Fibroblast Primary Cilia Are Required for Cardiac Fibros

Circulation 139, 2342-2357

DOI: 10.1161/circulationaha.117.028752

Citation Report

#	Article	IF	CITATIONS
1	MeCP2 triggers diabetic cardiomyopathy and cardiac fibroblast proliferation by inhibiting RASSF1A. Cellular Signalling, 2019, 63, 109387.	3.6	16
2	TGF \hat{I}^2 -induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. Journal of Cell Science, 2019, 132, .	2.0	40
3	The Primary Cilium: Emerging Role as a Key Player in Fibrosis. Current Rheumatology Reports, 2019, 21, 29.	4.7	16
4	Polycystins, ADPKD, and Cardiovascular Disease. Kidney International Reports, 2020, 5, 396-406.	0.8	37
5	Zebrafish cardiac regeneration—looking beyond cardiomyocytes to a complex microenvironment. Histochemistry and Cell Biology, 2020, 154, 533-548.	1.7	15
6	A Unique Population of Regulatory T Cells in Heart Potentiates Cardiac Protection From Myocardial Infarction. Circulation, 2020, 142, 1956-1973.	1.6	104
7	Genes and Pathways Implicated in Tetralogy of Fallot Revealed by Ultra-Rare Variant Burden Analysis in 231 Genome Sequences. Frontiers in Genetics, 2020, 11, 957.	2.3	23
8	The Roles of Noncardiomyocytes in Cardiac Remodeling. International Journal of Biological Sciences, 2020, 16, 2414-2429.	6.4	23
9	Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Reports, 2020, 32, 107932.	6.4	13
10	Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 2020, 217, e20190103.	8.5	507
11	Primary Ciliary Signaling in the Skin—Contribution to Wound Healing and Scarring. Frontiers in Cell and Developmental Biology, 2020, 8, 578384.	3.7	11
12	Cardiomyocyteâ€derived exosomal microRNAâ€92a mediates postâ€ischemic myofibroblast activation both <i>in vitro</i> and <i>ex vivo</i> . ESC Heart Failure, 2020, 7, 285-289.	3.1	55
13	Tugging at the Heart Strings: The Septin Cytoskeleton in Heart Development and Disease. Journal of Cardiovascular Development and Disease, 2020, 7, 3.	1.6	5
14	Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics, 2020, 10, 1719-1732.	10.0	13
15	Regulation of the Extracellular Matrix by Ciliary Machinery. Cells, 2020, 9, 278.	4.1	18
16	Primary cilia mediate Klf2-dependant Notch activation in regenerating heart. Protein and Cell, 2020, 11, 433-445.	11.0	22
17	Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization. Bone, 2020, 136, 115346.	2.9	24
18	Role of cilia in the pathogenesis of congenital heart disease. Seminars in Cell and Developmental Biology, 2021, 110, 2-10.	5.0	26

#	Article	IF	CITATIONS
19	Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Seminars in Cell and Developmental Biology, 2021, 110, 89-103.	5.0	62
20	The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 2021, 77, 109826.	3.6	57
21	Polycystin-1 mitigates damage and regulates CTGF expression through AKT activation during cardiac ischemia/reperfusion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 165986.	3.8	8
22	Heart regeneration: beyond new muscle and vessels. Cardiovascular Research, 2021, 117, 727-742.	3.8	12
23	Novel non-cystic features of polycystic kidney disease: having new eyes or seeking new landscapes. CKJ: Clinical Kidney Journal, 2021, 14, 746-755.	2.9	1
24	Pericytes in Myocardial Diseases. Pancreatic Islet Biology, 2021, , 219-243.	0.3	0
25	Interleukinâ€6 released by oral lichen planus myofibroblasts promotes angiogenesis. Experimental and Therapeutic Medicine, 2021, 21, 291.	1.8	7
26	Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biology and Toxicology, 2021, 37, 873-890.	5.3	55
27	Neutrophil degranulation interconnects over-represented biological processes in atrial fibrillation. Scientific Reports, 2021, 11, 2972.	3.3	7
28	Primary Cilia and Atherosclerosis. Frontiers in Physiology, 2021, 12, 640774.	2.8	5
29	The vital role of Gli1 ⁺ mesenchymal stem cells in tissue development and homeostasis. Journal of Cellular Physiology, 2021, 236, 6077-6089.	4.1	17
30	CREG ameliorates the phenotypic switching of cardiac fibroblasts after myocardial infarction via modulation of CDC42. Cell Death and Disease, 2021, 12, 355.	6.3	8
31	Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Frontiers in Cardiovascular Medicine, 2021, 8, 647785.	2.4	28
33	Yes-Associated Protein is Involved in Myocardial Fibrosis in Rats with Diabetic Cardiomyopathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 2133-2143.	2.4	2
34	Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. IScience, 2021, 24, 102739.	4.1	3
35	PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensinâ€l by reducing TGFâ€l²1/Smads pathway activation. Journal of Cellular and Molecular Medicine, 2021, 25, 6746-6759.	3.6	8
36	C188â€9 reduces TGFâ€Î²1â€induced fibroblast activation and alleviates ISOâ€induced cardiac fibrosis in mice. FEBS Open Bio, 2021, 11, 2033-2040.	2.3	3
37	Cardiac Fibrosis and Fibroblasts. Cells, 2021, 10, 1716.	4.1	74

#	Article	IF	CITATIONS
38	Polycystin-1 is required for insulin-like growth factor 1-induced cardiomyocyte hypertrophy. PLoS ONE, 2021, 16, e0255452.	2.5	2
39	Recessive ciliopathy mutations in primary endocardial fibroelastosis: a rare neonatal cardiomyopathy in a case of Alstrom syndrome. Journal of Molecular Medicine, 2021, 99, 1623-1638.	3.9	4
40	DNMT1-Induced miR-152-3p Suppression Facilitates Cardiac Fibroblast Activation in Cardiac Fibrosis. Cardiovascular Toxicology, 2021, 21, 984-999.	2.7	10
42	The dynamic organelle primary cilia. Current Opinion in Rheumatology, 2021, Publish Ahead of Print, 495-504.	4.3	2
43	Association of Nephronophthisis 4 genetic variation with cardiorenal syndrome and cardiovascular events in Japanese general population: the Yamagata (Takahata) study. Heart and Vessels, 2021, , 1.	1.2	2
44	Limitations and opportunities in the pharmacotherapy of ciliopathies. , 2021, 225, 107841.		12
45	Cilia, Centrosomes and Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 9605.	4.1	10
46	Astrocyte-Derived Extracellular Vesicle–Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biological Psychiatry, 2021, 90, 575-585.	1.3	21
47	Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cellular Signalling, 2021, 87, 110123.	3.6	35
48	Autophagy in the cardiovascular system. , 2022, , 229-241.		0
49	A non-canonical Hedgehog pathway initiates ciliogenesis and autophagy. Journal of Cell Biology, 2021, 220, .	5.2	31
50	Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Frontiers in Physiology, 2020, 11, 416.	2.8	31
55	Guanxin V protects against ventricular remodeling after acute myocardial infarction through the interaction of TGF- \hat{l}^21 and Vimentin. Phytomedicine, 2022, 95, 153866.	5. 3	12
56	Arrhythmogenic Hearts in PKD2 Mutant Mice Are Characterized by Cardiac Fibrosis, Systolic, and Diastolic Dysfunctions. Frontiers in Cardiovascular Medicine, 2021, 8, 772961.	2.4	2
57	Selfâ€Healing Hydrogel Embodied with Macrophageâ€Regulation and Responsiveâ€Geneâ€Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. Advanced Materials, 2022, 34, e2106564.	21.0	95
58	The complex web of canonical and nonâ€canonical Hedgehog signaling. BioEssays, 2022, 44, e2100183.	2.5	10
59	Vidarabine, an anti-herpes agent, prevents occlusal-disharmony-induced cardiac dysfunction in mice. Journal of Physiological Sciences, 2022, 72, 2.	2.1	6
60	Primary Cilia and Their Role in Acquired Heart Disease. Cells, 2022, 11, 960.	4.1	2

#	Article	IF	CITATIONS
61	Progressive liver, kidney, and heart degeneration in children and adults affected by TULP3 mutations. American Journal of Human Genetics, 2022, 109, 928-943.	6.2	22
62	Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166371.	3.8	0
63	Phosphoproteomic Analysis Reveals Downstream PKA Effectors of AKAP Cypher/ZASP in the Pathogenesis of Dilated Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 753072.	2.4	3
64	Mitral Valve Prolapse Induces Regionalized Myocardial Fibrosis. Journal of the American Heart Association, 2021, 10, e022332.	3.7	22
65	A change of heart: new roles for cilia in cardiac development and disease. Nature Reviews Cardiology, 2022, 19, 211-227.	13.7	22
66	Midbody plays an active role in fibroblastâ€myofibroblast transition by mediating TGFâ€Î²Âsignaling. FASEB Journal, 2022, 36, e22272.	0.5	4
67	Tubulin Post-translational Modifications: Potential Therapeutic Approaches to Heart Failure. Frontiers in Cell and Developmental Biology, 2022, 10, 872058.	3.7	4
70	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduction and Targeted Therapy, 2022, 7, 134.	17.1	18
71	Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Scientific Reports, 2022, 12, 7063.	3.3	16
72	Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF- \hat{l}^2 signaling. ELife, 2022, 11, .	6.0	9
73	Role of TLR4 signaling on Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS ONE, 2022, 17, e0258823.	2.5	5
74	Hedgehog Morphogens Act as Growth Factors Critical to Pre- and Postnatal Cardiac Development and Maturation: How Primary Cilia Mediate Their Signal Transduction. Cells, 2022, 11, 1879.	4.1	4
75	Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways. Phytomedicine, 2022, 104, 154277.	5.3	14
76	Pathogenic Variants in Cardiomyopathy Disorder Genes Underlie Pediatric Myocarditis—Further Impact of Heterozygous Immune Disorder Gene Variants?. Journal of Cardiovascular Development and Disease, 2022, 9, 216.	1.6	3
77	Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	4
78	PU.1 inhibition does not attenuate cardiac function deterioration or fibrosis in a murine model of myocardial infarction. Molecular and Cellular Biochemistry, 0 , , .	3.1	0
79	Inhibition of intraflagellar transport protein-88 promotes epithelial-to-mesenchymal transition and reduces cardiac remodeling post-myocardial infarction. European Journal of Pharmacology, 2022, 933, 175287.	3.5	2
80	Tankyrase Inhibition Attenuates Cardiac Dilatation and Dysfunction in Ischemic Heart Failure. International Journal of Molecular Sciences, 2022, 23, 10059.	4.1	2

#	Article	lF	CITATIONS
81	Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Frontiers in Physiology, $0,13,.$	2.8	3
83	Endothelial cilia dysfunction in pathogenesis of hereditary hemorrhagic telangiectasia. Frontiers in Cell and Developmental Biology, 0, 10 , .	3.7	1
84	Methods for studying primary cilia in heart tissue after ischemia-reperfusion injury. Methods in Cell Biology, 2023, , .	1.1	0
85	The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells, 2023, 12, 142.	4.1	5
86	Dendritic cell proliferation by primary cilium in atopic dermatitis. Frontiers in Molecular Biosciences, 0, 10, .	3.5	3
87	The implication of ciliary signaling pathways for epithelial–mesenchymal transition. Molecular and Cellular Biochemistry, 0, , .	3.1	1
88	Tongyang Huoxue decoction (TYHX) ameliorating hypoxia/reoxygenation-induced disequilibrium of calcium homeostasis via regulating 12-tubulin in rabbit sinoatrial node cells. Journal of Ethnopharmacology, 2024, 318, 117006.	4.1	0
89	Vidarabine, an anti-herpes agent, improves Porphyromonas gingivalis lipopolysaccharide-induced cardiac dysfunction in mice. Journal of Physiological Sciences, 2023, 73, .	2.1	O
90	Cardiovascular Manifestations and Management in ADPKD. Kidney International Reports, 2023, 8, 1924-1940.	0.8	2
91	Functions of actinâ€binding proteins in cilia structure remodeling and signaling. Biology of the Cell, 0,	2.0	0
92	Defining the molecular fingerprint of bladder and kidney fibroblasts. American Journal of Physiology - Renal Physiology, 0, , .	2.7	0
93	Ciliaâ€related diseases. Journal of Cellular and Molecular Medicine, 2023, 27, 3974-3979.	3.6	0
95	Mammalian target of rapamycin inhibition impacts energy homeostasis and induces sexâ€specific body weight loss in humans. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14, 2757-2767.	7.3	0
96	Oral angiotensin-converting enzyme inhibitor captopril protects the heart from Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS ONE, 2023, 18, e0292624.	2.5	0
98	A polyphenol-derived redox-active and conductive nanoparticle-reinforced hydrogel with wet adhesiveness for myocardial infarction repair by simultaneously stimulating anti-inflammation and calcium homeostasis pathways. Nano Today, 2024, 55, 102157.	11.9	0
99	Modelling and targeting mechanical forces in organ fibrosis. , 2024, 2, 305-323.		O
100	m6A epitranscriptomic and epigenetic crosstalk in cardiac fibrosis. Molecular Therapy, 2024, 32, 878-889.	8.2	0
101	Illumination of understudied ciliary kinases. Frontiers in Molecular Biosciences, $0,11,.$	3.5	0