Sulfur Chemistry in Polymer and Materials Science

Macromolecular Rapid Communications 40, e1800650

DOI: 10.1002/marc.201800650

Citation Report

#	Article	IF	CITATIONS
1	Adaptable and Reprogrammable Surfaces. Advanced Materials, 2019, 31, e1902665.	11.1	23
2	Application of metal oxide semiconductors in light-driven organic transformations. Catalysis Science and Technology, 2019, 9, 5186-5232.	2.1	143
3	Recent Progress on COS-derived Polymers. Chinese Journal of Polymer Science (English Edition), 2019, 37, 951-958.	2.0	26
4	Reviewâ€"Recent Advances in Direct and Indirect Methods for Sensing Carbonyl Compounds Aldehydes in Environment and Foodstuffs. Journal of the Electrochemical Society, 2019, 166, B1543-B1551.	1.3	10
5	Catalyst-Free Construction of Versatile and Functional CS ₂ -Based Polythioureas: Characteristics from Self-Healing to Heavy Metal Absorption. Macromolecules, 2019, 52, 8596-8603.	2.2	31
6	Extremely rapid postfunctionalization of maleate and fumarate main chain polyesters in the presence of TBD. Polymer, 2019, 182, 121844.	1.8	12
7	Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs). Polymer Chemistry, 2019, 10, 4078-4105.	1.9	193
8	Supramolecular Assembly of a Molecularly Engineered Protein and Polymer. Chemistry - A European Journal, 2019, 25, 10464-10471.	1.7	8
9	Synthesis and Applications of Polymers Made by Inverse Vulcanization. Topics in Current Chemistry, 2019, 377, 16.	3.0	93
10	Glutathione Triggered Cascade Degradation of an Amphiphilic Poly(disulfide)–Drug Conjugate and Targeted Release. Bioconjugate Chemistry, 2019, 30, 101-110.	1.8	27
11	Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie, 2020, 132, 10083-10088.	1.6	8
12	Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2020, 59, 9997-10002.	7.2	57
13	The unrevealed potential of elemental sulfur for the synthesis of high sulfur content bio-based aliphatic polyesters. Polymer Chemistry, 2020, 11, 241-248.	1.9	18
14	Hyperbranched polydisulfides. Polymer Chemistry, 2020, 11, 990-1000.	1.9	15
15	Histamine, an effective initiator for the synthesis of polysulfides. Reaction Chemistry and Engineering, 2020, 5, 258-262.	1.9	2
16	Disulfide chemistry in responsive aggregation of amphiphilic systems. Soft Matter, 2020, 16, 11-26.	1.2	32
17	Chemoselective Coupling of CS ₂ and Epoxides for Producing Poly(thioether)s and COS via Oxygen/Sulfur Atom Exchange. Macromolecules, 2020, 53, 233-239.	2.2	28
18	Preferential production of microalgal hydrocarbon pentathiolates by the photoinitiated thiol-ene reaction of botryococcene. Algal Research, 2020, 46, 101724.	2.4	O

#	Article	IF	Citations
19	Economic Sulfur Conversion to Functional Polythioamides through Catalyst-Free Multicomponent Polymerizations of Sulfur, Acids, and Amines. Journal of the American Chemical Society, 2020, 142, 978-986.	6.6	121
20	Sequential crosslinking for mechanical property development in high sulfur content composites. Journal of Polymer Science, 2020, 58, 2943-2950.	2.0	13
21	1,3,5-Trithianes and sulfur monochloride/sodium sulfide: an alternative route to 3,5-disubstituted 1,2,4-trithiolanes. Journal of Sulfur Chemistry, 2020, 41, 635-644.	1.0	2
22	Facile route to an organosulfur composite from biomass-derived guaiacol and waste sulfur. Journal of Materials Chemistry A, 2020, 8, 20318-20322.	5.2	18
23	Synthesis of Sulfur-rich Polymers: Copolymerization of Cyclohexene Sulfide and Carbon Disulfide Using Chromium Complexes. Macromolecules, 2020, 53, 8837-8846.	2.2	27
24	Density-Adjustable Bio-Based Polysulfide Composite Prepared by Inverse Vulcanization and Bio-Based Fillers. Polymers, 2020, 12, 2127.	2.0	8
25	The single-step synthesis of thiol-functionalized phosphazene-based polymeric microspheres as drug carrier. Polymer-Plastics Technology and Materials, 2020, 59, 1944-1955.	0.6	8
26	Katalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. Angewandte Chemie, 2020, 132, 19966-19990.	1.6	7
27	Nucleophilic Thiol-yne reaction in Macromolecular Engineering: From synthesis to applications. European Polymer Journal, 2020, 137, 109926.	2.6	38
28	Bifunctional Peptide–Polymer Conjugate-Based Fibers via a One-Pot Tandem Disulfide Reduction Coupled to a Thio-Bromo "Click―Reaction. ACS Omega, 2020, 5, 19020-19028.	1.6	4
29	A role for terpenoid cyclization in the atom economical polymerization of terpenoids with sulfur to yield durable composites. Materials Advances, 2020, 1, 1665-1674.	2.6	24
30	Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS Applied Materials & Description (1988).	4.0	41
31	Intramolecularly Cooperative Catalysis for Copolymerization of Cyclic Thioanhydrides and Epoxides: A Dual Activation Strategy to Well-Defined Polythioesters. ACS Catalysis, 2020, 10, 6635-6644.	5.5	41
32	Photopatternable, Branched Polymer Hydrogels Based on Linear Macromonomers for 3D Cell Culture Applications. ACS Macro Letters, 2020, 9, 882-888.	2.3	19
33	Flavin/I ₂ â€Catalyzed Aerobic Oxidative Câ€"H Sulfenylation of Arylâ€Fused Cyclic Amines. European Journal of Organic Chemistry, 2020, 2020, 3889-3895.	1.2	11
34	Making the Best of Polymers with Sulfur–Nitrogen Bonds: From Sources to Innovative Materials. Macromolecular Rapid Communications, 2020, 41, e2000181.	2.0	17
35	Visible light photocatalytic deterioration of polystyrene plastic using supported BiOCl nanoflower and nanodisk. European Polymer Journal, 2020, 134, 109793.	2.6	34
36	Flavin/I2 catalyzed aerobic oxidative C H sulfenylation of anilines. Tetrahedron Letters, 2020, 61, 152141.	0.7	6

3

#	ARTICLE	IF	Citations
37	Catalyst-Free Click Polymerization of Thiol and Activated Internal Alkynes: A Facile Strategy toward Functional Poly(\hat{l}^2 -thioacrylate)s. Macromolecules, 2020, 53, 4932-4941.	2.2	26
38	Non-Isocyanate and Catalyst-Free Synthesis of a Recyclable Polythiourethane with Cyclic Structure. ACS Sustainable Chemistry and Engineering, 2020, 8, 5693-5703.	3.2	27
39	Geminal Dimethyl Substitution Enables Controlled Polymerization of Penicillamine-Derived \hat{l}^2 -Thiolactones and Reversed Depolymerization. CheM, 2020, 6, 1831-1843.	5.8	116
40	Functional Poly(ester- <i>alt</i> -sulfide)s Synthesized by Organo-Catalyzed Anionic Ring-Opening Alternating Copolymerization of Oxiranes and Î ³ -Thiobutyrolactones. Macromolecules, 2020, 53, 5188-5198.	2.2	22
41	Polymersome Formation by Amphiphilic Polyglycerol- <i>b</i> -polydisulfide- <i>b</i> -polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules, 2020, 21, 3353-3363.	2.6	34
42	Conductive Sulfur-Rich Copolymer Composites as Lithium–Sulfur Battery Electrodes with Fast Kinetics and a High Cycle Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 10389-10401.	3.2	27
43	Introduction of Mercaptoethyl at Sorafenib Pyridine-2-Amide Motif as a Potentially Effective Chain to Further get Sorafenib-PEG-DGL. Molecules, 2020, 25, 573.	1.7	0
44	Bio-Based Aromatic Copolyesters: Influence of Chemical Microstructures on Thermal and Crystalline Properties. Polymers, 2020, 12, 829.	2.0	4
45	Atomic and electronic structure of solids of Ge ₂ Br ₂ PN, Ge ₂ I ₂ PN, Sn ₂ Cl ₂ PN, Sn ₂ PN inorganic double helices: a first principles study. RSC Advances, 2020, 10, 14714-14719.	1.7	4
46	Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chemical Science, 2021, 12, 1101-1108.	3.7	16
47	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	11.1	75
48	Silsesquioxane-cored miktoarm copolymer amphiphiles for fabrication of oxidation-responsive silica-encapsulated polysulfide microspheres. European Polymer Journal, 2021, 143, 110196.	2.6	2
49	Phenolic compounds to amplify the effect of sulfur on Bitumen's thermomechanical properties. Fuel, 2021, 287, 119532.	3.4	11
50	Precisely Alternating Copolymerization of Episulfides and Isothiocyanates: A Practical Route to Construct Sulfur-Rich Polymers. ACS Macro Letters, 2021, 10, 135-140.	2.3	22
51	Efficient C3-alkylsulfenylation of indoles under mild conditions using Lewis acid-activated 8-quinolinethiosulfonates. Tetrahedron Letters, 2021, 65, 152748.	0.7	1
52	Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. Journal of Controlled Release, 2021, 330, 470-482.	4.8	90
53	Enabling Superior Thermo–Oxidative Resistance Elastomers Based on a Structure Recovery Strategy. Macromolecular Rapid Communications, 2021, 42, e2000762.	2.0	6
56	Oneâ€Step Modification of Diacidâ€Functional Polythioethers via Simultaneous Passerini and Esterification Reactions. Macromolecular Chemistry and Physics, 2021, 222, 2100038.	1.1	3

#	Article	lF	Citations
61	<i>S</i> \alpha\$∈Carboxyanhydrides: Ultrafast and Selective Ringâ€Opening Polymerizations Towards Wellâ€defined Functionalized Polythioesters. Angewandte Chemie, 2021, 133, 10893-10900.	1.6	13
62	<i>S</i> à€Carboxyanhydrides: Ultrafast and Selective Ringâ€Opening Polymerizations Towards Wellâ€defined Functionalized Polythioesters. Angewandte Chemie - International Edition, 2021, 60, 10798-10805.	7.2	39
63	Acyclic Diene Metathesis (ADMET) Polymerization of 2,2,6,6â€Tetramethylpiperidineâ€1â€sulfanyl (TEMPS) Dimers. Macromolecular Rapid Communications, 2021, 42, e2100118.	2.0	5
64	Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. Journal of Organic Chemistry, 2021, 86, 5908-5921.	1.7	5
65	Dynamic Ring-chain Equilibrium of Nucleophilic Thiol-yne "Click―Polyaddition for Recyclable Poly(dithioacetal)s. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1146-1154.	2.0	17
66	Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance. Polymer, 2021, 224, 123757.	1.8	19
67	Alternating copolymerization of bio-based N-acetylhomocysteine thiolactone and epoxides. European Polymer Journal, 2021, 153, 110490.	2.6	9
68	Exploring the advantages of oxygen-tolerant thiol-ene polymerization over conventional acrylate free radical photopolymerization processes for pressure-sensitive adhesives. Polymer Journal, 2021, 53, 1195-1204.	1.3	11
69	Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapiesâ€"Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics, 2021, 13, 854.	2.0	16
70	Ni(II) Precatalysts Enable Thioetherification of (Hetero)Aryl Halides and Tosylates and Tandem Câ^'S/Câ^'N Couplings. Chemistry - A European Journal, 2021, 27, 12320-12326.	1.7	24
71	Self-Polymerization Promoting Monomers: In Situ Transformation of Disulfide-Linked Benzoxazines into the Thiazolidine Structure. Biomacromolecules, 2021, 22, 4408-4421.	2.6	9
72	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Alâ^'S batteries. Nature Communications, 2021, 12, 5714.	5.8	80
73	Reduction–responsive sulfur–monoterpene polysulfides in microfiber for adsorption of aqueous heavy metal. Journal of Water Process Engineering, 2021, 43, 102247.	2.6	2
74	Unprecedentedly high active organocatalysts for the copolymerization of carbonyl sulfide and propylene oxide: steric hindrance effect of tertiary amines. Polymer Chemistry, 2021, 12, 5283-5288.	1.9	7
75	Elemental sulphur in the synthesis of sulphur-containing polymers: reaction mechanisms and green prospects. RSC Advances, 2021, 11, 9008-9020.	1.7	28
76	Elemental Sulfur Mediated Novel Multicomponent Redox Polycondensation for the Synthesis of Alternating Copolymers Based on 2,4‶hiophene/Arene Repeating Units. Macromolecular Rapid Communications, 2021, 42, e2000695.	2.0	4
77	Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds. Polymer Chemistry, 2021, 12, 2760-2771.	1.9	51
78	Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. Angewandte Chemie - International Edition, 2020, 59, 19796-19819.	7.2	64

#	Article	IF	CITATIONS
79	Alternating copolymerization of \hat{l}^3 -selenobutyrolactone with episulfides for high refractive index selenium-containing polythioesters. European Polymer Journal, 2020, 133, 109776.	2.6	15
80	The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polymer Chemistry, 2021, 12, 6650-6666.	1.9	32
81	The versatile, functional polyether, polyepichlorohydrin: History, synthesis, and applications. Journal of Polymer Science, 2021, 59, 2704-2718.	2.0	20
82	General Construction of Thioamides under Mild Conditions: A Stepwise Proton Transfer Process Mediated by EDTA. European Journal of Organic Chemistry, 2021, 2021, 6015.	1.2	4
83	The synthesis of <i>N</i> , <i>N</i> ′-disulfanediyl-bis(<i>N</i> ′-((<i>E</i>)-benzylidene)acetohydrazide) from (<i>E</i>)- <i>N</i> ′-benzylideneacetohydrazide and S ₈ . RSC Advances, 2020, 10, 41041-41046.	1.7	3
84	Oneâ€pot, oneâ€step, and selective terpolymerization of ethylene oxide, propylene oxide, and <scp>COS</scp> to copoly(thioether)s with tunable thermal properties. Journal of Polymer Science, 2022, 60, 2262-2268.	2.0	4
85	Functional Hyperbranched Polythioamides Synthesized from Catalystâ€free Multicomponent Polymerization of Elemental Sulfur ^{â€} . Chinese Journal of Chemistry, 2022, 40, 725-733.	2.6	10
86	Polymerization of Aniline Derivatives to Yield Poly[<i>N</i> , <i>N</i> -(phenylamino)disulfides] as Polymeric Auxochromes. Macromolecules, 2021, 54, 10405-10414.	2.2	2
87	Ultrafast synthesis of phosphorus-containing polythioethers in the presence of TBD. European Polymer Journal, 2022, 162, 110931.	2.6	13
88	Recent progress of sulphur-containing high-efficiency organic light-emitting diodes (OLEDs). Journal of Materials Chemistry C, 2022, 10, 4497-4520.	2.7	35
89	Main Group Complexes in Polymer Synthesis. , 2021, , .		0
90	Green synthesis of various saturated S-heterocyclic scaffolds: an update. ChemistrySelect, 2023, 8, 3017-3041.	0.7	1
91	Thermosets from renewable sources. , 2022, , 679-718.		0
92	Synthesis and modification of polymers by thiol-phenylsulfone substitution reaction. Chemical Communications, 2022, 58, 2148-2151.	2.2	3
93	Phenolic Compounds to Hinder Sulfur Crystallization in Sulfur-Extended Bitumen. Resources, Conservation and Recycling, 2022, 180, 106184.	5.3	4
94	Intermolecular Photocatalytic Chemoâ€, Stereo†and Regioselective Thiol†yneâ€ene Coupling Reaction. Angewandte Chemie, 0, , .	1.6	1
95	Intermolecular Photocatalytic Chemoâ€, Stereo†and Regioselective Thiol†"Yneâ€" Ene Coupling Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
96	Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
97	Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromolecular Bioscience, 2022, , 2100453.	2.1	2
98	Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
99	One-Step Synthesis of Sequence-Controlled Polyester- <i>block</i> Poly(ester- <i>alt</i> -thioester) by Chemoselective Multicomponent Polymerization. Macromolecules, 2022, 55, 1153-1164.	2,2	29
100	Polymerization with the Cu(<scp>i</scp>)-catalyzed Doyle–Kirmse reaction of bis(allyl sulfides) and bis(α-diazoesters). Polymer Chemistry, 2022, 13, 2123-2131.	1.9	10
101	One-pot synthesis and versatile applications of recyclable aminal-linked dynamic framework. New Journal of Chemistry, 2022, 46, 8847-8854.	1.4	1
102	Spatial and Temporal Control of Photomediated Disulfide–Ene and Thiol–Ene Chemistries for Two-Stage Polymerizations. Macromolecules, 2022, 55, 1811-1821.	2.2	7
103	Lithium Saltâ€Induced In Situ Polymerizations Enable Double Network Polymer Electrolytes. Macromolecular Rapid Communications, 2022, 43, e2100853.	2.0	1
104	Tacticity Control of Cyclic Poly(3â€Thiobutyrate) Prepared by Ringâ€Opening Polymerization of Racemic βâ€Thiobutyrolactone. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
105	Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules, 2022, 55, 2777-2786.	2.2	17
106	Tacticity Control of Cyclic Poly(3â€Thiobutyrate) Prepared by Ringâ€Opening Polymerization of Racemic βâ€Thiobutyrolactone. Angewandte Chemie, 2022, 134, .	1.6	4
107	Ringâ€opening polymerization of 1,4â€oxathianâ€2â€one and its copolymerization with δâ€valerolactone. Journa of Polymer Science, 2022, 60, 1976-1987.	l 2.0	2
108	Nucleophilic Ring-Opening of Thiolactones: A Facile Method for Sulfhydrylization of a Carbon Nanotube-Based Cathode toward High-Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 5005-5014.	3.2	10
109	L-cysteine as sustainable and effective sulfur source in the synthesis of diaryl sulfides and heteroarenethiols. Arabian Journal of Chemistry, 2022, 15, 103896.	2.3	2
110	Imine-based multicomponent polymerization: Concepts, structural diversity and applications. Progress in Polymer Science, 2022, 128, 101528.	11.8	12
111	Thiol-reacting toluidine blue derivatives: Synthesis, photophysical properties and covalent conjugation with human serum albumin. Dyes and Pigments, 2022, 201, 110225.	2.0	4
112	Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. Journal of Materials Science and Technology, 2022, 124, 1-13.	5.6	29
113	Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules, 2022, 23, 1-19.	2.6	40
114	Sulfur in Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32

#	Article	IF	Citations
115	Sulfur-bridged chromophores for photofunctional materials: using sulfur oxidation state to tune electronic and structural properties. Chemical Science, 2022, 13, 5447-5464.	3.7	16
116	The copolymerization of SO ₂ with propylene oxide mediated by organic ammonium salts: a comprehensive study of the main-chain structure, living polymerization character and regioselectivity. Polymer Chemistry, 2022, 13, 3136-3143.	1.9	3
117	Facile construction of functional poly(monothiocarbonate) copolymers under mild operating conditions. Polymer Chemistry, 2022, 13, 3076-3090.	1.9	7
118	Thiocarbonyl chemistry in polymer science. Polymer Chemistry, 2022, 13, 2880-2901.	1.9	25
119	Sulfur in Dynamic Covalent Chemistry. Angewandte Chemie, 2022, 134, .	1.6	2
120	Activated Internal <scp>Alkyneâ€Based</scp> Polymerization ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2001-2013.	2.6	9
121	Ultrafast synthesis of dialkyne-functionalized polythioether and post-polymerization modification via click chemistry. Polymer, 2022, 253, 124989.	1.8	7
122	Strategies for the synthesis of sulfoximine-containing heterocycles. Advances in Heterocyclic Chemistry, 2022, , 61-158.	0.9	2
123	Thiolated cationic poly(aspartamides) with side group dependent gelation properties for the delivery of anionic polyelectrolytes. Journal of Materials Chemistry B, 2022, 10, 5946-5957.	2.9	3
124	Getting the Terms Right: Green, Sustainable, or Circular Chemistry?. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	15
125	Terahertz-Wave Absorption Gas Sensing for Dimethyl Sulfoxide. Applied Sciences (Switzerland), 2022, 12, 5729.	1.3	3
126	Transition metal catalysed direct sulfanylation of unreactive C–H bonds: an overview of the last two decades. Organic and Biomolecular Chemistry, 2022, 20, 6072-6177.	1.5	11
127	Episulfide Anionic Ring-Opening Polymerization Initiated by Alcohols and Primary Amines in the Presence of \hat{I}^3 -Thiolactones. Macromolecules, 2022, 55, 5430-5440.	2.2	6
128	Ultraviolet In Situ Polymerized Binders with Polysulfideâ€Trapping Properties for Longâ€Cycleâ€Life Lithium–Sulfur Batteries. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
129	Polythioesters Prepared by Ringâ€Opening Polymerization of Cyclic Thioesters and Related Monomers. Chemistry - an Asian Journal, 2022, 17, .	1.7	22
130	Synthesis of lanthanide tag and experimental studies on paramagnetically induced residual dipolar couplings. BMC Chemistry, 2022, 16 , .	1.6	1
131	Room-Temperature Grafting from Synthesis of Protein–Polydisulfide Conjugates via Aggregation-Induced Polymerization. Journal of the American Chemical Society, 2022, 144, 15709-15717.	6.6	15
132	Correlation between the NMR Chemical Shifts and Thiolate Protonation Constants of Cysteamine, Homocysteine, and Penicillamine. Journal of Spectroscopy, 2022, 2022, 1-8.	0.6	0

#	Article	IF	CITATIONS
133	Synthesis of insoluble sulfur and development of green technology based on Aspen Plus simulation. Green Processing and Synthesis, 2022, 11, 886-894.	1.3	1
134	Chemoselective ring-opening copolymerization of five-membered cyclic carbonates and carbonyl sulfide toward poly(thioether)s. Polymer Chemistry, 2022, 13, 5397-5403.	1.9	6
135	Recent advances in the ring-opening polymerization of sulfur-containing monomers. Polymer Chemistry, 2022, 13, 4858-4878.	1.9	25
136	Thiolactone chemistry, a versatile platform for macromolecular engineering. Polymer Chemistry, 2022, 13, 4592-4614.	1.9	10
137	Metal-free thioesterification of $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes with thiols. Organic Chemistry Frontiers, 2022, 9, 4846-4853.	2.3	3
138	Functional Liquid Crystal Elastomers Based on Dynamic Covalent Chemistry. Chemistry - A European Journal, 2022, 28, .	1.7	18
139	Straightforward synthesis of aliphatic polydithiocarbonates from commercially available starting materials. Polymer Chemistry, 2022, 13, 5965-5973.	1.9	0
140	Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases, 2022, 17, 060801.	0.6	1
141	BrÃ, nsted acid catalysis opens a new route to polythiolesters <i>via</i> the direct condensation of thiolactic acid to thiolactide. Green Chemistry, 2022, 24, 9709-9720.	4.6	6
142	A facile approach towards high-performance poly(thioether-thioester)s with full recyclability. Science China Chemistry, 2023, 66, 251-258.	4.2	14
143	Coordination of Noble Metals in Poly(vinyl mercaptoethanol) Particles Prepared by Precipitation/Emulsion Polymerization. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	2
144	Sustainable Polythioesters via Thio(no)lactones: Monomer Synthesis, Ringâ€Opening Polymerization, Endâ€ofâ€Life Considerations, and Industrial Perspectives. ChemSusChem, 2023, 16, .	3 . 6	6
145	Engineering cohesion and adhesion through dynamic bonds for advanced adhesive materials. Canadian Journal of Chemical Engineering, 2023, 101, 4941-4954.	0.9	5
146	Metal-free synthesis of unsymmetric bis(thioesters). Chemical Communications, 2023, 59, 956-959.	2.2	1
147	Sustainable Composites from Waste Sulfur, Terpenoids, and Pozzolan Cements. Journal of Composites Science, 2023, 7, 35.	1.4	7
148	Room temperature, simple and efficient synthesis and functionalization of aromatic poly(arylene) Tj ETQq1 1	0.784314 rgB 2.6	ST /Overlock 4
149	Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea. Science China Chemistry, 0 , , .	4.2	1
150	Durable composites by vulcanization of oleyl-esterified lignin. RSC Advances, 2023, 13, 3234-3240.	1.7	7

#	Article	IF	CITATIONS
151	Detoxification of bisphenol A <i>via</i> sulfur-mediated carbon–carbon σ-bond scission. , 2023, 1, 535-542.		4
152	Facile Access to CO ₂ â€Sourced Polythiocarbonate Dynamic Networks And Their Potential As Solidâ€State Electrolytes For Lithium Metal Batteries. ChemSusChem, 2023, 16, .	3.6	2
153	Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics. Chemical Reviews, 2023, 123, 4188-4236.	23.0	13
154	Synthesis of Cleavable Polymers via Oxidation of Thioether Moieties and Thiol Click Reactions: A Clickâ€Declick Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
155	Synthesis of Cleavable Polymers via Oxidation of Thioether Moieties and Thiol Click Reactions: A Clickâ€Declick Strategy. Angewandte Chemie, 2023, 135, .	1.6	0
156	Direct Radical Copolymerizations of Thioamides To Generate Vinyl Polymers with Degradable Thioether Bonds in the Backbones. Journal of the American Chemical Society, 2023, 145, 10948-10953.	6.6	15
163	Photo and acid dual degradable polymeric nanoparticles from an <i>o</i> -nitrobenzyl dithiol with thiol–ene click polymerization. Polymer Chemistry, 2023, 14, 3146-3150.	1.9	1
167	Green and Sustainable Natural Derived Polysulfides for a Broad Range of Applications. Green Chemistry, 0, , .	4.6	0
180	Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomaterials Science, 2023, 12, 8-56.	2.6	1
182	Catalytic asymmetric synthesis of sulfur-containing atropisomers by C-S bond formations. Science China Chemistry, 2023, 66, 3331-3346.	4.2	3