2024, 14, 5085-5131.	3.6	1
1841	Calibration for Space Solar Cells: Progress, Prospects, and Challenges. Solar Rrl, 2024, 8, .	5.8	0
1842	Modulation of the interfacial contact via self-assembled molecule interlayer towards highly efficient and stable poly(3-hexylthiophene)-based perovskite solar cells. Materials Today Energy, 2024, 41, 101523.	4.7	0
1843	Tin oxide as an electron transport layer in perovskite solar cells: Advances and challenges. Solar Energy, 2024, 270, 112382.	6.1	0
1844	Improving Carrier Transport Behavior in a Bilayer ETL for Enhanced Efficiency of Perovskite Solar Cells: An Investigation. Energies, 2024, 17, 871.	3.1	0
1845	Effect of Single-Crystal TiO ₂ /Perovskite Band Alignment on the Kinetics of Electron Extraction. Journal of Physical Chemistry Letters, 2024, 15, 2057-2065.	4.6	Ο

#	Article	IF	CITATIONS
1846	Functionalized Polymer-Capped SnO2 Nanoparticle Electron Transport Layer for Efficient Perovskite Solar Cells. Korean Journal of Chemical Engineering, 0, , .	2.7	0
1847	Management of an intermediate phase <i>via</i> a multifunctional dietary supplement for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2024, 12, 8175-8185.	10.3	0
1848	Bottom-up multi-interface modification boosts the performance of carbon-based HTL-free all-inorganic CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2024, 484, 149626.	12.7	0
1849	Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells. National Science Review, 2024, 11, .	9.5	0
1850	Aza[5]heliceneâ€Derived Semiconducting Polymers for Improved Performance in Perovskite Solar Cells: Exploring Energetic and Morphological Influences. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1851	Aza[5]heliceneâ€Derived Semiconducting Polymers for Improved Performance in Perovskite Solar Cells: Exploring Energetic and Morphological Influences. Angewandte Chemie, 2024, 136, .	2.0	0
1852	Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. Nanomaterials, 2024, 14, 391.	4.1	0
1853	Enhanced efficiency and stability of inorganic CsPbBr3 perovskite solar cells based on carbon counter electrode by applying PbTiO3-coated TiO2 nanorod films as scaffold layers. Materials Research Bulletin, 2024, 175, 112752.	5.2	0
1854	Reduced recombination via tunable surface fields in perovskite thin films. Nature Energy, 2024, 9, 457-466.	39.5	0
1855	Metal Halide Perovskite Solar Modules: Manufacturing and Performance. , 2024, , 309-323.		0
1856	Chronological Evolution of Stability in Hybrid Halide Perovskite Solar Cells. Solar Rrl, 2024, 8, .	5.8	0
1857	Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime. Nature Communications, 2024, 15, .	12.8	0
1858	Nonâ€Equivalent Donorâ€Acceptor Type Polymers as Dopantâ€Free Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 0, , .	6.8	0
1859	Passivating defects in SnO2 electron transport layer through SnF2 incorporation in perovskite solar cells. Materials Today Communications, 2024, 38, 108552.	1.9	0
1860	Exploring anomalous nanofluidic transport at the interfaces. , 2024, 3, .		0
1862	The Pressureâ€Induced Structural Stability, Mechanical, and Optoelectronic Properties of Pb ₂ ScTaO ₆ Perovskite: a Density Functional Theory Study. Physica Status Solidi (B): Basic Research, 0, , .	1.5	0
1863	Inhibition of ion diffusion/migration in perovskite p–n homojunction by polyetheramine insert layer to enhance stability of perovskite solar cells with p–n homojunction structure. Nanoscale, 2024, 16, 6669-6679.	5.6	0
1864	Analysis of Maximum Power Point Tracking Methods for the Perovskite Solar Cells. , 2023, , .		0

#	Article	IF	CITATIONS
1865	Recent advancements in polymer-based photodetector: A comprehensive review. Sensors and Actuators A: Physical, 2024, 370, 115267.	4.1	0
1866	The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nature Communications, 2024, 15, .	12.8	0
1867	Beyond lead halide perovskites: Crystal structure, bandgaps, photovoltaic properties and future stance of lead-free halide double perovskites. Nano Energy, 2024, 125, 109523.	16.0	0