Evaluation of TGFBI corneal dystrophy and molecular d

Eye 33, 874-881

DOI: 10.1038/s41433-019-0346-x

Citation Report

#	Article	IF	CITATIONS
1	Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Scientific Reports, 2019, 9, 16385.	3.3	16
2	CRISPR Diagnosis and Therapeutics with Single Base Pair Precision. Trends in Molecular Medicine, 2020, 26, 337-350.	6.7	30
3	Identification of A Novel <i>TGFBI</i> Gene Mutation (p.Serine524Cystine) Associated with Late Onset Recurrent Epithelial Erosions and Bowman Layer Opacities. Ophthalmic Genetics, 2020, 41, 639-644.	1.2	0
4	Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Progress in Retinal and Eye Research, 2020, 77, 100843.	15.5	48
5	Corneal dystrophies. Nature Reviews Disease Primers, 2020, 6, 46.	30.5	24
6	Genotypic Homogeneity in Distinctive Transforming Growth Factor-Beta Induced (TGFBI) Protein Phenotypes. International Journal of Molecular Sciences, 2021, 22, 1230.	4.1	2
7	Evaluation of the Genetic Variation Spectrum Related to Corneal Dystrophy in a Large Cohort. Frontiers in Cell and Developmental Biology, 2021, 9, 632946.	3.7	4
8	Deterioration of Avellino corneal dystrophy in a Chinese family after LASIK. International Journal of Ophthalmology, 2021, 14, 795-799.	1.1	2
9	Molecular characteristics and spatial distribution of adult human corneal cell subtypes. Scientific Reports, 2021, 11, 16323.	3.3	33
10	Further evaluation of differential expression of keratoconus candidate genes in human corneas. PeerJ, 2020, 8, e9793.	2.0	16
11	Prevalence of granular corneal dystrophy type 2-related p.R124H variant in a South Korean population. Molecular Vision, 2021, 27, 283-287.	1.1	2
12	Recurrence and Visual Outcomes of Phototherapeutic Keratectomy in Lattice Corneal Dystrophy: A Cohort Study. Journal of Refractive Surgery, 2022, 38, 43-49.	2.3	2
13	Maltese Allelic Variants in Corneal Dystrophy Genes in a Worldwide Setting. Molecular Diagnosis and Therapy, 2022, 26, 529-540.	3.8	1
14	Corneal irregularity and visual function using anterior segment optical coherence tomography in TGFBI corneal dystrophy. Scientific Reports, 2022, 12, .	3.3	3
15	Corneal histomorphology and electron microscopic observation of R124L mutated corneal dystrophy in a relapsed pedigree. International Journal of Ophthalmology, 2022, 15, 1416-1422.	1.1	0
16	The observation of anterior segment in children with an R124L mutation corneal dystrophy by anterior segment optical coherence tomography and in vivo confocal microscopy. Frontiers in Medicine, $0,9,.$	2.6	0
17	Autophagy in the normal and diseased cornea. Experimental Eye Research, 2022, 225, 109274.	2.6	5
18	Clinical and Histopathologic Characteristics and Template of the TGFBI p.(His626Arg) Missense Variant Lattice Corneal Dystrophy. Cornea, 2023, 42, 1124-1132.	1.7	1

CITATION REPORT

#	Article	IF	CITATIONS
19	Variant Landscape of 15 Genes Involved in Corneal Dystrophies: Report of 30 Families and Comprehensive Analysis of the Literature. International Journal of Molecular Sciences, 2023, 24, 5012.	4.1	0
20	Release of frustration drives corneal amyloid disaggregation by brain chaperone. Communications Biology, 2023, 6, .	4.4	0
21	Novel Manifestation of Corneal Dystrophy After Keratorefractive Surgery. Cornea, 2024, 43, 404-408.	1.7	0