Operational characteristics of metal hydride energy sto

Energy Conversion and Management 187, 176-190 DOI: 10.1016/j.enconman.2019.03.019

Citation Report

#	Article	IF	CITATIONS
1	Technoâ€economic analysis of metal hydrideâ€based energy storage system in microgrid. Energy Storage, 2019, 1, e62.	2.3	10
2	Design and analysis of fuel cell and photovoltaic based 110 V DC microgrid using hydrogen energy storage. Energy Storage, 2019, 1, e60.	2.3	15
3	Control of superconducting magnetic energy storage systems in gridâ€connected microgrids via memetic salp swarm algorithm: An optimal passive fractionalâ€order PID approach. IET Generation, Transmission and Distribution, 2019, 13, 5511-5522.	1.4	13
4	Metal hydride thermal management using phase change material in the context of a standalone solar-hydrogen system. Energy Conversion and Management, 2020, 224, 113352.	4.4	31
5	Analysis of metal hydride storage on the basis of thermophysical properties and its application in microgrid. Energy Conversion and Management, 2020, 222, 113217.	4.4	21
6	Renewable sources based DC microgrid using hydrogen energy storage: Modelling and experimental analysis. Sustainable Energy Technologies and Assessments, 2020, 42, 100840.	1.7	23
7	Effect of hysteresis band control strategy on energy efficiency and durability of solar-hydrogen storage based microgrid in partial cloudy condition. Journal of Energy Storage, 2020, 32, 101936.	3.9	20
8	Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. International Journal of Hydrogen Energy, 2020, 45, 20693-20708.	3.8	129
9	Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system. Energy Conversion and Management, 2020, 213, 112864.	4.4	27
10	Design and Economic Evaluation of Low Voltage DC Microgrid based on Hydrogen Storage. International Journal of Green Energy, 2021, 18, 66-79.	2.1	5
11	Droop based control strategy for balancing the level of hydrogen storage in direct current microgrid application. Journal of Energy Storage, 2021, 33, 102106.	3.9	11
12	Experimental investigation on absorption and desorption characteristics of <scp> La _{0.9} Ce _{0.1} Ni ₅ </scp> for hydrogen storage application. International Journal of Energy Research, 2021, 45, 2870-2881.	2.2	3
13	Numerical simulation of metal hydride based thermal energy storage system for concentrating solar power plants. Renewable Energy, 2021, 172, 1013-1020.	4.3	13
14	Energy management strategy for integration of fuel cell-electrolyzer technologies in microgrid. International Journal of Hydrogen Energy, 2021, 46, 33738-33755.	3.8	21
15	Thermal design of a hydrogen storage system using La(Ce)Ni5. International Journal of Hydrogen Energy, 2020, 45, 8742-8749.	3.8	5
16	Thermal management of metal hydride hydrogen storage using phase change materials for standalone solar hydrogen systems: An energy/exergy investigation. International Journal of Hydrogen Energy, 2022, 47, 1735-1751.	3.8	29
17	A 2-D reduced dynamic model for a shell-and-tube based metal hydride reactor for geometry and operation condition optimal design. Applied Thermal Engineering, 2022, 206, 118125.	3.0	2
18	Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport. Renewable Energy, 2022, 187, 1118-1129.	4.3	7

#	Article	IF	CITATIONS
19	Integration of a Green Hydrogen Subsystem in a Photovoltaic-Battery Nanogrid System. , 2022, , .		3
20	A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers. Energies, 2023, 16, 341.	1.6	4
21	A systematic review on green hydrogen for off-grid communities –technologies, advantages, and limitations. International Journal of Hydrogen Energy, 2023, 48, 19751-19771.	3.8	14
23	Preparation of Fe/Al alloy with variations in composition and its application as hydrogen storage in metal hydride systems. AIP Conference Proceedings, 2023, , .	0.3	Ο

CITATION REPORT