Tailoring the photoluminescence of atomically precise i

Chemical Society Reviews 48, 2422-2457 DOI: 10.1039/c8cs00800k

Citation Report

#	Article	IF	CITATIONS
1	Homoleptic Platinum/Silver Superatoms Protected by Dithiolates: Linear Assemblies of Two and Three Centered Icosahedra Isolobal to Ne ₂ and I ₃ [–] . Journal of the American Chemical Society, 2019, 141, 12957-12961.	6.6	71
2	Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chemical Science, 2019, 10, 8685-8693.	3.7	65
3	Free Valence Electron Centralization Strategy for Preparing Ultrastable Nanoclusters and Their Catalytic Application. Inorganic Chemistry, 2019, 58, 11000-11009.	1.9	56
4	Metal synergistic effect on cluster optical properties: based on Ag ₂₅ series nanoclusters. Dalton Transactions, 2019, 48, 13190-13196.	1.6	21
5	Basic [Au ₂₅ (SCH ₂ CH ₂ Py) ₁₈] ^{â^'} â‹Na ⁺ Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. Angewandte Chemie - International Edition, 2019, 58, 13411-13415.	7.2	12
6	Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chemical Society Reviews, 2019, 48, 4087-4117.	18.7	146
7	Insights into the effect of surface coordination on the structure and properties of Au ₁₃ Cu ₂ nanoclusters. Nanoscale, 2019, 11, 19393-19397.	2.8	15
8	Theoretical Prediction of Optical Absorption and Emission in Thiolated Gold Clusters. Journal of Physical Chemistry A, 2019, 123, 6472-6481.	1.1	9
9	Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angewandte Chemie, 2019, 131, 12271-12276.	1.6	15
10	Basic [Au 25 (SCH 2 CH 2 Py) 18] â~ â‹Na + Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. Angewandte Chemie, 2019, 131, 13545-13549.	1.6	3
11	Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag ₆ kernels. Chemical Communications, 2019, 55, 10296-10299.	2.2	26
12	Insight into the Geometric and Electronic Structures of Gold/Silver Superatomic Clusters Based on Icosahedron M ₁₃ Units and Their Alloys. Chemistry - an Asian Journal, 2019, 14, 3222-3231.	1.7	25
13	Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angewandte Chemie - International Edition, 2019, 58, 12143-12148.	7.2	93
14	Co-assembly of gold nanocluster with imidazolium surfactant into ordered luminescent fibers based on aggregation induced emission strategy. Journal of Molecular Liquids, 2019, 291, 111275.	2.3	9
15	Directed Self-Assembly of Ultrasmall Metal Nanoclusters. , 2019, 1, 237-248.		124
16	A Temperature ensitive Luminescent Ag 42 Nanocluster Supported by Tert Butyl Thiol Ligands. Chemistry - an Asian Journal, 2019, 14, 3279-3282.	1.7	8
17	Chalcogens-Induced Ag ₆ Z ₄ @Ag ₃₆ (Z = S or Se) Core–Shell Nanoclusters: Enlarged Tetrahedral Core and Homochiral Crystallization. Journal of the American Chemical Society, 2019, 141, 17884-17890.	6.6	76
18	Ultrasonic Activation of Water-Soluble Au ₂₅ (SR) ₁₈ Nanoclusters for Singlet Oxygen Production. Journal of Physical Chemistry C, 2019, 123, 26644-26652.	1.5	26

#	Article	IF	CITATIONS
19	Metal Nanoclusters Stabilized by Selenol Ligands. Small, 2019, 15, e1902703.	5.2	48
20	Advanced Nanotechnology Leading the Way to Multimodal Imagingâ€Guided Precision Surgical Therapy. Advanced Materials, 2019, 31, e1904329.	11.1	135
21	Faceâ€Centeredâ€Cubic Ag Nanoclusters: Origins and Consequences of the High Structural Regularity Elucidated by Density Functional Theory Calculations. Chemistry - A European Journal, 2019, 25, 13977-13986.	1.7	10
22	New Advances in Atomically Precise Silver Nanoclusters. , 2019, 1, 482-489.		102
23	Core-dependent properties of copper nanoclusters: valence-pure nanoclusters as NIR TADF emitters and mixed-valence ones as semiconductors. Chemical Science, 2019, 10, 10122-10128.	3.7	42
24	Rational construction of a library of M ₂₉ nanoclusters from monometallic to tetrametallic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18834-18840.	3.3	86
25	Light-Induced Size-Growth of Atomically Precise Nanoclusters. Langmuir, 2019, 35, 12350-12355.	1.6	25
26	Water-soluble metal nanoclusters: recent advances in molecular-level exploration and biomedical applications. Dalton Transactions, 2019, 48, 10385-10392.	1.6	30
27	Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters. Coordination Chemistry Reviews, 2019, 394, 1-38.	9.5	129
28	Enhanced two-photon absorption of ligated silver and gold nanoclusters: theoretical and experimental assessments. Nanoscale, 2019, 11, 12436-12448.	2.8	54
29	Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry of Materials, 2019, 31, 4945-4952.	3.2	36
30	Formation of an NIR-emitting Ag ₃₄ S ₃ SBB ₂₀ (CF ₃ COO) ₆ ²⁺ cluster from a hydride-protected silver cluster. Dalton Transactions, 2019, 48, 8664-8670.	1.6	16
31	Fluorescence lifetime-based pH sensing by platinum nanoclusters. Analyst, The, 2019, 144, 3533-3538.	1.7	18
32	Ligand shell size effects on one- and two-photon excitation fluorescence of zwitterion functionalized gold nanoclusters. Physical Chemistry Chemical Physics, 2019, 21, 23916-23921.	1.3	24
33	An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale, 2019, 11, 22685-22723.	2.8	89
34	A 2D layer network assembled from an open dendritic silver cluster Cl@Ag ₁₁ N ₂₄ and an N-donor ligand. Inorganic Chemistry Frontiers, 2019, 6, 3539-3544.	3.0	7
35	Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chemistry of Materials, 2019, 31, 9939-9969.	3.2	130
36	P band intermediate state (PBIS) tailors photoluminescence emission at confined nanoscale interface. Communications Chemistry, 2019, 2, .	2.0	27

#	Article	IF	CITATIONS
37	Elucidating ligand effects in thiolate-protected metal clusters using Au ₂₄ Pt(TBBT) ₁₈ as a model cluster. Nanoscale, 2019, 11, 22089-22098.	2.8	46
38	Fluorometric assay of iron(II) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 225, 117519.	2.0	10
39	AIE-based cancer theranostics. Coordination Chemistry Reviews, 2020, 402, 213076.	9.5	127
40	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€toâ€Phosphorescence Switching. Angewandte Chemie - International Edition, 2020, 59, 9922-9927.	7.2	138
41	AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angewandte Chemie - International Edition, 2020, 59, 10052-10058.	7.2	165
42	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€ŧoâ€₽hosphorescence Switching. Angewandte Chemie, 2020, 132, 10008-10013.	1.6	14
43	AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angewandte Chemie, 2020, 132, 10138-10144.	1.6	34
44	Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances, 2020, 2, 17-36.	2.2	79
45	Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au ₁₄₄ molecules. Nanoscale, 2020, 12, 2980-2986.	2.8	14
46	Induced fluorescent enhancement of protein-directed synthesized gold nanoclusters for selective and sensitive detection of flame retardants. Science of the Total Environment, 2020, 713, 136488.	3.9	11
47	Purification and separation of ultra-small metal nanoclusters. Advances in Colloid and Interface Science, 2020, 276, 102090.	7.0	28
48	Nanocluster growth <i>via</i> "graft-onto†effects on geometric structures and optical properties. Chemical Science, 2020, 11, 1691-1697.	3.7	41
49	Threeâ€dimensional Octameric Assembly of Icosahedral M 13 Units in [Au 8 Ag 57 (Dppp) 4 (C 6 H 11 S) 32 Cl 2]Cl and its [Au 8 Ag 55 (Dppp) 4 (C 6 H 11 S) 34][BPh 4. Angewandte Chemie - International Edition, 2020, 59, 3891-3895.	7.2	21
50	A stably discrete 31-nuclearity silver(i) thiolate nanocluster luminescent thermometer supported by DMF auxiliary ligands. New Journal of Chemistry, 2020, 44, 663-667.	1.4	8
51	Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes. Theranostics, 2020, 10, 1633-1648.	4.6	21
52	Intercluster Reactions Resulting in Silver-Rich Trimetallic Nanoclusters. Chemistry of Materials, 2020, 32, 611-619.	3.2	43
53	Structure Determination of Alkynylâ€Protected Gold Nanocluster Au ₂₂ (^t BuC≡C) ₁₈ and Its Thermochromic Luminescence. Angewandte Chemie - International Edition, 2020, 59, 2309-2312.	7.2	85
54	Structure Determination of Alkynylâ€Protected Gold Nanocluster Au ₂₂ (^t BuC≡C) ₁₈ and Its Thermochromic Luminescence.	1.6	22

ARTICLE IF CITATIONS # Threeâ€dimensional Octameric Assembly of Icosahedral M 13 Units in [Au 8 Ag 57 (Dppp) 4 (C 6 H 11 S) 32 Cl 55 1.6 7 2]Cl and its [Au 8 Ag 55 (Dppp) 4 (C 6 H 11 S) 34][BPh 4. Angewandte Chemie, 2020, 132, 3919-3923. Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. Trends in Chemistry, 4.4 2020, 2, 665-679. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. 57 31 5.1Carbohydrate Polymers, 2020, 250, 116973. Synthesis, Structural Characterization, and DFT Investigations of [M_{<i>x</i>}Mâ€2_{5a€"<i>x</i>}Fe₄(CO)₁₆]^{3a€"} (M,)Tj ETQal 10.78 Recent advances in metallic nanobiosensors development: Colorimetric, dynamic light scattering and 59 4.9 35 fluorescence detection. Sensors International, 2020, 1, 100049. Diagnosis of cancer at early stages based on the multiplex detection of tumor markers using metal nanoclusters. Analyst, The, 2020, 145, 7150-7161. 1.7 Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based 61 122 5.8 metal-organic framework. Nature Communications, 2020, 11, 3678. Highly Luminescent Metal Clusters Confined in Zeolites. Structure and Bonding, 2020, , 75-103. 1.0 Copper Nanocluster (Cu₂₃ NC)-Based Biomimetic System with Peroxidase Activity. ACS 63 3.2 46 Sustainable Chemistry and Engineering, 2020, 8, 18335-18344. Inhomogeneous Quantized Single-Electron Charging and Electrochemical–Optical Insights on 64 Transition-Sized Atomically Precise Gold Nanoclusters. ACS Nano, 2020, 14, 16781-16790. Structural order enhances charge carrier transport in self-assembled Au-nanoclusters. Nature 32 65 5.8 Communications, 2020, 11, 6188. Fluorescence enhancement of water-soluble silver nanoclusters via Au doping. AIP Advances, 2020, 10, 0.6 Atom-by-Atom Evolution of the Same Ligand-Protected Au₂₁, Au₂₂, Au₂₂Cd₁, and Au₂₄ Nanocluster Series. Journal of the American 67 6.6 36 Chemical Society, 2020, 142, 20426-20433. Synergistic Effect of Bridging Thiolate and Hub Atoms for the Aromaticity Driven Symmetry Breaking in Atomically Precise Gold Nanocluster. Journal of Physical Chemistry Letters, 2020, 11, 10052-10059. 2.1 Atomically Precise Metal Nanoclusters. Synthesis Lectures on Materials and Optics, 2020, 1, 1-139. 69 0.2 0 Understanding the Chemical Insights of Staple Motifs of Thiolateâ€Protected Gold Nanoclusters. Small, 2021, 17, e2001836. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society 71 18.7 407 Reviews, 2020, 49, 6443-6514. Simultaneous regulation of optical properties and cellular behaviors of gold nanoclusters by 2.2 pre-engineering the biotemplates. Chemical Communications, 2020, 56, 11414-11417.

#	Article	IF	CITATIONS
73	Rationale Strategy to Tune the Optical Properties of Gold Catenane Nanoclusters by Doping with Silver Atoms. Journal of Physical Chemistry C, 2020, 124, 19368-19374.	1.5	7
74	Strict DNA Valence Control in Ultrasmall Thiolate-Protected Near-Infrared-Emitting Gold Nanoparticles. Journal of the American Chemical Society, 2020, 142, 14023-14027.	6.6	34
75	Gold nanoclusters decorated amine-functionalized graphene oxide nanosheets for capture, oxidative stress, and photothermal destruction of bacteria. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111313.	2.5	23
76	Ligand-regulated self-assembly of luminescent Au nanoparticles towards diverse controllable superstructures. Chemical Communications, 2020, 56, 14023-14026.	2.2	6
77	Regulating the Optical Properties of Gold Nanoclusters for Biological Applications. ACS Omega, 2020, 5, 22702-22707.	1.6	43
78	Yellow-Emitting Hydrophobic Carbon Dots via Solid-Phase Synthesis and Their Applications. ACS Omega, 2020, 5, 22587-22595.	1.6	10
79	Absolute Templating of M(111) Cluster Surrogates by Galvanic Exchange. Journal of the American Chemical Society, 2020, 142, 16479-16485.	6.6	24
80	Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Advanced Healthcare Materials, 2020, 9, e2001007.	3.9	71
81	Dual emitting Ag ₃₅ nanocluster protected by 2-pyrene imine thiol. Chemical Communications, 2020, 56, 12550-12553.	2.2	15
82	Atomically Precise Noble Metal Cluster-Assembled Superstructures in Water: Luminescence Enhancement and Sensing. Journal of Physical Chemistry C, 2020, 124, 22298-22303.	1.5	29
83	Highly Luminescent AuAg Nanoclusters with Aggregation-Induced Emission for High-Performance White LED Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 15336-15343.	3.2	26
84	All-Carboxylate-Protected Superatomic Silver Nanocluster with an Unprecedented Rhombohedral Ag ₈ Core. Journal of the American Chemical Society, 2020, 142, 16905-16909.	6.6	72
85	Halogen effects on the electronic and optical properties of Au ₁₃ nanoclusters. Nanoscale Advances, 2020, 2, 4902-4907.	2.2	18
86	Highly stable folic acid functionalized copper-nanocluster/silica nanoparticles for selective targeting of cancer cells. RSC Advances, 2020, 10, 31463-31469.	1.7	6
87	Cocrystallization of Atomically Precise Nanoclusters. , 2020, 2, 1303-1314.		29
88	Endohedrally Doped Cage Clusters. Chemical Reviews, 2020, 120, 9021-9163.	23.0	164
89	From understanding the roles of tetraoctylammonium bromide in the two-phase Brust–Schiffrin method to tuning the size of gold nanoclusters. Nanoscale, 2020, 12, 19855-19860.	2.8	18
90	Terahertz Raman Spectroscopy of Ligand-Protected Au ₈ Clusters. Journal of Physical Chemistry Letters, 2020, 11, 7996-8001.	2.1	19

#	Article	IF	CITATIONS
91	A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Science China Chemistry, 2020, 63, 1777-1784.	4.2	19
92	1,8-Naphthalimide-based fluorescent chemosensors: recent advances and perspectives. Journal of Materials Chemistry C, 2020, 8, 13501-13529.	2.7	141
93	Manifestation of Structural Differences of Atomically Precise Cluster-Assembled Solids in Their Mechanical Properties. Chemistry of Materials, 2020, 32, 7973-7984.	3.2	14
94	A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: bridging molecular precise constructs with the bulk material phase. Nanoscale, 2020, 12, 24331-24348.	2.8	15
95	Metal Clusters and Their Reactivity. , 2020, , .		9
96	Multiple Ways Realizing Chargeâ€5tate Transform in AuCu Bimetallic Nanoclusters with Atomic Precision. Small, 2021, 17, e1907114.	5.2	19
97	A one-dimensional infinite silver alkynyl assembly [Ag ₈ (Cî€,C ^t Bu) ₅ (CF ₃ COO) ₃ (CH _{3synthesis, crystal structure and properties. RSC Advances, 2020, 10, 16045-16049.}	>CN)] <sub< td=""><td>)>nr:</td></sub<>)>n r :
98	The stabilization of fluorescent copper nanoclusters by dialdehyde cellulose and their use in mercury ion sensing. Analytical Methods, 2020, 12, 3130-3136.	1.3	9
99	Decisive role of pH in synthesis of high purity fluorescent BSA-Au20 nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118520.	2.0	4
100	Constructing multi-cluster copper(<scp>i</scp>) halides using conformationally flexible ligands. Chemical Communications, 2020, 56, 7233-7236.	2.2	19
101	Silver nanoclusters: synthesis, structures and photoluminescence. Materials Chemistry Frontiers, 2020, 4, 2205-2222.	3.2	80
102	Impact of Enantiomeric Ligand Composition on the Photophysical Properties of Chiral Ag29 Nanoclusters. Bulletin of the Chemical Society of Japan, 2020, 93, 834-840.	2.0	8
103	Stepwise Achievement of Circularly Polarized Luminescence on Atomically Precise Silver Clusters. Advanced Science, 2020, 7, 2000738.	5.6	36
104	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
105	Controlling the Phosphine Ligands of Pt1Ag28(S-Adm)18(PR3)4 Nanoclusters. Inorganic Chemistry, 2020, 59, 8736-8743.	1.9	14
106	Homoleptic alkynyl-protected gold nanoclusters with unusual compositions and structures. Nanoscale, 2020, 12, 13346-13350.	2.8	24
107	Structural Oscillation Revealed in Gold Nanoparticles. Journal of the American Chemical Society, 2020, 142, 12140-12145.	6.6	51
108	A small bimetallic Ag ₃ Cu ₂ nanocluster with dual emissions within and against Kasha's rule. Nanoscale, 2020, 12, 7864-7869.	2.8	12

#	Article	IF	CITATIONS
109	Poly(sodium-p-styrenesulfonate)-enhanced fluorescent silver nanoclusters for the assay of two food flavors and silicic acid. Food Chemistry, 2020, 318, 126502.	4.2	9
110	Aggregationâ€Induced Circularly Polarized Luminescence: Chiral Organic Materials for Emerging Optical Technologies. Advanced Materials, 2020, 32, e1908021.	11.1	107
111	New protective ligands for atomically precise silver nanoclusters. Dalton Transactions, 2020, 49, 5406-5415.	1.6	38
112	Enhanced luminescent performance with surface wrinkled Al-doped ZnO films. Journal of Materials Science: Materials in Electronics, 2020, 31, 6304-6312.	1.1	8
113	Polymorphism in Atomically Precise Cu ₂₃ Nanocluster Incorporating Tetrahedral [Cu ₄] ⁰ Kernel. Journal of the American Chemical Society, 2020, 142, 5834-5841.	6.6	103
114	On the photophysics of electrochemically generated silver nanoclusters: spectroscopic and theoretical characterization. Physical Chemistry Chemical Physics, 2020, 22, 16813-16821.	1.3	7
115	Solid-state thiolate-stabilized copper nanoclusters with ultrahigh photoluminescence quantum yield for white light-emitting devices. Nanoscale, 2020, 12, 15791-15799.	2.8	28
116	Ligand accommodation causes the anti-centrosymmetric structure of Au ₁₃ Cu ₄ clusters with near-infrared emission. Nanoscale, 2020, 12, 14801-14807.	2.8	17
117	Synthesis of carbon nitride quantum dots and biocompatibility evaluation using C. elegans as a model organism. Materials Today Communications, 2020, 25, 101383.	0.9	4
118	Insight of the photoluminescence of atomically precise bimetallic nanoclusters with free electrons. Journal of the Chinese Chemical Society, 2020, 67, 2171-2181.	0.8	6
119	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
120	Atomic-precision engineering of metal nanoclusters. Dalton Transactions, 2020, 49, 10701-10707.	1.6	38
121	Tuning the photoluminescence of metal nanoclusters for selective detection of multiple heavy metal ions. Sensors and Actuators B: Chemical, 2020, 321, 128539.	4.0	38
122	A gas-phase synthesis of Ag-centered phenylenediamine clusters. Journal of Materials Chemistry C, 2020, 8, 10325-10332.	2.7	6
123	De novo design of Au36(SR)24 nanoclusters. Nature Communications, 2020, 11, 3349.	5.8	54
124	Near-Infrared-Light-Assisted in Situ Reduction of Antimicrobial Peptide-Protected Gold Nanoclusters for Stepwise Killing of Bacteria and Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 11063-11071.	4.0	50
125	Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Science Advances, 2020, 6, eaay0107.	4.7	175
126	pH-guided self-assembly of silver nanoclusters with aggregation-induced emission for rewritable fluorescent platform and white light emitting diode application. Journal of Colloid and Interface Science, 2020, 567, 235-242.	5.0	52

ARTICLE IF CITATIONS Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to 127 1.9 137 Ligand-Centered Emission. Nanomaterials, 2020, 10, 261. Assembly of the Thiolated [Au 1 Ag 22 (Sâ€Adm) 12] 3+ Superatom Complex into a Framework Material through Direct Linkage by SbF 6 â[°] Anions. Angewandte Chemie, 2020, 132, 7612-7617. 1.6 9 Progress in Atomically Precise Coinage Metal Clusters with Aggregationâ€Induced Emission and 129 3.6 114 Circularly Polarized Luminescence. Advanced Optical Materials, 2020, 8, 1902152. Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. Nanoscale, 2020, 12, 6449-6455. Photophysical and Thermodynamic Properties of Ag₂₉(BDT)₁₂(TPP)_{<i>x</i>} (<i>x</i>= 0â€"4) Clusters in Secondary 131 1.5 21 Ligand Binding–Dissociation Equilibria Unraveled by Photoluminescence Analysis. Journal of Physical Chemistry C, 2020, 124, 5880-5886. Photoresponsive Propellerâ€like Chiral AIE Copper(I) Clusters. Angewandte Chemie, 2020, 132, 5374-5378. 1.6 Unexpected structural transformation into noria-like Ag13 metal clusters and a copper-doping 133 2.2 17 induced boost in photoluminescence. Chemical Communications, 2020, 56, 4789-4792. Biosensing strategies based on organic-scaffolded metal nanoclusters for ultrasensitive detection of 134 2.9 34 tumor markers. Talanta, 2020, 214, 120886. Palladium Nanoclusters Confined in MOF@COP as a Novel Nanoreactor for Catalytic Hydrogenation. 135 4.0 79 ACS Applied Materials & amp; Interfaces, 2020, 12, 7285-7294. A new silver cluster that emits bright-blue phosphorescence. Chemical Communications, 2020, 56, 2.2 24 2451-2454. Assembly of the Thiolated [Au₁Ag₂₂(Sâ€Adm)₁₂]³⁺ Superatom Complex into a Framework Material through Direct Linkage by 137 79 7.2 SbF₆^{â⁻} Anions. Angewandte Chemie - International Edition, 2020, 59, 7542-7547. Photoresponsive Propellerâ€kike Chiral AIE Copper(I) Clusters. Angewandte Chemie - International 138 7.2 Edition, 2020, 59, 5336-5340. Highly transparent and luminescent gel glass based on reabsorption-free gold nanoclusters. 139 2.8 10 Nanoścale, 2020, 12, 10781-10789. Novel synthesis of orange-red emitting copper nanoclusters stabilized by methionine as a fluorescent probe for norfloxacin sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118334. 140 Chain-End Functionalized Polymers for the Controlled Synthesis of Sub-2 nm Particles. Journal of the 141 6.6 17 American Chemical Society, 2020, 142, 7350-7355. Silver clusters templated by homo- and hetero-anions. CrystEngComm, 2020, 22, 3736-3748. 142 1.3 Electrochemically switchable electrochemiluminescent sensor constructed based on inorganic 143 perovskite quantum dots synthesized with microwave irradiation. Journal of Electroanalytical 1.9 16 Chemistry, 2020, 867, 114181. [Cu₈₁(PhS)₄₆(^{<i>t</i>}BuNH₂)₁₀(H)₃₂]<sup>3+</sup Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper 144 6.6 Nanoclusters. Journal of the American Chemical Society, 2020, 142, 8696-8705.

#	Article	IF	CITATIONS
145	Extra Silver Atom Triggers Roomâ€Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angewandte Chemie, 2020, 132, 11996-12000.	1.6	7
146	Extra Silver Atom Triggers Roomâ€Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angewandte Chemie - International Edition, 2020, 59, 11898-11902.	7.2	52
147	Luminescent gold nanoclusters for bioimaging applications. Beilstein Journal of Nanotechnology, 2020, 11, 533-546.	1.5	31
148	Luminescence Regulation of <scp>Silverâ€Thiolate</scp> Clusters Protected by 1, <scp>2â€Dithiolate</scp> â€ <i>o</i> â€carborane. Chinese Journal of Chemistry, 2021, 39, 81-86.	2.6	11
149	Injectable Ag nanoclusters-based hydrogel for wound healing via eliminating bacterial infection and promoting tissue regeneration. Chemical Engineering Journal, 2021, 420, 127589.	6.6	23
150	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	9.5	57
151	Atomically Precise Metal Nanoclusters: Novel Building Blocks for Hierarchical Structures. Chemistry - A European Journal, 2021, 27, 30-38.	1.7	22
152	Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chemistry, 2021, 335, 127657.	4.2	47
153	A Homoleptic Alkynylâ€Ligated [Au 13 Ag 16 L 24] 3â^' Cluster as a Catalytically Active Eightâ€Electron Superatom. Angewandte Chemie, 2021, 133, 983-988.	1.6	6
154	A Homoleptic Alkynylâ€Ligated [Au ₁₃ Ag ₁₆ L ₂₄] ^{3â^'} Cluster as a Catalytically Active Eightâ€Electron Superatom. Angewandte Chemie - International Edition, 2021, 60, 970-975.	7.2	43
155	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie, 2021, 133, 1326-1332.	1.6	14
156	Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Materials Science and Engineering C, 2021, 118, 111520.	3.8	23
157	Nestlike Silver(I) Thiolate Clusters with Tunable Emission Color Templated by Heteroanions. Chemistry - A European Journal, 2021, 27, 1122-1126.	1.7	10
158	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioactive Materials, 2021, 6, 941-950.	8.6	60
159	A turn-off-on near-infrared photoluminescence sensor for sequential detection of Fe3+ and ascorbic acid based on glutathione-capped gold nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119085.	2.0	25
160	Complex Hollow Bowlâ€Like Nanostructures: Synthesis, Application, and Perspective. Advanced Functional Materials, 2021, 31, 2007801.	7.8	35
161	Observing antimicrobial process with traceable gold nanoclusters. Nano Research, 2021, 14, 1026-1033.	5.8	40
162	Aggregation-induced phosphorescence sensitization in two heptanuclear and decanuclear gold–silver sandwich clusters. Chemical Science, 2021, 12, 702-708.	3.7	16

ARTICLE IF CITATIONS Single Platinum Atom Doping to Silver Clusters Enables Nearâ€Infraredâ€toâ€Blue Photon Upconversion. 163 7.2 21 Angewandte Chemie - International Edition, 2021, 60, 2822-2827. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent 164 6.2 advances in catalysis and biomedical applications. Nano Today, 2021, 36, 101053. Advances in the electron diffraction characterization of atomic clusters and nanoparticles. 165 2.2 13 Nanoscale Advances, 2021, 3, 311-325. Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. Annual 4.8 Review of Physical Chemistry, 2021, 72, 121-142. Single Platinum Atom Doping to Silver Clusters Enables Nearâ€Infraredâ€toâ€Blue Photon Upconversion. Angewandte Chemie, 2021, 133, 2858-2863. 167 1.6 3 Carboranealkynylâ€Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angewandte Chemie - International Edition, 2021, 60, 5959-5964. Growth regulation of luminescent gold nanoparticles directed from amphiphilic block copolymers: 169 highly-controlled nanoassemblies toward tailored in-vivo transport. Science China Chemistry, 2021, 4.2 4 64, 157-164. Structural Isomerism in Atomically Precise Nanoclusters. Chemistry of Materials, 2021, 33, 39-62. 170 3.2 Concentrationâ€Dependent Subcellular Distribution of Ultrasmall Nearâ€Infraredâ€Emitting Gold 171 7.2 29 Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 5739-5743. New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS Omega, 2021, 6, 1-16. 1.6 Highly Fluorescent Gold Cluster Assembly. Journal of the American Chemical Society, 2021, 143, 326-334. 173 73 6.6 Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au 174 2.8 nanoclusters: recent advances, grand challenges, and great opportunities. Nanoscale, 2021, 13, 602-614. Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise 175 2.2 34 metal nanoclusters. Chemical Communications, 2021, 57, 417-440. Optical Activity of Chiral Metal Nanoclusters. Accounts of Materials Research, 2021, 2, 21-35. Controlling the Crystallographic Packing Modes of Pt1Ag28 Nanoclusters: Effects on the Optical Properties and Nitrogen Adsorption–Desorption Performances. Inorganic Chemistry, 2021, 60, 177 9 1.9 4198-4206. Designing of Highly Active and Sustainable Encapsulated Stabilized Palladium Nanoclusters as well as 1.4 Real Exploitation for Catalytic Hydrogenation in Water. Catalysis Letters, 2021, 151, 803-820. A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€...Vivo Tumorâ€Targeted Imaging. 179 7.2 155 Angewandte Chemie - International Edition, 2021, 60, 1306-1312. Electron Counting in Ligated High Nuclearity Late Transition Metal Clusters. Structure and Bonding, 2021, , 1.

#	Article	IF	CITATIONS
181	Emergence of intense near-infrared photoluminescence by photoactivation of silver nanoclusters. Chemical Communications, 2021, 57, 6483-6486.	2.2	6
182	NanoCluster heterogeneous catalysts: Insights from theory. , 2021, , .		0
183	[Ag ₇₁ (S- ^{<i>t</i>} Bu) ₃₁ (Dppm)](SbF ₆) ₂ : an intermediate-sized metalloid silver nanocluster containing a building block of Ag ₆₄ . Chemical Communications, 2021, 57, 10383-10386.	2.2	5
184	Carboranealkynylâ€Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angewandte Chemie, 2021, 133, 6024-6029.	1.6	6
185	Photoluminescence and Electrochemical Sensing of Atomically Precise Cu ₁₃ Cluster. Acta Chimica Sinica, 2021, 79, 1037.	0.5	2
186	A new strategy to construct gold nanocluster-based optical probes using luminescence resonance energy transfer. Chemical Communications, 2021, 57, 5542-5545.	2.2	4
187	An insight, at the atomic level, into the polarization effect in controlling the morphology of metal nanoclusters. Chemical Science, 2021, 12, 11080-11088.	3.7	5
188	Size and ligand effects of gold nanoclusters in alteration of organellar state and translocation of transcription factors in human primary astrocytes. Nanoscale, 2021, 13, 3173-3183.	2.8	11
189	Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horizons, 2021, 6, 409-448.	4.1	52
190	Arginine-Modified Fluorescent Gold Nanoclusters for Förster Resonance Energy Transfer with a Hemicyanine Dye: A Biofriendly Approach. ACS Applied Nano Materials, 2021, 4, 305-312.	2.4	14
191	Structural determination of a metastable Ag ₂₇ nanocluster and its transformations into Ag ₈ and Ag ₂₉ nanoclusters. Inorganic Chemistry Frontiers, 2021, 8, 4407-4414.	3.0	13
192	Selective Extraction of Gold by Niacin. ACS Sustainable Chemistry and Engineering, 2021, 9, 2129-2135.	3.2	19
193	The [Ag25Cu4H8Br6(CCPh)12(PPh3)12]3+ : Ag13H8 silver hydride core protected by [CuAg3(CCPh)3(PPh3)3]+ motifs. Dalton Transactions, 2021, 50, 5659-5665.	1.6	11
194	Achieving full-color emission of Cu nanocluster self-assembly nanosheets by the virtue of halogen effects. Soft Matter, 2021, 17, 4550-4558.	1.2	5
195	Reversible polymorphic structural transition of crown-like nickel nanoclusters and its effect on conductivity. Chemical Communications, 2021, 57, 2935-2938.	2.2	5
196	Correlating Kernel–Shell Structures with Optical Properties of Pt ₁ Ag ₂₄ and Pt ₁ Ag ₁₄ Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 2194-2201.	1.5	9
197	Isolation of the Au ₁₄₅ (SR) ₆₀ X compound (R = <i>n</i> -butyl, <i>n</i> -pentyl; X) Tj ET icosahedral Au ₁₄₄ (SR) ₆₀ compound. Nanoscale, 2021, 13, 15394-15402.	Qq0 0 0 rş 2.8	gBT /Overlock 3
198	A mono-copper doped undeca-gold cluster with up-converted and anti-stokes emissions of fluorescence and phosphorescence. Nanoscale, 2021, 13, 5300-5306.	2.8	9

ARTICLE IF CITATIONS Luminescent Gold Nanoclusterâ€Methylcellulose Composite Optical Fibers with Low Attenuation 199 5.2 25 Coefficient and High Photostability. Small, 2021, 17, e2005205. Preparation of Cu cluster catalysts by simultaneous cooling–microwave heating: application in 2.2 radical cascade annulation. Nanoscale Advances, 2021, 3, 1087-1095. Ultrabright Au@Cu ₁₄ nanoclusters: 71.3% phosphorescence quantum yield in 201 4.7 89 non-degassed solution at room temperature. Science Advances, 2021, 7, . A comparative study of [Ag₁₁(ⁱPrS)₉(dppb)₃]²⁺ and [Ag₁₅S(^sBuS)₁₂(dppb)₃]⁺: templating effect on structure and photoluminescence. Dalton Transactions. 2021. 50. 10561-10566 Four orders-of-magnitude enhancement in the two-photon excited photoluminescence of homoleptic 203 19 2.8 gold thiolate nanoclusters following zinc ion-induced aggregation. Nanoscale, 2021, 13, 4439-4443. Cocrystallization-driven stabilization of metastable nanoclusters: a case study of 204 2.8 Pd₁Au₉. Nanoscale, 2021, 13, 7694-7699. Ensembles from silver clusters and cucurbit[6]uril-containing linkers. Dalton Transactions, 2021, 50, 205 1.6 5 15267-15273. Engineering amino-mediated copper nanoclusters with dual emission and assembly-to-monodispersion 206 1.4 switching by pH-triggered surface modulation. New Journal of Chemistry, 2021, 45, 13262-13265. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Applied Nano Materials, 2021, 4, 911-948. 207 2.4 29 Self-Assembled Chiral Phosphorescent Microflowers from Au Nanoclusters with Dual-Mode pH 208 7.3 44 Sensing and Information Encryption. ACS Nano, 2021, 15, 4947-4955. Observation of Core Phonon in Electron–Phonon Coupling in Au₂₅ Nanoclusters. 209 2.1 16 Journal of Physical Chemistry Letters, 2021, 12, 1690-1695. Concentrationâ€Dependent Subcellular Distribution of Ultrasmall Nearâ€Infraredâ€Emitting Gold 1.6 Nanoparticles. Angewandte Chemie, 2021, 133, 5803-5807. Preparation of Yellow Fluorescent N,O-CDs and its Application in Detection of ClOâ^{-,} Journal of 211 1.3 6 Fluorescence, 2021, 31, 659-666. Surface Engineering of Gold Nanoclusters Protected with 11-Mercaptoundecanoic Acid for 2.4 Photoluminescence Sensing. ACS Applied Nano Materials, 2021, 4, 3197-3203. Amphiphilic Au Nanoclusters Modulated by Magnetic Gemini Surfactants as a Cysteine Chemosensor 213 7 1.6 and an MRI Contrast Agent. Langmuir, 2021, 37, 3130-3138. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver 214 Nanoclusters. ACS Sensors, 2021, 6, 613-627. The Influence of Pd-Atom Substitution on Au₂₅(SC₈H₉)₁₈ Cluster Photoluminescence. Journal 215 1.58 of Physical Chemistry C, 2021, 125, 7267-7275. Photosensitization Dynamics of Stable Copper Nanoclusters inside the Aqueous Core of Reverse 1.6 Micelles with Different Pool Sizes. Langmuir, 2021, 37, 3500-3507.

ARTICLE IF CITATIONS # [Cu₁₅(PPh₃)₆(PET)₁₃]²⁺: a Copper 217 5.2 50 Nanocluster with Crystallization Enhanced Photoluminescence. Small, 2021, 17, e2006839. Organic J-Aggregate Nanodots with Enhanced Light Absorption and Near-Unity Fluorescence Quantum 4.5 Yield. Nano Letters, 2021, 21, 2840-2847. Ultrafast Size Expansion and Turnâ€On Luminescence of Atomically Precise Silver Clusters by Hydrogen 219 7.2 96 Sulfide. Angewandte Chemie - International Edition, 2021, 60, 8505-8509. Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal 44 Nanoclusters. Chemical Record, 2021, 21, 879-892. Ultrafast Size Expansion and Turnâ€On Luminescence of Atomically Precise Silver Clusters by Hydrogen 221 1.6 13 Sulfide. Angewandte Chemie, 2021, 133, 8586-8590. Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchemical Journal, 2021, 163, 105922. 2.3 Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and 223 1.6 4 Chiral Properties. Angewandte Chemie, 2021, 133, 13007-13013. Phosphorescent Metal Rotaxane-like Bimetallic Ag/Au Clusters. Journal of Physical Chemistry C, 2021, 224 1.5 125, 9400-9410. A Twoâ€Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reaction of A 225 3 1.6 Silver(I) Hydride. Angewandte Chemie, 2021, 133, 12822-12826. Reconstituting C-Centered Hexagold(I) Clusters with <i>N</i>-Heterocyclic Carbene Ligands. Bulletin of the Chemical Society of Japan, 2021, 94, 1324-1330. Crystalline Metalâ€Organic Materials with Thermally Activated Delayed Fluorescence. Advanced Optical 227 3.6 30 Materials, 2021, 9, 2100081. A Twoâ \in Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reaction of A 228 30 Silver(I) Hydride. Angewandte Chemie - International Edition, 2021, 60, 12712-12716. Precise Implantation of an Archimedean Ag@Cu₁₂ Cuboctahedron into a Platonic 229 7.3 33 Cu₄Bis(diphenylphosphino)hexane₆ Tetrahedron. ACS Nano, 2021, 15, 8733-8741. Ag₄₈ and Ag₅₀ Nanoclusters: Toward Active-Site Tailoring of Nanocluster Surface Structures. Inorganic Chemistry, 2021, 60, 5931-5936. Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and 231 7.2 42 Chiral Properties. Angewandte Chemie - International Edition, 2021, 60, 12897-12903. Alkynyl-Stabilized Superatomic Silver Clusters Showing Circularly Polarized Luminescence. Journal 95 of the American Chemical Society, 2021, 143, 6048-6053. Small Change, Big Difference: Photoelectrochemical Behavior of Au Nanocluster-Sensitized 233 8.8 14 TiO₂ Altered by Core Restructuring. ACS Energy Letters, 2021, 6, 2305-2312. Au11Ag6 nanocluster: Controllable preparation, structural determination, and optical property 234 1.2 investigation. Journal of Chemical Physics, 2021, 154, 184302.

#	Article	IF	CITATIONS
235	Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e48.	5.2	81
236	Functionalized Au15 nanoclusters as luminescent probes for protein carbonylation detection. Communications Chemistry, 2021, 4, .	2.0	16
237	Erbium-doped tungsten selenide nanosheets with near-infrared II emission and photothermal conversion. Chemical Engineering Journal, 2021, 411, 128610.	6.6	38
238	Impact of Ligands on Structural and Optical Properties of Ag ₂₉ Nanoclusters. Journal of the American Chemical Society, 2021, 143, 9405-9414.	6.6	60
239	Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Research, 2021, 14, 3343-3351.	5.8	19
240	Long-lived Ag106+ luminescence and a split DNA scaffold. Journal of Chemical Physics, 2021, 154, 244302.	1.2	18
241	Photoluminescence of Doped Superatoms M@Au ₁₂ (M = Ru, Rh, Ir) Homoleptically Capped by (Ph ₂)PCH ₂ P(Ph ₂): Efficient Room-Temperature Phosphorescence from Ru@Au ₁₂ . Journal of the American Chemical Society, 2021, 143, 10560-10564.	6.6	57
242	[Au ₁₆ Ag ₄₃ H ₁₂ (SPhCl ₂) ₃₄] ^{5–} : An Au–Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorganic Chemistry, 2021, 60, 11640-11647.	1.9	11
243	Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews, 2021, 438, 213752.	9.5	17
244	Anisotropic Evolution of Nanoclusters from Ag ₄₀ to Ag ₄₅ : Halogen- and Defect-Induced Epitaxial Growth in Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 6654-6660.	2.1	11
245	Doping effect on the structure and properties of eight-electron silver nanoclusters. Journal of Chemical Physics, 2021, 155, 034304.	1.2	10
246	1,3,5-Trithian Mediated Formation of Two New Tetranuclear Silver-Alkynyl Clusters and Investigation of Their Optical Features. Journal of Cluster Science, 2022, 33, 2363-2368.	1.7	3
247	Symmetric Growth of Dual-Packed Kernel: Exploration of the Evolution of Au40(SR)24 to Au49(SR)27 and Au58(SR)30 Clusters via the 2e–-Reduction Cluster Growth Mechanism. ACS Omega, 2021, 6, 18024-18032.	1.6	0
248	Isotopic Exchange of Atomically Precise Nanoclusters with Materials of Varying Dimensions: From Nanoscale to Bulk. Journal of Physical Chemistry C, 2021, 125, 16110-16117.	1.5	2
249	The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coordination Chemistry Reviews, 2021, 438, 213900.	9.5	24
250	Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu–Ag and Cu–Au Nanoclusters via Copper Hydride Precursors. Inorganic Chemistry, 2021, 60, 10799-10807.	1.9	22
251	Hydrogen Evolution Electrocatalyst Design: Turning Inert Gold into Active Catalyst by Atomically Precise Nanochemistry. Journal of the American Chemical Society, 2021, 143, 11102-11108.	6.6	64
252	Magnetism of Atomically Precise Gold and Doped Nanoclusters: Delocalized Spin and Interparticle Coupling. Journal of Physical Chemistry C, 2021, 125, 15773-15784.	1.5	11

#	Article	IF	Citations
253	State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir, 2021, 37, 9281-9301.	1.6	24
254	Atomically-ordered Trimetallic Superatoms M@Au ₆ Ag ₆ (M = Pd, Pt): Synthesis and Photoluminescence Properties. Chemistry Letters, 2021, 50, 1419-1422.	0.7	4
255	High Stability Au NPs: From Design to Application in Nanomedicine. International Journal of Nanomedicine, 2021, Volume 16, 6067-6094.	3.3	21
256	Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers, 2021, 13, 4206.	1.7	27
257	A Simple Entropicâ€Driving Separation Procedure of Lowâ€Size Silver Clusters, Through Interaction with DNA. ChemistryOpen, 2021, 10, 760-763.	0.9	0
258	Ratiometric fluorescent probe for ascorbic acid detection based on MnO2 nanosheets, gold nanoclusters and thiamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126605.	2.3	28
259	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	1.7	8
260	Weak Anchoring Sites of Thiolateâ€Protected Luminescent Gold Nanoparticles. Small, 2021, 17, e2102481.	5.2	12
261	Gold Clusters: From the Dispute on a Gold Chair to the Golden Future of Nanostructures. Molecules, 2021, 26, 5014.	1.7	1
262	The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response. Chinese Chemical Letters, 2021, 32, 2390-2394.	4.8	28
263	To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. Bulletin of the Korean Chemical Society, 2021, 42, 1386-1399.	1.0	5
264	Supramolecular Chirality from Hierarchical Self-Assembly of Atomically Precise Silver Nanoclusters Induced by Secondary Metal Coordination. ACS Nano, 2021, 15, 15910-15919.	7.3	42
265	How a family of nanostructured amphiphilic block copolymers synthesized by RAFT-PISA take advantage of thiol groups to direct the in situ assembly of high luminescent CuNCs within their thermo-responsive core. European Polymer Journal, 2021, 160, 110806.	2.6	3
266	Generation of Silver Metal Nanocluster Random Lasing. ACS Photonics, 2021, 8, 3051-3060.	3.2	9
267	Boosting hydrogen evolution over Ni6(SCH2Ph)12 nanocluster modified TiO2 via pseudo-Z-scheme interfacial charge transfer. Applied Catalysis B: Environmental, 2021, 292, 120158.	10.8	18
268	A single nucleobase tunes nonradiative decay in a DNA-bound silver cluster. Journal of Chemical Physics, 2021, 155, 094305.	1.2	8
269	Evolution of Electronic Structure of Cuboid Thiolate-Monolayer-Protected Gold Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 20670-20675.	1.5	3
270	Polystyrene Microspheres Decorated with Au ₄ Cu ₅ Nanoclusters and their Application in Catalytic Reduction of 4â€Nitrophenol. ChemistrySelect, 2021, 6, 8843-8847.	0.7	4

#	Article	IF	CITATIONS
271	Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications. Advanced Functional Materials, 2021, 31, 2105662.	7.8	47
272	Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS Nano, 2021, 15, 16019-16029.	7.3	40
273	Driving Forces and Routes for Aggregation-Induced Emission-Based Highly Luminescent Metal Nanocluster Assembly. Journal of Physical Chemistry Letters, 2021, 12, 9033-9046.	2.1	51
274	Aggregation-enhanced emission of metal nanoclusters triggered by peptide self-assembly and application in chymotrypsin inhibitor screening. Sensors and Actuators B: Chemical, 2021, 345, 130243.	4.0	7
275	Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. TrAC - Trends in Analytical Chemistry, 2021, 143, 116395.	5.8	50
276	A critical review of copper nanoclusters for monitoring of water quality. Sensors and Actuators Reports, 2021, 3, 100026.	2.3	31
277	Biomolecules as promising ligands in the synthesis of metal nanoclusters: Sensing, bioimaging and catalytic applications. Trends in Environmental Analytical Chemistry, 2021, 32, e00140.	5.3	52
278	A simple strategy to enhance the luminescence of metal nanoclusters and its application for turn-on detection of 2-thiouracil and hyaluronidase. Talanta, 2022, 236, 122876.	2.9	6
279	Reversible transformation between Au ₁₄ Ag ₈ and Au ₁₄ Ag ₄ nanoclusters. Nanoscale, 2021, 13, 17162-17167.	2.8	6
280	Intercluster exchanges leading to hydride-centered bimetallic clusters: a multi-NMR, X-ray crystallographic, and DFT study. Dalton Transactions, 2021, 50, 4727-4734.	1.6	11
281	Fluorescent nanocomposites based on gold nanoclusters for metal ion detection and white light emitting diodes. Nanoscale, 2021, 13, 4140-4150.	2.8	31
282	Full-type photoluminescence from a single organic molecule for multi-signal temperature sensing. Materials Chemistry Frontiers, 2021, 5, 2261-2270.	3.2	22
283	Hierarchical Assembly of Atomically Precise Metal Clusters as a Luminescent Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 6496-6504.	4.0	14
284	New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chemical Science, 2021, 12, 3660-3667.	3.7	22
285	Self-assembly of copper nanoclusters: isomeric ligand effect on morphological evolution. Nanoscale Advances, 2021, 3, 5570-5575.	2.2	11
286	Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chemical Society Reviews, 2021, 50, 2297-2319.	18.7	164
287	Tailoring silver nanoclusters <i>via</i> doping: advances and opportunities. Nanoscale Advances, 2021, 3, 2411-2422.	2.2	23
288	Zincâ€Ionâ€Induced Aggregation of Gold Clusters for Visibleâ€Lightâ€Excitationâ€Based Fluorimetric Discrimination of Geometrical Isomers. ChemPhysChem, 2020, 21, 809-813.	1.0	5

#	Article	IF	CITATIONS
289	Advances in Enhancing Luminescence of Atomically Precise Ag Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 2619-2625.	1.5	29
290	Surface Ligand-Controlled Wavelength-Tunable Luminescence of Gold Nanoclusters: Cellular Imaging and Smart Fluorescent Probes for Amyloid Detection. ACS Applied Bio Materials, 2020, 3, 4282-4293.	2.3	27
291	Heterogeneous metal alloy engineering: embryonic growth of M ₁₃ icosahedra in Ag-based alloy superatomic nanoclusters. Chemical Communications, 2020, 56, 14203-14206.	2.2	7
292	Covalent anchoring of atomically precise glutathione-protected gold nanoclusters on graphene oxide nanosheets. Nano Express, 2020, 1, 030005.	1.2	5
293	Perspective on recent developments of nanomaterial based fluorescent sensors: applications in safety and quality control of food and beverages. Journal of Food and Drug Analysis, 2020, 28, 487-508.	0.9	14
294	Functionalized Metal Nanoclusters for Biosensing Applications. Chemistry in the Environment, 2021, , 1-29.	0.2	0
295	All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. Journal of Physical Chemistry Letters, 2021, 12, 9882-9887.	2.1	5
296	Cluster Materials as Traceable Antibacterial Agents. Accounts of Materials Research, 2021, 2, 1104-1116.	5.9	29
297	Solar-Powered Photocatalysis and Photoelectrocatalysis over Atomically Precise Metal Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 22421-22428.	1.5	15
298	Ligand Effects on Intramolecular Configuration, Intermolecular Packing, and Optical Properties of Metal Nanoclusters. Nanomaterials, 2021, 11, 2655.	1.9	4
299	Source of Bright Near-Infrared Luminescence in Gold Nanoclusters. ACS Nano, 2021, 15, 16095-16105.	7.3	41
300	Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS Nano, 2021, 15, 15781-15793.	7.3	35
301	Transient Dissipative Optical Properties of Aggregated Au Nanoparticles, CdSe/ZnS Quantum Dots, and Supramolecular Nucleic Acid-Stabilized Ag Nanoclusters. Journal of the American Chemical Society, 2021, 143, 17622-17632.	6.6	34
302	Supported, â^1⁄41-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. Bulletin of the Chemical Society of Japan, 2021, 94, 2853-2870.	2.0	10
303	Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Critical Reviews in Food Science and Nutrition, 2023, 63, 3519-3537.	5.4	15
304	Selective ligand exchange synthesis of Au16(2-PET)14 from Au15(SG)13. Journal of Chemical Physics, 2021, 155, 161102.	1.2	3
305	Bright Future of Gold Nanoclusters in Theranostics. ACS Applied Materials & Interfaces, 2021, 13, 49581-49588.	4.0	35
306	Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. Advanced Materials, 2022, 34, e2103918.	11.1	48

#	Article	IF	CITATIONS
307	Surface-Engineering Enhanced Charge Injection and Recombination of Silver Nanoclusters in an Aqueous Medium. Journal of Physical Chemistry C, 2021, 125, 22078-22083.	1.5	7
308	Heterocyclic thiol protected supramolecular self-assembly of silver nanoclusters for ultrasensitive detection of toxic Hg (II) ions in nanomolar range. Journal of Molecular Liquids, 2021, 344, 117769.	2.3	11
310	Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry Reviews, 2022, 451, 214268.	9.5	79
311	Switchable photon and phonon emission properties of an atomically precise Ag ₁₄ core-based two-dimensional silver cluster-assembled material. Materials Chemistry Frontiers, 2021, 5, 8380-8386.	3.2	13
312	An Overview of Metal Clusters and Their Reactivity. , 2020, , 1-9.		0
313	A photoluminescent thermometer made from a thermoresponsive tetranuclear gold complex and phosphor N630. Dalton Transactions, 2021, 50, 16395-16400.	1.6	3
314	Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorganic Chemistry, 2021, 60, 18234-18241.	1.9	11
315	[Au _{37–<i>x</i>} Ag _{<i>x</i>} (PPh ₃) ₁₃ Cl ₁₀] <sup into [Au_{25–<i>y</i>}Ag_{<i>y</i>}(PPh₃)₁₀Cl₈]^{ Fragmentation of a Trimer of 8-Electron Superatoms by Light. Journal of Physical Chemistry Letters.}</sup 		
316	Charge Neutralization Strategy to Construct Salt-Tolerant and Cell-Permeable Nanoprobes: Application in Ratiometric Sensing and Imaging of Intracellular pH. Analytical Chemistry, 2021, 93, 15159-15166.	3.2	11
317	Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chemical Communications, 2021, 58, 29-47.	2.2	16
318	Unusual structural transformation and luminescence response of magic-size silver(<scp>i</scp>) chalcogenide clusters <i>via</i> ligand-exchange. Chemical Communications, 2021, 57, 13337-13340.	2.2	8
319	Fluorescence–Phosphorescence Manipulation and Atom Probe Observation of Fully Inorganic Silver Quantum Clusters: Imitating from and Behaving beyond Organic Hosts. Advanced Optical Materials, 2022, 10, 2101632.	3.6	7
320	Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Advanced Science, 2022, 9, e2103971.	5.6	29
321	Bridging from Metallic Nanoclusters to Biomedical in Understanding Physicochemical Interactions at the Nano–Bio Interface. Particle and Particle Systems Characterization, 0, , 2100202.	1.2	3
322	Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coordination Chemistry Reviews, 2022, 453, 214315.	9.5	62
323	Identifying Highly Photoelectrochemical Active Sites of Two Au ₂₁ Nanocluster Isomers toward Bright Near-Infrared Electrochemiluminescence. Journal of the American Chemical Society, 2021, 143, 19474-19485.	6.6	50
324	Thermally Hypsochromic or Bathochromic Emissions? The Silver Nuclei Does Matter. Small, 2022, 18, e2104524.	5.2	6
325	Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. Journal of the American Chemical Society, 2021, 143, 20574-20578.	6.6	39

#	Article	IF	CITATIONS
326	Photoluminescence of metal nanoclusters. , 2021, , .		0
327	Near-infrared emitting gold–silver nanoclusters with large Stokes shifts for two-photon <i>in vivo</i> imaging. Chemical Communications, 2021, 57, 13012-13015.	2.2	6
328	The interesting luminescence behavior and rare nonlinear optical properties of the {Ag ₅₅ Mo ₆ } nanocluster. RSC Advances, 2021, 11, 38814-38819.	1.7	1
329	Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters. Chemical Communications, 2022, , .	2.2	1
330	Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. Nanoscale, 2022, 14, 1538-1565.	2.8	6
331	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie - International Edition, 2022, 61, e202114538.	7.2	27
332	Sensitive determination of tobramycin using homocystine capped gold nanoclusters as probe by second-order scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120840.	2.0	4
333	Circular Polarized Light Emission in Chiral Inorganic Nanomaterials. Advanced Materials, 2023, 35, e2108431.	11.1	61
334	Insights into the Impact of Gold Nanoclusters Au ₁₀ SG ₁₀ on Human Microglia. ACS Chemical Neuroscience, 2022, 13, 464-476.	1.7	7
335	Molecular surface modification of silver chalcogenolate clusters. Dalton Transactions, 2022, 51, 3241-3247.	1.6	1
336	Alloying dichalcogenolate-protected Ag ₂₁ eight-electron nanoclusters: a DFT investigation. Nanoscale, 2021, 14, 196-203.	2.8	14
337	Sputtering onto liquids: a critical review. Beilstein Journal of Nanotechnology, 2022, 13, 10-53.	1.5	21
338	Excellent Multiphoton Excitation Fluorescence with Large Multiphoton Absorption Cross Sections of Arginine-Modified Gold Nanoclusters for Bioimaging. ACS Applied Materials & Interfaces, 2022, 14, 2452-2463.	4.0	16
339	Facile one-pot synthesis of white emitting gold nanocluster solutions composed of red, green and blue emitters. Journal of Materials Chemistry C, 2022, 10, 2263-2270.	2.7	4
340	On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends in Food Science and Technology, 2022, 119, 243-256.	7.8	84
341	Near-Infrared II Gold Nanocluster Assemblies with Improved Luminescence and Biofate for In Vivo Ratiometric Imaging of H ₂ S. Analytical Chemistry, 2022, 94, 2641-2647.	3.2	51
342	Surface environment complication makes Ag ₂₉ nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chemical Science, 2022, 13, 1382-1389.	3.7	13
343	Atomically precise fluorescent metal nanoclusters. , 2022, , 207-242.		2

#	Article	IF	CITATIONS
344	Highly luminescent gold nanocluster assemblies for bioimaging in living organisms. Chemical Communications, 2022, 58, 811-814.	2.2	8
345	Epitaxial coordination assembly of a semi-conductive silver-chalcogenide layer-based MOF. Chemical Communications, 2022, 58, 1788-1791.	2.2	3
346	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie, 2022, 134, .	1.6	5
347	Understanding nascent plasmons and metallic bonding in atomically precise gold nanoclusters. Chemical Science, 2022, 13, 1925-1932.	3.7	8
348	A ratiometric fluorescent sensing system for the selective and ultrasensitive detection of pesticide residues via the synergetic effects of copper nanoclusters and carbon quantum dots. Food Chemistry, 2022, 379, 132139.	4.2	31
349	ç,"铜(l)纳米团簇çš"啿^ã€ç»"构规律与å‰ç"µæ€§è^. Chinese Science Bulletin, 2022, , .	0.4	1
350	Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. Nanomaterials, 2022, 12, 544.	1.9	29
351	In Situ Synthesis of Bismuth Nanoclusters within Carbon Nanoâ€Bundles from Metal–Organic Framework for Chlorideâ€Driven Electrochemical Deionization. Advanced Functional Materials, 2022, 32, .	7.8	46
352	Enhanced photoluminescence of hollow CaWO ₄ microspheres: the fast fabrication, structural manipulation, and exploration of the growth mechanism. Materials Chemistry Frontiers, 2022, 6, 1046-1055.	3.2	4
353	<i>In situ</i> insertion of copper to form heteroanionic <i>D</i> _{3h} -symmetric [Cu ₃ Mo ₈ O ₃₂] ^{10â^'} for a templated Ag ₅₅ nanocluster. Nanoscale, 2022, 14, 4469-4473.	2.8	3
354	Tuning the dielectric response in a nanocomposite material through nanoparticle morphology. RSC Advances, 2022, 12, 10778-10787.	1.7	3
355	Optical Activity from Anisotropic-Nanocluster-Assembled Supercrystals in Achiral Crystallographic Point Groups. Journal of the American Chemical Society, 2022, 144, 4845-4852.	6.6	21
356	A March to Shape Optical Artificial Olfactory System toward Ultrasensitive Detection of Improvised Explosives. Advanced Photonics Research, 2022, 3, .	1.7	10
358	Self-Assembly of Solvent-Stabilized Au Nanocluster as Efficient Förster Resonance Energy-Transfer Initiator for White Light Generation. Journal of Physical Chemistry Letters, 2022, 13, 3079-3088.	2.1	5
359	Realâ€Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Selfâ€Assembly of Atomâ€Precise Cu ₈ Nanocluster. Angewandte Chemie, 2022, 134, .	1.6	6
360	Inverse Design of Nanoclusters for Light-Controlled CO ₂ –HCOOH Interconversion. Journal of Physical Chemistry Letters, 2022, 13, 2523-2532.	2.1	3
361	Realâ€Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Selfâ€Assembly of Atomâ€Precise Cu ₈ Nanocluster. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
362	Regulation of Silver Nanoclusters with 4 Orders of Magnitude Variation of Fluorescence Lifetimes with Solvent-Induced Noncovalent Interaction. Journal of Physical Chemistry C, 2022, 126, 5198-5205.	1.5	6

# 363	ARTICLE Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nature Communications, 2022, 13, 1802.	IF 5.8	CITATIONS
364	Anionâ€Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
365	Theoretical study of M ₆ X ₂ and M ₆ XX′ structure (M = Au, Ag;) Tj ET properties under biaxial strain. Chinese Physics B, 2022, 31, 097101.	Qq0 0 0 r 0.7	gBT /Overloch 2
366	Influence of Pt Alloying on the Fluorescence of Fully Inorganic, Colloidal Gold Nanoclusters. ChemPhysChem, 2022, 23, .	1.0	8
367	Open questions on proteins interacting with nanoclusters. Communications Chemistry, 2022, 5, .	2.0	10
368	Anionâ€Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angewandte Chemie, 0, , .	1.6	6
369	Solvent-driven thiol protected luminescent cobalt nanoclusters. Journal of Molecular Liquids, 2022, 354, 118857.	2.3	3
370	"Gold Inlaid with Hair†Permanent Fluorescent Hair Dyeing Using Fast Protein-Assisted Biomineralization of Gold Nanoclusters. ACS Sustainable Chemistry and Engineering, 2022, 10, 305-313.	3.2	2
371	Role of Ligand on Photophysical Properties of Nanoclusters with fcc Kernel: A Case Study of Ag ₁₄ (SC ₆ H ₄ X) ₁₂ (PPh ₃) ₈ (X =) T	j E T @q0 0	0 11g BT /Over
372	Structural rearrangement of Ag60 nanocluster endowing different luminescence performances. Journal of Chemical Physics, 2021, 155, 234303.	1.2	5
373	Unveiling the Antibacterial Mechanism of Gold Nanoclusters via In Situ Transmission Electron Microscopy. ACS Sustainable Chemistry and Engineering, 2022, 10, 464-471.	3.2	35
374	Fabrication of a Family of Atomically Precise Silver Nanoclusters via Dual-Level Kinetical Control. Chemical Science, 0, , .	3.7	8
375	Variable control of the electronic states of a silver nanocluster <i>via</i> protonation/deprotonation of polyoxometalate ligands. Chemical Science, 2022, 13, 5557-5561.	3.7	19
376	Co-assembly of Ag ₂₉ Nanoclusters with Ru(bpy) ₃ ²⁺ for Two-Photon Up-Conversion and Singlet Oxygen Generation. , 2022, 4, 960-966.		4
379	Near-Infrared Light-Induced Photoresponse in Er ³⁺ /Li ⁺ -Codoped Y ₂ O ₃ /Poly(methyl methacrylate) Composite Film. Journal of Physical Chemistry Letters, 2022, 13, 3470-3478.	2.1	2
380	Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Advances in Colloid and Interface Science, 2022, 304, 102667.	7.0	16
381	Calculated linear and nonlinear optical absorption spectra of phosphine-ligated gold clusters. Physical Chemistry Chemical Physics, 2022, 24, 11234-11248.	1.3	1
382	Gold nanocluster-based ratiometric fluorescent probe for biosensing of Hg ²⁺ ions in living organisms. Analyst, The, 2022, 147, 2773-2778.	1.7	6

#	Article	IF	CITATIONS
383	The New Ag–S Cluster [Ag ₅₀ S ₁₃ (S ^t Bu) ₂₀][CF ₃ COO] ₄ with a Unique hcp Ag ₁₄ Kernel and Ag ₃₆ Keplerian-Shell-Based Structural Architecture and Its Photoresponsivity. Nano Letters, 2022, 22, 3721-3727.	4.5	21
384	In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Science China Chemistry, 2022, 65, 1196-1203.	4.2	11
385	Pure Metal Clusters with Atomic Precision for Nanomanufacturing. Nanomanufacturing and Metrology, 2022, 5, 230-239.	1.5	4
386	Ultrasmall Gold Nanoclustersâ€Enabled Fabrication of Ultrafine Gold Aerogels as Novel Selfâ€Supported Nanozymes. Small, 2022, 18, e2200525.	5.2	23
387	Insight into the Mechanism of Single-Metal-Atom Tailoring on the Surface of Au–Cu Alloy Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 4139-4144.	2.1	5
388	Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chinese Chemical Letters, 2023, 34, 107527.	4.8	18
389	Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chemical Communications, 2022, 58, 6998-7017.	2.2	6
390	Synthesis of silica-stabilized Ag ₄₄ clusters aided by a designed mercaptosilane ligand. Chemical Communications, 0, , .	2.2	0
391	Achiral copper clusters helically confined in self-assembled chiral nanotubes emitting circularly polarized phosphorescence. Inorganic Chemistry Frontiers, 2022, 9, 3330-3334.	3.0	5
392	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	1
393	Semiconductor catalysts based on surface-modified nanomaterials (SMNs) for sensors. , 2022, , 197-222.		0
394	[Cu ₁₈ H ₃ (S-Adm) ₁₂ (PPh ₃) ₄ Cl ₂]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chemical Science, 2022, 13, 7616-7625.	3.7	17
395	Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials, 2022, 287, 121603.	5.7	13
396	Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorganic Chemistry, 2022, 61, 8593-8603.	1.9	4
397	Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials, 2022, 12, 1738.	1.9	9
398	Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angewandte Chemie, 2022, 134, .	1.6	3
399	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
400	Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32

#	Article	IF	CITATIONS
401	Fluorescent silver nanoclusters: from preparation to analytical application. Scientia Sinica Chimica, 2022, , .	0.2	0
402	Electron Affinities of Ligated Icosahedral M ₁₃ Superatoms Revisited by Gas-Phase Anion Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 5049-5055.	2.1	4
406	[Pt ₁ Ag ₃₇ (SAdm) ₂₁ (Dppp) ₃ Cl ₆] ²⁺ intercluster transformation and photochemical properties. Inorganic Chemistry Frontiers, 2022, 9, 3907-3914.	: 3.0	6
407	Engineering colloidally stable, highly fluorescent and nontoxic Cu nanoclusters <i>via</i> reaction parameter optimization. RSC Advances, 2022, 12, 17585-17595.	1.7	5
408	An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization. Chemical Science, 2022, 13, 8355-8364.	3.7	21
409	New structural insights into the stability of Au ₂₂ (SR) ₁₆ nanocluster under ring model guidance. Physical Chemistry Chemical Physics, 2022, 24, 15920-15924.	1.3	7
410	Metal Nanoclusters as Biomaterials for Bioapplications: Atomic Precision as the Next Goal. , 2022, 4, 1279-1296.		34
411	Enhanced Fluorescence with Tunable Color in Doped Diphosphine-Protected Gold Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 5873-5880.	2.1	10
412	<i>N</i> -Heterocyclic Thione-Protected Ag ₄ Tetrahedra and Ag ₈ Cubes Cocrystallized in a Single Crystal. Inorganic Chemistry, 2022, 61, 9251-9256.	1.9	3
413	Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nature Communications, 2022, 13, .	5.8	35
414	Fluorescent carbon dots and noble metal nanoclusters for sensing applications: Minireview. Journal of the Chinese Chemical Society, 0, , .	0.8	2
415	Metal-Organic frameworks encapsulated Ag Nanoparticle-Nanoclusters with enhanced luminescence for simultaneous detection and removal of Chromium(VI). Microchemical Journal, 2022, 181, 107722.	2.3	7
416	Compositionâ€Dependent Enzyme Mimicking Activity and Radiosensitizing Effect of Bimetallic Clusters to Modulate Tumor Hypoxia for Enhanced Cancer Therapy. Advanced Materials, 2022, 34, .	11.1	32
417	Tailoring the NIRâ€II Photoluminescence of Single Thiolated Au ₂₅ Nanoclusters by Selective Binding to Proteins**. Chemistry - A European Journal, 2022, 28, .	1.7	13
418	Phosphine and thiol protected metal nanoclusters. , 2022, , 187-221.		0
419	Alloy nanoclusters-synthesis methods and structural evaluation. , 2022, , 349-384.		1
420	Polymer- and dendrimer-protected metal nanoclusters. , 2022, , 223-249.		0
421	Origin of luminescence of metal nanoclusters. , 2022, , 119-160.		0

#	Article	IF	CITATIONS
422	Self-assembly of metal nanoclusters in colloid science. , 2022, , 385-407.		0
423	General introduction—luminescent metal nanoclusters. , 2022, , 1-16.		0
424	Atomically Precise Au ₄₂ Nanorods with Longitudinal Excitons for an Intense Photothermal Effect. Journal of the American Chemical Society, 2022, 144, 12381-12389.	6.6	36
425	Secondary ligand engineering of nanoclusters: Effects on molecular structures, supramolecular aggregates, and optical properties. Aggregate, 2023, 4, .	5.2	8
426	On the Origin of Photoluminescence Enhancement in Biicosahedral Ag <i>_x</i> Au _{25â^'} <i>_x</i> Nanoclusters (<i>x</i> Â=Â0–13) and Their Application to Triplet–Triplet Annihilation Photon Upconversion. Advanced Optical Materials, 2022, 10, .	3.6	13
427	An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. Biosensors, 2022, 12, 511.	2.3	4
428	Serineâ€Assisted Red Luminescence of Copper Nanoclusters for Cr ⁶⁺ lon Detection and White‣ightâ€Emitting Diodes. ChemistrySelect, 2022, 7, .	0.7	1
429	Gold nanomaterials and their potential use as cryo-electron tomography labels. Journal of Structural Biology, 2022, 214, 107880.	1.3	3
430	"Template synthesis―of discrete metal clusters with two- or three-dimensional architectures. Coordination Chemistry Reviews, 2022, 469, 214673.	9.5	13
431	Ultralong-Term Super-Resolution Tracking of Lysosomes in Brain Organoids by Near-Infrared Noble Metal Nanoclusters. , 2022, 4, 1565-1573.		12
432	Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition. Nano Research, 2023, 16, 1748-1754.	5.8	10
433	Versatile Superatom Complex Nanocluster for the Construction of Framework Materials. Inorganic Chemistry, 2022, 61, 14233-14241.	1.9	1
434	Luminescence Enhancement of a Gold Nanocluster Hydrogel Facilitated by Water for Erasable Water Writing and Visual Solvent Differentiation. ACS Sustainable Chemistry and Engineering, 2022, 10, 11406-11414.	3.2	4
435	Controlling the Nature of Photoluminescence of Emissive Metal Nanoclusters. ChemPhysChem, 2022, 23, .	1.0	2
436	N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells. Nature Communications, 2022, 13, .	5.8	19
437	Catalytic Conversion of CO ₂ over Atomically Precise Gold-Based Cluster Catalysts. ACS Catalysis, 2022, 12, 10638-10653.	5.5	32
438	Nanoparticleâ€based single molecule fluorescent probes. Luminescence, 2022, 37, 1808-1821.	1.5	4
439	Accelerated prediction of atomically precise cluster structures using on-the-fly machine learning. Npj Computational Materials, 2022, 8, .	3.5	4

#	Article	IF	CITATIONS
440	Natural plant compounds in synthesis and luminescence modulation of metal nanoclusters: Toward sustainable nanoprobes for sensing and bioimaging. Materials Today Advances, 2022, 16, 100279.	2.5	3
441	Synthesis, Structure, and Optical Properties of a Molecular Cluster Cd4(p-MBT)10. Crystals, 2022, 12, 1236.	1.0	0
442	Facile synthesis of Au NCs@POMA-Fe-FA nanoregulators with precise-targeted/NIR-laser-triggered/tumor microenvironment-responsive abilities for enhanced photothermal /photodynamic/chemodynamic therapy with photothermal imaging guidence. Materials Today Nano, 2022, 20, 100258.	2.3	4
443	Template-assisted alloying of atom-precise silver nanoclusters: a new approach to generate cluster functionality. Chemical Science, 2022, 13, 11394-11404.	3.7	14
444	Horizontal expansion of biicosahedral M ₁₃ -based nanoclusters: resolving decades-long questions. Nanoscale Horizons, 2022, 7, 1397-1403.	4.1	3
445	Modulating luminescence and assembled shape of ultrasmall Au nanoparticles towards hierarchical information encryption. Chemical Science, 0, , .	3.7	4
446	Snapshots of key intermediates unveiling the growth from silver ions to Ag70 nanoclusters. Chemical Science, 2022, 13, 11110-11118.	3.7	9
447	Time-dependent density functional theory studies of the optical and electronic properties of the [M ₂₅ (MPA) ₁₈] ^{â^'} (M = Au, Ag, MPA =) Tj ETQq1 1 0.784314 rgBT /Overlc 24457-24468.	ock 10 Tf 5	50 462 Td (S
448	Co-reactant-Free Transformation in Atomically Precise Metal Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 9014-9027.	2.1	3
449	Synthesis of Orange-Red Emissive Au-SG and AuAg-SG Nanoclusters and Their Turn-OFF vs. Turn-ON Metal Ion Sensing. Journal of Fluorescence, 0, , .	1.3	Ο
450	Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nature Communications, 2022, 13, .	5.8	36
451	Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications. Aggregate, 2023, 4, .	5.2	10
452	Ag ₂₂ Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through Inâ€Situ Ligand Transesterification. Angewandte Chemie, 2022, 134, .	1.6	1
453	Robust Enantiomeric Two-Dimensional Assembly of Atomically Precise Silver Clusters. ACS Nano, 2022, 16, 15188-15196.	7.3	11
454	DFT Insights into the Variety in the Coordination Modes of the Equatorial Halides in [Au ₁₃ Ag ₁₂ (PR ₃) ₁₀ X ₈] ⁺ (X=Cl/Br) Clusters. ChemPhysChem, 2023, 24, .	1.0	2
455	Elongation of a Trigonal-Prismatic Copper Cluster by Diphosphine Ligands with Longer Spacers. Inorganic Chemistry, 2022, 61, 15144-15151.	1.9	5
456	Ag ₂₂ Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through Inâ€Situ Ligand Transesterification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
457	Structural prediction of anion thiolate protected gold clusters of [Au _{28+7n} (SR) _{17+3n}] ^{â^'} (n = 0–4). Journal of Chemical Physics, 2022, 157, 124303.	1.2	2

#	Article	IF	CITATIONS
458	Highly ontrollable Nanoassemblies of Luminescent Gold Nanoparticles with Abnormal Disassemblyâ€Induced Emission Enhancement for In Vivo Imaging Applications. Angewandte Chemie, 0, , .	1.6	1
459	Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano—bio interactions. Nano Research, 2023, 16, 999-1008.	5.8	9
460	Highly Controllable Nanoassemblies of Luminescent Gold Nanoparticles with Abnormal Disassemblyâ€Induced Emission Enhancement for In Vivo Imaging Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
461	Sulfide Boosting Near-Unity Photoluminescence Quantum Yield of Silver Nanocluster. Journal of the American Chemical Society, 2022, 144, 18305-18314.	6.6	29
462	Atomically Precise Enantiopure Bimetallic Janus Clusters. ACS Central Science, 2022, 8, 1258-1264.	5.3	6
463	Depletion Driven Assembly of Ultrasmall Metal Nanoclusters: From Kinetically Arrested Assemblies to Thermodynamically Stable, Spherical Superclusters. Journal of Physical Chemistry Letters, 2022, 13, 9411-9421.	2.1	5
464	Enhancing Near Infrared II Emission of Gold Nanoclusters via Encapsulation in Small Polymer Nanoparticles. Advanced Optical Materials, 2023, 11, .	3.6	9
465	Highly Efficient Luminescence from Charge-Transfer Gold Nanoclusters Enabled by Lewis Acid. Journal of Physical Chemistry Letters, 2022, 13, 9526-9533.	2.1	12
466	H-bond-induced luminescence enhancement in a Pt ₁ Ag ₃₀ nanocluster and its application in methanol detection. Nanoscale, 2022, 14, 16647-16654.	2.8	3
467	Hydrophilic Cyclodextrin Derivative Directed Lateral Recombination of 1-D Dipeptide Protected Gold Nanoclusters Assembly for Lysosomal Localization. , 2022, 4, 2244-2251.		0
468	Triarylboraneâ€Functionalized Au ₈ Ag ₈ (CCR) ₁₆ Nanocluster with Enhanced Lewis Acidity. Advanced Materials Interfaces, 0, , 2201657.	1.9	0
469	Atomically precise Au25(CSH)18 nanoclusters versus plasmonic Au nanocrystals: Evaluating charge impetus in solar water oxidation. Chinese Chemical Letters, 2023, 34, 107901.	4.8	1
470	Atom-Precise Chiral Lanthanide-Silver(I) Heterometallic Clusters Ln ₃ Ag ₅ . Inorganic Chemistry, 2022, 61, 17387-17391.	1.9	3
471	Nanocluster Transformation Induced by SbF ₆ [–] Anions toward Boosting Photochemical Activities. Journal of the American Chemical Society, 2022, 144, 20421-20433.	6.6	27
472	Control the Singleâ€, Twoâ€, and Threeâ€Photon Excited Fluorescence of Atomically Precise Metal Nanoclusters. Angewandte Chemie, 2022, 134, .	1.6	0
473	Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS Nano, 2022, 16, 20129-20140.	7.3	11
474	Alkynyl-Protected Ag ₁₂ Cu ₄ Cluster with Aggregation-Induced Emission Enhancement. Journal of Physical Chemistry C, 2022, 126, 20577-20583.	1.5	10
475	Engineering Coinage Metal Nanoclusters for Electroluminescent Light-Emitting Diodes. Nanomaterials, 2022, 12, 3837.	1.9	4

#	Article	IF	CITATIONS
476	Near-Infrared Dual Emission from the Au ₄₂ (SR) ₃₂ Nanocluster and Tailoring of Intersystem Crossing. Journal of the American Chemical Society, 2022, 144, 19243-19247.	6.6	19
477	Control the Singleâ€, Twoâ€, and Threeâ€Photon Excited Fluorescence of Atomically Precise Metal Nanoclusters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
478	The precise regulation of nonlinear optical properties of fluorescent nanoclusters. Chinese Science Bulletin, 2022, , .	0.4	0
479	Other metal nanoclusters. , 2023, , 497-518.		0
480	Nanocluster assembled solids. , 2023, , 49-82.		0
481	Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coordination Chemistry Reviews, 2023, 475, 214814.	9.5	46
482	Atomic precision in other nanocluster systems: Chalcogenides. , 2023, , 461-497.		0
483	Insight into the Role of Copper in the Transformation of a [Ag ₂₅ (2,5-DMBT) ₁₆ (DPPF) ₃] ⁺ Nanocluster: Doping or Oxidation. Inorganic Chemistry, 2022, 61, 18450-18457.	1.9	4
484	Noble Metal Nanoparticles for Point-of-Care Testing: Recent Advancements and Social Impacts. Bioengineering, 2022, 9, 666.	1.6	2
485	Interaction of Atomically Precise Thiolated Copper Nanoclusters with Proteins: A Comparative Study. ACS Omega, 2022, 7, 42550-42559.	1.6	2
486	Surface modifications of eight-electron palladium silver superatomic alloys. Communications Chemistry, 2022, 5, .	2.0	5
487	Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu ₁₃ nanoclusters with four vertex-sharing tetrahedrons. Chemical Science, 2023, 14, 994-1002.	3.7	11
488	Polymolybdate-guided assembly of a thiacalix[4]arene-protected Ag nanocluster for electrocatalytic CO ₂ reduction. Chemical Communications, 2023, 59, 575-578.	2.2	13
489	Manipulating Solvothermal Coordination-Catalyzed <i>In Situ</i> Tandem Reactions to Construct Dysprosium-Based Complexes with Different Shapes and Zero-Field SMM Behaviors. Inorganic Chemistry, 2022, 61, 20513-20523.	1.9	4
490	Triple-Helical Self-Assembly of Atomically Precise Nanoclusters. Journal of the American Chemical Society, 2022, 144, 23205-23213.	6.6	15
491	Morphology and Enzyme-Mimicking Activity of Copper Nanoassemblies Regulated by Peptide: Mechanism, Ultrasensitive Assaying of Trypsin, and Screening of Trypsin Inhibitors. Analytical Chemistry, 2022, 94, 18099-18106.	3.2	5
492	Effect of total charge on the electronic structure of thiolate-protected X@Ag ₁₂ superatoms (X = Ag, Au). Physical Chemistry Chemical Physics, 0, , .	1.3	0
493	High-nuclearity and thiol protected core–shell [Cu ₇₅ (S-Adm) ₃₂] ²⁺ : distorted octahedra fixed to Cu ₁₅ core <i>via</i> strong cuprophilic interactions. Nanoscale, 2023, 15, 2843-2848.	2.8	6

#	Article	IF	CITATIONS
494	Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence. Chemical Science, 2023, 14, 1613-1626.	3.7	9
495	Water-Soluble Photoluminescent Adenosine-Functionalized Gold Nanoclusters as Highly Sensitive and Selective Receptors for Riboflavin Detection in Rat Brain. Analytical Chemistry, 0, , .	3.2	0
496	Ligand effects on the photoluminescence of atomically precise silver nanoclusters. Nanoscale, 2023, 15, 3120-3129.	2.8	15
497	Size- and Shape-Dependent Photoexcitation Electron Transfer in Metal Nanoclusters. Journal of Physical Chemistry C, 2023, 127, 816-823.	1.5	7
498	Phosphine-Protected Atomically Precise Silver–Gold Alloy Nanoclusters and Their Luminescent Superstructures. Chemistry of Materials, 2023, 35, 313-326.	3.2	5
499	An Atomically Precise Pyrazolateâ€Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
500	Experimental and computational insights into luminescence in atomically precise bimetallic Au _{6â^'<i>n</i>} Cu _{<i>n</i>} (MPA) ₅ (<i>n</i> = 0–2) clusters. Physical Chemistry Chemical Physics, 2023, 25, 9513-9521.	1.3	4
501	Physical-chemical properties of metal nanoclusters. , 2023, , 153-199.		Ο
502	Aluminum Quantum Dots with Surface Controlled Blue-UV Photoluminescence. Journal of Physical Chemistry C, 2023, 127, 2687-2693.	1.5	0
503	An Atomically Precise Pyrazolateâ€Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie, 2023, 135, .	1.6	2
504	Emerging ultrasmall luminescent nanoprobes for <i>in vivo</i> bioimaging. Chemical Society Reviews, 2023, 52, 1672-1696.	18.7	27
505	Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. TrAC - Trends in Analytical Chemistry, 2023, 162, 117030.	5.8	9
506	Triple-decker complexes comprising heterocyclic middle-deck with coinage metals. Journal of Organometallic Chemistry, 2023, 990, 122667.	0.8	1
507	Effects of ligand replacement in thiolated gold nanoclusters. Chemical Physics Letters, 2023, 822, 140497.	1.2	1
508	Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nature Communications, 2023, 14, .	5.8	31
509	Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Communications Chemistry, 2023, 6, .	2.0	18
510	Introduction to metal nanoclusters—Concepts and prospects. , 2023, , 1-9.		0
511	Summary and perspectives. , 2023, , 373-377.		0

#	Article	IF	CITATIONS
512	NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. Journal of Chemical Theory and Computation, 2023, 19, 1582-1591.	2.3	4
513	Understanding ligand-protected noble metal nanoclusters at work. Nature Reviews Materials, 2023, 8, 372-389.	23.3	40
514	Vertically Aligned Nanoplates of Atomically Precise Co ₆ S ₈ Cluster for Practical Arsenic Sensing. , 2023, 5, 893-899.		1
515	Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. TrAC - Trends in Analytical Chemistry, 2023, 161, 116999.	5.8	15
516	Insights into the effect of regulation of molecular composition on the properties of (AuAg) ₉ clusters. Dalton Transactions, 2023, 52, 4251-4259.	1.6	1
517	Controlled-fabrication and assembly-induced emission enhancement (AIEE) of near-infrared emitted gold nanoclusters capped by thiolactic acid. Journal of Molecular Liquids, 2023, 377, 121516.	2.3	5
518	Photoâ€Activated Circularly Polarized Luminescence Film Based on Aggregationâ€Induced Emission Copper(I) Clusterâ€Assembled Materials. Angewandte Chemie, 2023, 135, .	1.6	0
519	Photoâ€Activated Circularly Polarized Luminescence Film Based on Aggregationâ€Induced Emission Copper(I) Clusterâ€Assembled Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
520	In-situ fabrication of novel Au nanoclusters-Cu2+@sodium alginate/hyaluronic acid nanohybrid gels for cuproptosis enhanced photothermal/photodynamic/chemodynamic therapy via tumor microenvironment regulation. Journal of Colloid and Interface Science, 2023, 641, 215-228.	5.0	15
521	Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Nanoclusters. ACS Nano, 2023, 17, 5834-5841.	7.3	5
522	Crown Ether-Capped Gold Nanoclusters as a Multimodal Platform for Bioimaging. ACS Omega, 2023, 8, 11503-11511.	1.6	1
523	Smart Reversible Transformations between Chiral Superstructures of Copper Clusters for Optical and Chiroptical Switching. Journal of the American Chemical Society, 2023, 145, 6166-6176.	6.6	20
524	(AuAg) ₄₄ (SPh ^{<i>t</i>} Bu) ₂₆ versus (AuAg) ₄₄ (SPhF ₂) ₃₀ : Tailoring the Geometric Structures and Optical Properties of Nanocluster Analogues. , 2023, 1, 139-145.		1
525	Amorphous Copperâ€Based Nanoparticles with Clusterizationâ€Triggered Phosphorescence for Ultrasensing 2,4,6â€Trinitrotoluene. Advanced Materials, 2023, 35, .	11.1	11
526	Structurally Flexible Au–Cu Alloy Nanoclusters Enabling Efficient Triplet Sensitization and Photon Upconversion. Journal of the American Chemical Society, 2023, 145, 6994-7004.	6.6	7
527	Regulating the Electronic Structure of Metal Nanoclusters by Longitudinal Single-Dithiolate Substitution. Journal of Physical Chemistry Letters, 2023, 14, 3216-3221.	2.1	2
528	"One-Pot―In Situ Tandem Reaction─Dy(III) Coordination-Catalyzed Multicomponent Condensation of Salicylaldehyde Derivatives to Obtain Ketals. Inorganic Chemistry, 2023, 62, 5863-5871.	1.9	1
532	è§å‰é‡'纳米团簇探é'^的生物æˆå∫应用èį›å±•ï¼^特é,€ï¼‰. Hongwai Yu Jiguang Gongcheng/lı	nfr ør.e d an	d Læser Engi

#	Article	IF	CITATIONS
533	A luminescent Cu ₄ cluster film grown by electrospray deposition: a nitroaromatic vapour sensor. Nanoscale, 2023, 15, 8141-8147.	2.8	1
534	Ag–S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction. Inorganic Chemistry, 2023, 62, 6092-6101.	1.9	0
535	Luminescent [CO ₂ @Ag ₂₀ (SAdm) ₁₀ (CF ₃ COO) ₁₀ (DMA) <su nanocluster: synthetic strategy and its implication towards white light emission. Nanoscale, 2023, 15, 8377-8386.</su 	b>22.8	>] ₃
536	Visible-NIR luminescent nanomaterials for cancer diagnostic applications. , 2023, , 89-150.		0
550	Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, , .	6.4	0
552	Predesigned Cluster-Based Spacers for Versatile Luminescent Metallacages. Journal of the American Chemical Society, 2023, 145, 13514-13519.	6.6	4
553	Atomic-precise Pt ₂ Cu ₄ cluster-based fluorescent sensor for rapid interleukin-6 detection. Analytical Methods, 0, , .	1.3	0
559	Triple Ligand Engineered Gold Nanoclusters with Enhanced Fluorescence and Device Compatibility for Efficient Electroluminescence Light-Emitting Diodes. Nano Letters, 2023, 23, 4423-4430.	4.5	1
563	Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. Journal of the American Chemical Society, 2023, 145, 11879-11898.	6.6	26
569	Nanohybrids of atomically precise metal nanoclusters. Communications Chemistry, 2023, 6, .	2.0	7
571	Emerging NIR-II Luminescent Gold Nanoclusters for In Vivo Bioimaging. Journal of Analysis and Testing, 2023, 7, 260-271.	2.5	2
578	Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Transactions, 0, , .	1.6	0
580	Progress in optical properties of chiral metal clusters: circular dichroism and circularly polarized luminescence. Materials Chemistry Frontiers, 2023, 7, 6389-6410.	3.2	1
581	Advances in Cu nanocluster catalyst design: recent progress and promising applications. Nanoscale Horizons, 2023, 8, 1509-1522.	4.1	6
591	Atomically precise metal nanoclusters as catalysts for electrocatalytic CO ₂ reduction. Green Chemistry, 2024, 26, 122-163.	4.6	2
614	A concise guide to chemical reactions of atomically precise noble metal nanoclusters. Nanoscale, 0, , .	2.8	0
618	Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. Nano-Micro Letters, 2024, 16, .	14.4	0
627	Pyrazolate vs phenylethynide: direct exchange of anionic bridging ligand in cyclic trinuclear silver complex. Chemical Communications, Q	2.2	0

#	Article	IF	CITATIONS
641	[Au ₁₄ (2-SAdm) ₉ (Dppe) ₂] ⁺ : a gold nanocluster with a crystallization-induced emission enhancement phenomenon. Chemical Communications, 2024, 60, 1337-1340.	2.2	0