Interplay between \hat{I}^2 -lactamases and new \hat{I}^2 -lactamase

Nature Reviews Microbiology 17, 295-306 DOI: 10.1038/s41579-019-0159-8

Citation Report

#	Article	IF	CITATIONS
1	Molecular Basis of Class A \hat{l}^2 -Lactamase Inhibition by Relebactam. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	45
2	Detection of carbapenemase-producing Enterobacterales and the BD Phoenix CPO Detect panel. Expert Review of Molecular Diagnostics, 2019, 19, 659-665.	1.5	4
3	Structure-Based Development of (1-(3′-Mercaptopropanamido)methyl)boronic Acid Derived Broad-Spectrum, Dual-Action Inhibitors of Metallo- and Serine-β-lactamases. Journal of Medicinal Chemistry, 2019, 62, 7160-7184.	2.9	41
4	Synthesis of Cyclic <i>N</i> â€Hydroxylated Ureas and Oxazolidinone Oximes Enabled by Chemoselective Iodine(III)â€Mediated Radical or Cationic Cyclizations of Unsaturated <i>N</i> â€Alkoxyureas. Advanced Synthesis and Catalysis, 2019, 361, 5160-5169.	2.1	16
5	Halogen-Substituted Triazolethioacetamides as a Potent Skeleton for the Development of Metallo-Î ² -Lactamase Inhibitors. Molecules, 2019, 24, 1174.	1.7	7
6	Repurposing Peptidomimetic as Potential Inhibitor of New Delhi Metallo-β-lactamases in Gram-Negative Bacteria. ACS Infectious Diseases, 2019, 5, 2061-2066.	1.8	13
7	Impact of relebactam-mediated inhibition of Mycobacterium abscessus BlaMab β-lactamase on the in vitro and intracellular efficacy of imipenem. Journal of Antimicrobial Chemotherapy, 2020, 75, 379-383.	1.3	3
8	Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases. Journal of Medicinal Chemistry, 2019, 62, 8544-8556.	2.9	139
9	MeLAD: an integrated resource for metalloenzyme-ligand associations. Bioinformatics, 2020, 36, 904-909.	1.8	23
10	Recognizing and Overcoming Resistance to New Beta-Lactam/Beta-Lactamase Inhibitor Combinations. Current Infectious Disease Reports, 2019, 21, 39.	1.3	21
11	The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opinion on Pharmacotherapy, 2019, 20, 2169-2184.	0.9	89
12	TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale. Water Research, 2019, 166, 115037.	5.3	67
13	Structure-based classification of class A beta-lactamases, an update. Current Research in Translational Medicine, 2019, 67, 115-122.	1.2	20
14	The role of new \hat{l}^2 -lactamase inhibitors in gram-negative infections. Current Opinion in Infectious Diseases, 2019, 32, 638-646.	1.3	27
15	Efficacy of antibiotics in acute appendicitis treatment. American Journal of Surgery, 2020, 219, 690.	0.9	0
16	β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. Journal of Medicinal Chemistry, 2020, 63, 1859-1881.	2.9	99
17	Simultaneous achievement of high strength and high ductility in copper matrix composites with carbon nanotubes/Cu composite foams as reinforcing skeletons. Nanotechnology, 2020, 31, 045701.	1.3	15
18	The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine, 2020, 51, 102599.	2.7	87

#	Article	IF	CITATIONS
19	VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-Î ² -Lactamases, Restores Activity of Cefepime in <i>Enterobacterales</i> and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	123
20	The global preclinical antibacterial pipeline. Nature Reviews Microbiology, 2020, 18, 275-285.	13.6	442
21	Overcoming Î ² -Lactam resistance in Pseudomonas aeruginosa using non-canonical tobramycin-based antibiotic adjuvants. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127575.	1.0	11
22	Enzyme-targeted fluorescent small-molecule probes for bacterial imaging. Current Opinion in Chemical Biology, 2020, 57, 155-165.	2.8	21
23	Design, synthesis, biological evaluation and in silico studies of certain aryl sulfonyl hydrazones conjugated with 1,3-diaryl pyrazoles as potent metallo-β-lactamase inhibitors. Bioorganic Chemistry, 2020, 105, 104386.	2.0	16
24	Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of blaTEM-1B. Nature Communications, 2020, 11, 4915.	5.8	50
25	Structure-based design of covalent inhibitors targeting metallo-β-lactamases. European Journal of Medicinal Chemistry, 2020, 203, 112573.	2.6	7
26	1,2,3-Triazole β-lactam conjugates as antimicrobial agents. Heliyon, 2020, 6, e04241.	1.4	13
27	Metallo-ß-lactamases: a review. Molecular Biology Reports, 2020, 47, 6281-6294.	1.0	64
28	Can We Exploit Î ² -Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors?. Antibiotics, 2020, 9, 833.	1.5	6
29	Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms, 2020, 8, 1852.	1.6	40
30	Genome-based characterization of two Colombian clinical Providencia rettgeri isolates co-harboring NDM-1, VIM-2, and other β-lactamases. BMC Microbiology, 2020, 20, 345.	1.3	12
31	Molecular Mechanisms, Epidemiology, and Clinical Importance of Î ² -Lactam Resistance in Enterobacteriaceae. International Journal of Molecular Sciences, 2020, 21, 5090.	1.8	60
32	Recent advances in the development of β-lactamase inhibitors. Journal of Microbiology, 2020, 58, 633-647.	1.3	17
33	4-(N-Alkyl- and -Acyl-amino)-1,2,4-triazole-3-thione Analogs as Metallo-Î ² -Lactamase Inhibitors: Impact of 4-Linker on Potency and Spectrum of Inhibition. Biomolecules, 2020, 10, 1094.	1.8	15
34	ANT2681: SAR Studies Leading to the Identification of a Metallo-β-lactamase Inhibitor with Potential for Clinical Use in Combination with Meropenem for the Treatment of Infections Caused by NDM-Producing <i>Enterobacteriaceae</i> . ACS Infectious Diseases, 2020, 6, 2419-2430.	1.8	31
35	In Vitro Activity of the Ultra-Broad-Spectrum Beta-Lactamase Inhibitor QPX7728 in Combination with Meropenem against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	14
36	Graphene Oxide Quantum Dotâ€Based Functional Nanomaterials for Effective Antimicrobial Applications. Chemical Record, 2020, 20, 1505-1515.	2.9	9

#	Article	IF	CITATIONS
37	Discovery of mercaptopropanamide-substituted aryl tetrazoles as new broad-spectrum metallo-Î ² -lactamase inhibitors. RSC Advances, 2020, 10, 31377-31384.	1.7	5
38	Antibacterial Activity of Nitrogen-Doped Carbon Dots Enhanced by Atomic Dispersion of Copper. Langmuir, 2020, 36, 11629-11636.	1.6	32
39	<i>In Vitro</i> Activity of WCK 5222 (Cefepime-Zidebactam) against Worldwide Collected Gram-Negative Bacilli Not Susceptible to Carbapenems. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	40
40	β-Lactamase triggered visual detection of bacteria using cephalosporin functionalized biomaterials. Chemical Communications, 2020, 56, 11098-11101.	2.2	9
41	Developing Diagnostic and Therapeutic Approaches to Bacterial Infections for a New Era: Implications of Globalization. Antibiotics, 2020, 9, 916.	1.5	11
42	Analysis of β-lactone formation by clinically observed carbapenemases informs on a novel antibiotic resistance mechanism. Journal of Biological Chemistry, 2020, 295, 16604-16613.	1.6	12
43	Potency of Vaborbactam Is Less Affected than That of Avibactam in Strains Producing KPC-2 Mutations That Confer Resistance to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
44	NMR Characterization of the Influence of Zinc(II) Ions on the Structural and Dynamic Behavior of the New Delhi Metallo-β-Lactamase-1 and on the Binding with Flavonols as Inhibitors. ACS Omega, 2020, 5, 10466-10480.	1.6	19
45	Diversity and abundance of resistome in rhizosphere soil. Science China Life Sciences, 2020, 63, 1946-1949.	2.3	1
46	Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 2020, 33, .	5.7	898
47	Systematic research of H2dedpa derivatives as potent inhibitors of New Delhi Metallo-β-lactamase-1. Bioorganic Chemistry, 2020, 101, 103965.	2.0	5
48	Rutheniumâ€Catalyzed <i>meta</i> â€Selective Câ^'H Nitration of Biologically Important Aryltetrazoles. Advanced Synthesis and Catalysis, 2020, 362, 2984-2989.	2.1	16
49	Scaffold Hopping Computational Approach for Searching Novel β-Lactamase Inhibitors. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2020, 14, 127-135.	0.2	0
50	<i>In Vitro</i> Activity of the Ultrabroad-Spectrum-Beta-Lactamase Inhibitor QPX7728 against Carbapenem-Resistant <i>Enterobacterales</i> with Varying Intrinsic and Acquired Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	25
51	Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules, 2020, 10, 854.	1.8	50
52	Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-l²-lactamases. Bioorganic and Medicinal Chemistry, 2020, 28, 115598.	1.4	10
53	In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2020, 75, 2616-2621.	1.3	44
54	In vitro activity of the novel β-lactamase inhibitor taniborbactam (VNRX-5133), in combination with cefepime or meropenem, against MDR Gram-negative bacterial isolates from China. Journal of Antimicrobial Chemotherapy, 2020, 75, 1850-1858.	1.3	32

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Epidemiology of β-Lactamase-Producing Pathogens. Clinical Microbiology Reviews, 2020, 3	33, .	5.7	425
56	A novel fluorescent probe for the detection of AmpC beta-lactamase and the application in beta-lactamase inhibitors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectr 2020, 234, 118257.	screening roscopy,	2.0	0
57	6-Arylmethylidene Penicillin-Based Sulfone Inhibitors for Repurposing Antibiotic Efficiency i Pathogens. Journal of Medicinal Chemistry, 2020, 63, 3737-3755.	n Priority	2.9	11
58	Interactions between Avibactam and Ceftazidime-Hydrolyzing Class D β-Lactamases. Biom 10, 483.	olecules, 2020,	1.8	7
59	Specific NDM-1 Inhibitor of Isoliquiritin Enhances the Activity of Meropenem against NDM- Enterobacteriaceae in vitro. International Journal of Environmental Research and Public Hea 17, 2162.	1-positive alth, 2020,	1.2	13
60	The β-Lactamase Inhibitor Boronic Acid Derivative SM23 as a New Anti-Pseudomonas aeru Frontiers in Microbiology, 2020, 11, 35.	ginosa Biofilm.	1.5	22
61	Mechanical penetration of β-lactam–resistant Gram-negative bacteria by programmable Science Advances, 2020, 6, .	nanowires.	4.7	23
62	Discovery and characterization of New Delhi metallo-β-lactamase-1 inhibitor peptides that meropenem-dependent killing of carbapenemase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2020, 75, 2843-2851.	potentiate	1.3	13
63	Principles and current strategies targeting metalloâ€Î²â€lactamase mediated antibacterial Medicinal Research Reviews, 2020, 40, 1558-1592.	resistance.	5.0	42
64	In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection o ESBL-positive and carbapenemase-producing Enterobacteriaceae. International Journal of Antimicrobial Agents, 2020, 56, 105925.	f	1.1	29
65	Suppression of β-Lactam Resistance by Aspergillomarasmine A Is Influenced by both the Metallo-β-Lactamase Target and the Antibiotic Partner. Antimicrobial Agents and Chemoth 64, .	ierapy, 2020,	1.4	15
66	Cyclic boronates as versatile scaffolds for KPC-2 β-lactamase inhibition. RSC Medicinal Che 11, 491-496.	mistry, 2020,	1.7	20
67	Preparation and Mechanistic Studies of 2â€Substituted Bisthiazolidines by Imine Exchange Journal of Organic Chemistry, 2020, 2020, 1084-1092.	2. European	1.2	4
68	In vitro activity of AST-120 that suppresses indole signaling in Escherichia coli, which atten tolerance and virulence. PLoS ONE, 2020, 15, e0232461.	uates drug	1.1	11
69	Diazabicyclooctane Functionalization for Inhibition of β-Lactamases from Enterobacteria. J Medicinal Chemistry, 2020, 63, 5257-5273.	ournal of	2.9	17
70	In vitro activity of ceftazidime/avibactam and comparators against Gram-negative bacterial collected from Latin American centres between 2015 and 2017. Journal of Antimicrobial Cl 2020, 75, 1859-1873.	isolates hemotherapy,	1.3	11
71	Biochemical Characterization of QPX7728, a New Ultrabroad-Spectrum Beta-Lactamase Inl Serine and Metallo-Beta-Lactamases. Antimicrobial Agents and Chemotherapy, 2020, 64, .	hibitor of	1.4	72
72	Biochemical Activity of Vaborbactam. Antimicrobial Agents and Chemotherapy, 2020, 64, .		1.4	48

ARTICLE IF CITATIONS Multicenter Evaluation of the New Etest Gradient Diffusion Method for Piperacillin-Tazobactam Susceptibility Testing of <i>Enterobacterales</i>, <i>Pseudomonas aeruginosa</i>, and 1.8 16 <i>Acinetobacter baumannii</i> Complex. Journal of Clinical Microbiology, 2020, 58, . Spectrum of Beta-Lactamase Inhibition by the Cyclic Boronate QPX7728, an Ultrabroad-Spectrum Beta-Lactamase Inhibitor of Serine and Metallo-Beta-Lactamases: Enhancement of Activity of Multiple 1.4 Antibiotics against Isogenic Strains Expressing Single Beta-Lactamases. Antimicrobial Agents and Chemotherapy, 2020, 64. Iminodiacetic Acid as a Novel Metalâ€Binding Pharmacophore for New Delhi Metalloâ€Î²â€lactamase Inhibitor 1.6 17 Development. ChemMedChem, 2020, 15, 1272-1282. Plazomicin: an intravenous aminoglycoside antibacterial for the treatment of complicated urinary 2.0 tract infections. Expert Review of Anti-Infective Therapy, 2020, 18, 705-720. Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-Î²-Lactamase Inhibitors for Controlling 1.8 30 Bacterial Carbapeném Resistance. MBio, 2020, 11, . In vitro activity of aztreonam/avibactam against a global collection of Klebsiella pneumoniae collected from defined culture sources in 2016 and 2017. Journal of Global Antimicrobial Resistance, 2021, 24, 14-22. Desirable drug–drug interactions or when a matter of concern becomes a renewed therapeutic 3.2 8 strategy. Drug Discovery Today, 2021, 26, 315-328. Polypyridine ligands as potential metallo-β-lactamase inhibitors. Journal of Inorganic Biochemistry, 2021, 215, 111315. 1.5 Performance of the BD Phoenix CPO detect assay for detection and classification of carbapenemase-producing organisms. European Journal of Clinical Microbiology and Infectious 7 1.3 Diseases, 2021, 40, 979-985. Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metalloâ€Î²â€Lactamase NDMâ€1. 1.6 ChemMedChem, 2021, 16, 654-661. Interactions of the Diazabicyclooctane Serine Î²-Lactamase Inhibitor ETX1317 with Target Enzymes. ACS 9 1.8 Infectious Diseases, 2021, 7, 114-122. Ceftazidime–Avibactam Resistance Mutations V240G, D179Y, and D179Y/T243M in KPC-3 Î²-Lactamase Do Not 1.8 Alter Cefpodoxime–ETX1317 Susceptibility. ACS Infectious Diseases, 2021, 7, 79-87. In Vitro Antibacterial Activity and In Vivo Efficacy of Sulbactam-Durlobactam against Pathogenic 1.4 5 Burkholderia Species. Antimicrobial Agents and Chemotherapy, 2021, 65, . Highly Oxidized Î³-Lactam-Containing Natural Products: Total Synthesis and Biological Evaluation. 0.4 Heterocycles, 2021, 102, 1235. Inhibition of the <i>Clostridioides difficile</i> Class D Î²-Lactamase CDD-1 by Avibactam. ACS Infectious 2 1.8 Diseases, 2021, 7, 1164-1176. Catalytic mechanism of the colistin resistance protein MCR-1. Organic and Biomolecular Chemistry, 2021, 19, 3813-3819. Enhancing bactericidal strategy with selected aromatic compounds: <i>in vitro</i>and<i>in 2.0 3 silico</i>study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5547-5555.

CITATION REPORT

#

73

74

75

77

79

81

83

85

87

	CITATION	Report	
#	Article	IF	CITATIONS
91	Importance of microbial secondary metabolites in health care applications. , 2021, , 349-383.		0
92	Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics, 2021, 11, 4910-4928.	4.6	70
93	Antimicrobial Effect of a Novel Chitosan Derivative and Its Synergistic Effect with Antibiotics. ACS Applied Materials & amp; Interfaces, 2021, 13, 3237-3245.	4.0	57
94	The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chemical Reviews, 2021, 121, 5597-5631.	23.0	31
95	Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas. Frontiers in Microbiology, 2021, 12, 606360.	1.5	6
96	Aerobacterial Vaginosis among Women Attending an Infertility Clinic at a Tertiary Care Hospital in Chennai, India and Susceptibility Pattern of Isolates. Journal of Pure and Applied Microbiology, 2021, 15, 194-200.	0.3	1
97	Bicyclic Boronate Î²â€Łactamase Inhibitors: The Present Hope against Deadly Bacterial Pathogens. Advanced Therapeutics, 2021, 4, 2000246.	1.6	12
98	Detection of Extended-Spectrum ß-Lactamases among Acinetobacter Baumannii Isolated from Hospitals of Qazvin, Iran. Ethiopian Journal of Health Sciences, 2021, 31, 229-236.	0.2	2
99	Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics, 2021, 10, 255.	1.5	10
100	Study on carbapenemase-producing bacteria by matrix-assisted laser desorption/ionization approach. PLoS ONE, 2021, 16, e0247369.	1.1	7
101	<i>In Crystallo</i> Time-Resolved Interaction of the <i>Clostridioides difficile</i> CDD-1 enzyme with Avibactam Provides New Insights into the Catalytic Mechanism of Class D β-lactamases. ACS Infectious Diseases, 2021, 7, 1765-1776.	1.8	5
102	Multimodal Interventions to Prevent and Control Carbapenem-Resistant Enterobacteriaceae and Extended-Spectrum β-Lactamase Producer-Associated Infections at a Tertiary Care Hospital in Egypt. Antibiotics, 2021, 10, 509.	1.5	8
103	Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Advanced Drug Delivery Reviews, 2021, 172, 339-360.	6.6	42
104	Structural Basis of Metallo-β-lactamase Inhibition by <i>N</i> -Sulfamoylpyrrole-2-carboxylates. ACS Infectious Diseases, 2021, 7, 1809-1817.	1.8	17
105	Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	15
106	Emergence of transferable ceftazidime–avibactam resistance in KPC-producing Klebsiella pneumoniae due to a novel CMY AmpC β-lactamase in China. Clinical Microbiology and Infection, 2022, 28, 136.e1-136.e6.	2.8	13
107	Multidrug-resistant <i>Klebsiella pneumoniae</i> : mechanisms of resistance including updated data for novel l²-lactam-l²-lactamase inhibitor combinations. Expert Review of Anti-Infective Therapy, 2021, 19, 1457-1468.	2.0	28
108	Co-occurrence of Carbapenemase-encoding Genes Among Klebsiella pneumoniae Clinical Isolates: Positive Relationship of bla NDM and bla SIM with Imipenem Resistance. Jundishapur Journal of Microbiology, 2021, 14, .	0.2	3

#	Article	IF	CITATIONS
109	Discovery of Novel Chemical Series of OXA-48 β-Lactamase Inhibitors by High-Throughput Screening. Pharmaceuticals, 2021, 14, 612.	1.7	4
110	Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chemical Reviews, 2021, 121, 7957-8094.	23.0	114
111	Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): An Orally Bioavailable β-Lactamase Inhibitor for Enterobacterales Expressing Ambler Class A, C, and D Enzymes. Journal of Medicinal Chemistry, 2021, 64, 10155-10166.	2.9	17
112	Detection of carbapenemase producing enterobacteria using an ion sensitive field effect transistor sensor. Scientific Reports, 2021, 11, 12061.	1.6	4
113	Pharmacokinetics of Non-Î ² -Lactam Î ² -Lactamase Inhibitors. Antibiotics, 2021, 10, 769.	1.5	11
114	Discovery of 3-aryl substituted benzoxaboroles as broad-spectrum inhibitors of serine- and metallo-1²-lactamases. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127956.	1.0	13
115	Enzyme-catalyzed biodegradation of penicillin fermentation residues by β-lactamase OtLac from Ochrobactrum tritici. Microbial Cell Factories, 2021, 20, 117.	1.9	6
116	Spectroscopic and biochemical characterization of metallo-β-lactamase IMP-1 with dicarboxylic, sulfonyl, and thiol inhibitors. Bioorganic and Medicinal Chemistry, 2021, 40, 116183.	1.4	5
117	Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase (ESBL) Genes in E. coli Isolated from Equine Fecal Samples in Turkey. Journal of Equine Veterinary Science, 2021, 101, 103461.	0.4	4
118	Carbapenemase producing <i>Klebsiella pneumoniae</i> : implication on future therapeutic strategies. Expert Review of Anti-Infective Therapy, 2022, 20, 53-69.	2.0	25
119	Synthesis of Arylidene-β-lactams via <i>exo</i> -Selective Matsuda-Heck Arylation of Methylene-β-lactams. Journal of Organic Chemistry, 2021, 86, 8786-8796.	1.7	7
120	Epidemiology of Carbapenem Resistance Determinants Identified in Meropenem-Nonsusceptible <i>Enterobacterales</i> Collected as Part of a Global Surveillance Program, 2012 to 2017. Antimicrobial Agents and Chemotherapy, 2021, 65, e0200020.	1.4	61
121	High prevalence of blaCTX-M and blaSHV among ESBL producing E. coli isolates from beef cattle in China's Sichuan-Chongqing Circle. Scientific Reports, 2021, 11, 13725.	1.6	10
122	Novel ß-Lactamase Inhibitors: New Weapons in the Arms Race against Antimicrobial Resistance. Clinical Microbiology Newsletter, 2021, 43, 119-125.	0.4	4
123	Co-Existence of Certain ESBLs, MBLs and Plasmid Mediated Quinolone Resistance Genes among MDR E. coli Isolated from Different Clinical Specimens in Egypt. Antibiotics, 2021, 10, 835.	1.5	19
124	Molecular epidemiology of cefotaxime-resistant but ceftazidime-susceptible Enterobacterales and evaluation of the in vitro bactericidal activity of ceftazidime and cefepime. Brazilian Journal of Microbiology, 2021, 52, 1853-1863.	0.8	2
125	The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infectious Diseases, The, 2022, 22, e28-e34.	4.6	103
126	Sigmoid <i>E</i> _{max} Modeling To Define the Fixed Concentration of Enmetazobactam for MIC Testing in Combination with Cefepime. Antimicrobial Agents and Chemotherapy, 2021, 65, e0092621.	1.4	5

#	Article	IF	CITATIONS
127	Durlobactam, a New Diazabicyclooctane β-Lactamase Inhibitor for the Treatment of Acinetobacter Infections in Combination With Sulbactam. Frontiers in Microbiology, 2021, 12, 709974.	1.5	39
128	QPX7728, An Ultra-Broad-Spectrum B-Lactamase Inhibitor for Intravenous and Oral Therapy: Overview of Biochemical and Microbiological Characteristics. Frontiers in Microbiology, 2021, 12, 697180.	1.5	25
129	2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-β-Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infectious Diseases, 2021, 7, 2697-2706.	1.8	16
131	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
132	Molecular Basis of Bicyclic Boronate β-Lactamase Inhibitors of Ultrabroad Efficacy – Insights From Molecular Dynamics Simulation Studies. Frontiers in Microbiology, 2021, 12, 721826.	1.5	2
133	<i>Stenotrophomonas maltophilia</i> bacteraemia: 61 cases in a tertiary hospital in Denmark. Infectious Diseases, 2022, 54, 26-35.	1.4	6
134	Modulation of a Mycobacterial ADP-Ribosyltransferase to Augment Rifamycin Antibiotic Resistance. ACS Infectious Diseases, 2021, 7, 2604-2611.	1.8	8
135	The multiple benefits of second-generation β-lactamase inhibitors in treatment of multidrug-resistant bacteria. Infectious Diseases Now, 2021, 51, 510-517.	0.7	8
136	Rational design of a new antibiotic class for drug-resistant infections. Nature, 2021, 597, 698-702.	13.7	69
137	Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active-Site Glutamic Acid. Antimicrobial Agents and Chemotherapy, 2021, 65, e0093621.	1.4	7
138	On the Offensive: the Role of Outer Membrane Vesicles in the Successful Dissemination of New Delhi Metallo-β-lactamase (NDM-1). MBio, 2021, 12, e0183621.	1.8	17
139	The Prevalence and Characterization of Fecal Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Pigs on Farms of Different Sizes in Latvia. Antibiotics, 2021, 10, 1099.	1.5	3
140	Practical Agar-Based Disk Diffusion Tests Using Sulfamoyl Heteroarylcarboxylic Acids for Identification of Subclass B1 Metallo-β-Lactamase-Producing <i>Enterobacterales</i> . Journal of Clinical Microbiology, 2021, 59, e0076121.	1.8	0
141	Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay. Antibiotics, 2021, 10, 1110.	1.5	4
142	H2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity inÂvitro and inÂvivo against metallo-β-lactamase-producing Enterobacterales. European Journal of Medicinal Chemistry, 2021, 224, 113702.	2.6	12
143	Rapid personalized AMR diagnostics using two-dimensional antibiotic resistance profiling strategy employing a thermometric NDM-1 biosensor. Biosensors and Bioelectronics, 2021, 193, 113526.	5.3	6
144	Epidemiology and Mechanisms of Ceftazidime–Avibactam Resistance in Gram-Negative Bacteria. Engineering, 2021, , .	3.2	13
145	2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chemical Science, 2021, 12, 2898-2908.	3.7	24

#	Article	IF	CITATIONS
146	Design and enantioselective synthesis of 3 -(\hat{i} ±-acrylic acid) benzoxaboroles to combat carbapenemase resistance. Chemical Communications, 2021, 57, 7709-7712.	2.2	15
147	A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. Journal of Biological Chemistry, 2020, 295, 18239-18255.	1.6	14
149	Aminoglycoside 6′-N-acetyltransferase Type Ib [AAC(6′)-Ib]-Mediated Aminoglycoside Resistance: Phenotypic Conversion to Susceptibility by Silver Ions. Antibiotics, 2021, 10, 29.	1.5	9
150	Fabrication and characterization of boric acid-crosslinked ethyl cellulose and polyvinyl alcohol films as potential drug release systems for topical drug delivery. Turkish Journal of Chemistry, 2020, 44, 1723-1732.	0.5	11
151	Qualidade microbiológica e perfil de sensibilidade a antimicrobianos em águas de poços artesianos em um municÃpio do noroeste do Rio Grande do Sul. Engenharia Sanitaria E Ambiental, 2021, 26, 683-690.	0.1	0
152	In Vitro Activity of Ceftibuten/VNRX-5236 against Urinary Tract Infection Isolates of Antimicrobial-Resistant Enterobacterales. Antimicrobial Agents and Chemotherapy, 2021, , AAC0130421.	1.4	6
154	Traceless Staudinger Ligation To Introduce Chemical Diversity on Î ² -Lactamase Inhibitors of Second Generation. Organic Letters, 2021, 23, 7755-7758.	2.4	2
155	New options for bloodstream infections caused by colistin―or ceftazidime/avibactamâ€resistant Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 2021, 58, 106458.	1.1	7
158	Synthesis, Antimicrobial and β-Lactamase Enzyme Inhibition Activity of Some New Tetrazole Containing Maleamic and Phthaleamic Acid Derivatives. Asian Journal of Organic & Medicinal Chemistry, 2019, 4, 166-173.	0.1	0
159	<scp>BioF</scp> is a novel <scp>B2</scp> metalloâ€Î²â€lactamase from <i>Pseudomonas</i> sp. isolated from an onâ€farm biopurification system. Environmental Microbiology, 2022, 24, 1247-1262.	1.8	0
160	Molecular detection of extended spectrum β-lactamase genes in Escherichia coli clinical isolates from diarrhoeic children in Kano, Nigeria. PLoS ONE, 2020, 15, e0243130.	1.1	8
161	Do Multiple Drug Resistance Transporters Interfere with Cell Functioning under Normal Conditions?. Biochemistry (Moscow), 2020, 85, 1560-1569.	0.7	3
162	ĐœĐμÑԴϿ°ŇŽÑ, Đ»Đ, Đ¼ĐμĐ¼Đ±Ñ€Đ°Đ½Đ½Ñ‹Đμ Đ;ĐμÑ€ĐμĐ½Đ¾ÑчĐ,ĐºĐ, Đ¾Đ±ĐμÑĐ;ĐμчĐ,Đ2а	ÑŽ Ñ.‰ •Ð,E	0 μ Ð ¼Đ½Đ¾
164	Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. European Journal of Medicinal Chemistry, 2022, 228, 113965.	2.6	8
165	Frequency of Beta-Lactamase Antibiotic Resistance Genes in and. Ethiopian Journal of Health Sciences, 2021, 31, 663-672.	0.2	1
166	Dithiocarbamates combined with copper for revitalizing meropenem efficacy against NDM-1-producing Carbapenem-resistant Enterobacteriaceae. Bioorganic Chemistry, 2022, 118, 105474.	2.0	7
168	Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of <i>Escherichia coli</i> Producing OXA-48. ACS Infectious Diseases, 2021, 7, 3345-3354.	1.8	3
169	Genetic support of carbapenemases: a One Health systematic review and metaâ€analysis of current trends in Africa. Annals of the New York Academy of Sciences, 2022, 1509, 50-73.	1.8	2

#	ARTICLE	IF	CITATIONS
170	Adaptive Role of Cell Death in Yeast Communities Stressed with Macrolide Antifungals. MSphere, 2021, 6, e0074521.	1.3	3
171	In Vitro Activity Comparison of Ceftazidime–Avibactam and Aztreonam–Avibactam Against Bloodstream Infections With Carbapenem-Resistant Organisms in China. Frontiers in Cellular and Infection Microbiology, 2021, 11, 780365.	1.8	12
172	Classification of the metallo Î ² -lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. Journal of Infection and Chemotherapy, 2022, 28, 170-175.	0.8	1
173	Î ² -Lactam Antibiotics. , 2021, , 911-920.		0
174	Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chemical Science, 2022, 13, 345-364.	3.7	74
175	Genomic characterization of triple-carbapenemase-producing Acinetobacter baumannii. JAC-Antimicrobial Resistance, 2021, 3, dlab191.	0.9	3
176	Profile variation of bla genes among non-lactose fermenting Gram-negative bacilli between clinical and environmental isolates of Dr. Soetomo Hospital, Surabaya, Indonesia. Biodiversitas, 2021, 22, .	0.2	2
177	Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nature Chemistry, 2022, 14, 15-24.	6.6	39
178	Novel metallo-l²-lactamase inhibitors. Nature Reviews Microbiology, 2021, , .	13.6	1
180	Genetic Dissection of Antibiotic Adjuvant Activity. MBio, 2022, 13, e0308421.	1.8	12
181	Brenneria goodwinii growth in vitro is improved by competitive interactions with other bacterial species associated with Acute Oak Decline. Current Research in Microbial Sciences, 2022, 3, 100102.	1.4	4
182	High-Throughput Screen for Inhibitors of Klebsiella pneumoniae Virulence Using a Tetrahymena pyriformis Co-Culture Surrogate Host Model. ACS Omega, 2022, 7, 5401-5414.	1.6	3
183	Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 2022, 157, 111993.	8.2	41
184	Beta lactam. , 2022, , 3-63.		2
185	Challenge of evolving <i>Klebsiella pneumoniae</i> infection in patients on hemodialysis: from the classic strain to the carbapenem-resistant hypervirulent one. International Journal of Medical Sciences, 2022, 19, 416-424.	1.1	6
186	Drug Repurposing of the Unithiol: Inhibition of Metallo-β-Lactamases for the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections. International Journal of Molecular Sciences, 2022, 23, 1834.	1.8	5
187	Prevalence and Therapeutic Management of Infections by Multi-Drug-Resistant Organisms (MDROs) in Patients with Liver Cirrhosis: A Narrative Review. Antibiotics, 2022, 11, 232.	1.5	3
188	Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores. Journal of Medicinal Chemistry, 2021, 64, 17706-17727.	2.9	13

#	Article	IF	CITATIONS
189	Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant <i>Acinetobacter baumannii</i> , and <i>Stenotrophomonas maltophilia</i> Infections. Clinical Infectious Diseases, 2022, 74, 2089-2114.	2.9	262
190	Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infection and Drug Resistance, 2021, Volume 14, 5235-5252.	1.1	40
191	<i>N</i> -Aryl Mercaptopropionamides as Broad-Spectrum Inhibitors of Metallo-β-Lactamases. Journal of Medicinal Chemistry, 2022, 65, 3913-3922.	2.9	11
192	Prevalence of Carbapenem-Resistant Klebsiella pneumoniae Infection in a Northern Province in China: Clinical Characteristics, Drug Resistance, and Geographic Distribution. Infection and Drug Resistance, 2022, Volume 15, 569-579.	1.1	18
193	The Ultrabroad-Spectrum Beta-Lactamase Inhibitor QPX7728 Restores the Potency of Multiple Oral Beta-Lactam Antibiotics against Beta-Lactamase-Producing Strains of Resistant <i>Enterobacterales</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0216821.	1.4	11
194	Antimicrobial activity of ceftazidime-avibactam and comparators against levofloxacin-resistant Escherichia coli collected from four geographic regions, 2012–2018. Annals of Clinical Microbiology and Antimicrobials, 2022, 21, 13.	1.7	2
195	Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2022, 66, e0241421.	1.4	22
196	Re-sensitization of <i>mcr</i> carrying multidrug resistant bacteria to colistin by silver. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119417119.	3.3	15
198	Klebsiella pneumoniae Mutants Resistant to Ceftazidime-Avibactam Plus Aztreonam, Imipenem-Relebactam, Meropenem-Vaborbactam, and Cefepime-Taniborbactam. Antimicrobial Agents and Chemotherapy, 2022, 66, e0217921.	1.4	10
199	Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00728.	2.1	17
200	Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors. Scientific Reports, 2022, 12, 5510.	1.6	4
201	Broad-spectrum cyclic boronate β-lactamase inhibitors featuring an intramolecular prodrug for oral bioavailability. Bioorganic and Medicinal Chemistry, 2022, 62, 116722.	1.4	2
202	Selection of the appropriate avibactam concentration for use with ceftibuten in broth microdilution susceptibility testing. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115673.	0.8	2
203	QM/MM Study of a VIM-1 Metallo-β-Lactamase Enzyme: The Catalytic Reaction Mechanism. ACS Catalysis, 2022, 12, 36-47.	5.5	9
204	Delafloxacin, Finafloxacin, and Zabofloxacin: Novel Fluoroquinolones in the Antibiotic Pipeline. Antibiotics, 2021, 10, 1506.	1.5	21
205	In vitro Bactericidal Activities of Combination Antibiotic Therapies Against Carbapenem-Resistant Klebsiella pneumoniae With Different Carbapenemases and Sequence Types. Frontiers in Microbiology, 2021, 12, 779988.	1.5	5
206	Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum Î ² -lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and <i>Pseudomonas aeruginosa</i> with Difficult-to-Treat Resistance (DTR- <i>P. aeruginosa</i>). Clinical Infectious Diseases, 2022, 75, 187-212.	2.9	182
207	Class C β-Lactamases: Molecular Characteristics. Clinical Microbiology Reviews, 2022, 35, e0015021.	5.7	15

#	Article	IF	CITATIONS
208	Genomic Characterization of a Uropathogenic Escherichia coli ST405 Isolate Harboring blaCTX-M-15-Encoding IncFIA-FIB Plasmid, blaCTX-M-24-Encoding Incl1 Plasmid, and Phage-Like Plasmid. Frontiers in Microbiology, 2022, 13, 845045.	1.5	2
212	Reversing Multidrugâ€Resistant <i>Escherichia coli</i> by Compromising Its BAM Biogenesis and Enzymatic Catalysis through Microwave Hyperthermia Therapy. Advanced Functional Materials, 2022, 32, .	7.8	7
213	Antibiotic Resistance via Bacterial Cell Shape-Shifting. MBio, 2022, 13, .	1.8	23
214	Thiol targets in drug development to combat bacterial infections. , 2022, , 679-711.		0
215	Coexistence of blaNDM-1 and blaIMP-4 in One Novel Hybrid Plasmid Confers Transferable Carbapenem Resistance in an ST20-K28 Klebsiella pneumoniae. Frontiers in Microbiology, 2022, 13, .	1.5	8
216	Evolutionary Trajectories toward High-Level β-Lactam/β-Lactamase Inhibitor Resistance in the Presence of Multiple β-Lactamases. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	7
217	Discovery of Quercetin and Its Analogs as Potent OXA-48 Beta-Lactamase Inhibitors. Frontiers in Pharmacology, 0, 13, .	1.6	3
218	Live-Cell Profiling of Penicillin-Binding Protein Inhibitors in <i>Escherichia coli</i> MG1655. ACS Infectious Diseases, 2022, 8, 1241-1252.	1.8	5
219	In vitro and in vivo activities of a novel Î ² -lactamase inhibitor combination imipenem/XNW4107 against recent clinical Gram-negative bacilli from China. Journal of Global Antimicrobial Resistance, 2022, 31, 1-9.	0.9	7
220	Triazole-substituted phenylboronic acids as tunable lead inhibitors of KPC-2 antibiotic resistance. European Journal of Medicinal Chemistry, 2022, 240, 114571.	2.6	2
221	Direct Colorimetry of Imipenem Decomposition as a Novel Cost-Effective Method for Detecting Carbapenemase-Producing Enterobacteria. Microbiology Spectrum, 2022, 10, .	1.2	0
222	Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam. WIREs Mechanisms of Disease, 2022, 14, .	1.5	10
223	Thieno[2,3â€d]pyrimidineâ€Core Compounds Show Activity Against Clinically Relevant Gramâ€Positive Bacteria. ChemMedChem, 0, , .	1.6	0
224	A review of horses as a source of spreading livestock-associated methicillin-resistant Staphylococcus aureus to human health. Veterinary World, 0, , 1906-1915.	0.7	1
225	Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	36
226	The biogenesis of \hat{I}^2 -lactamase enzymes. Microbiology (United Kingdom), 2022, 168, .	0.7	7
227	Recent advances in \hat{l}^2 -lactamase inhibitor chemotypes and inhibition modes. European Journal of Medicinal Chemistry, 2022, 242, 114677.	2.6	8
228	Discovery of environment-sensitive fluorescent probes for detecting and inhibiting metallo-Î ² -lactamase. Bioorganic Chemistry, 2022, 128, 106048.	2.0	1

ARTICLE IF CITATIONS Design, Synthesis, and Biological Evaluation of New 1H-Imidazole-2-Carboxylic Acid Derivatives as 229 1.4 3 Metallo-Î²-Lactamase Inhibitors. Bioorganic and Medicinal Chemistry, 2022, 72, 116993. The biochemistry and enzymology of zinc enzymes., 2022,,. Efficacy and safety of novel carbapenemâ€"β-lactamase inhibitor combinations: Results from phase II and 231 3 1.8 III trials. Frontiers in Cellular and Infection Microbiology, 0, 12, . Development of peptide-based metallo- \hat{l}^2 -lactamase inhibitors as new strategy to combat antimicrobial 0.9 resistance: A Mini-review. Current Pharmaceutical Design, 2022, 28, . Emergence of a Fatal ST11-KL64 Tigecycline-Resistant Hypervirulent Klebsiella pneumoniae Clone Cocarrying <i>bla</i> _{NDM} and <i>bla</i> _{KPC} in Plasmids. Microbiology 233 1.2 7 Spectrum, 2022, 10, . Ceftibuten-Ledaborbactam Activity against Multidrug-Resistant and Extended-Spectrum-β-Lactamase-Positive Clinical Isolates of <i>Enterobacterales</i> from a 2018–2020 1.4 Clobal Surveillance Collection. Antimicrobial Agents and Chemotherapy, 2022, 66, . Management of Highly Resistant Gram-Negative Infections in the Intensive Care Unit in the Era of Novel 235 1.9 5 Antibiotics. Infectious Disease Clinics of North America, 2022, 36, 791-823. Evaluation of Dilution Susceptibility Testing Methods for Aztreonam in Combination with Avibactam 1.2 against Enterobacterales. Microbiology Spectrum, 0, , . Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and 237 2 1.5 NDM-Producing Escherichia coli and Klebsiella pneumoniae. Antibiotics, 2022, 11, 1646. Optimization of 1,2,4-Triazole-3-thiones toward Broad-Spectrum Metallo-Î²-lactamase Inhibitors Showing Potent Synergistic Activity on VIM- and NDM-1-Producing Clinical Isolates. Journal of Medicinal Chemistry, 2022, 65, 16392-16419. Lead/Drug Discovery from Natural Resources. Molecules, 2022, 27, 8280. 239 9 1.7 Rapid Evolution of a Fragment-like Molecule to Pan-Metallo-Beta-Lactamase Inhibitors: Initial Leads 240 2.9 toward Clinical Candidates. Journal of Medicinal Chemistry, 2022, 65, 16234-16251. In vitro and computational studies of the \hat{l}^2 -lactamase inhibition and \hat{l}^2 -lactam potentiating properties of 241 2.0 1 plant secondary metabolites. Journal of Biomolecular Structure and Dynamics, 2023, 41, 10326-10346. Difference in the Inhibitory Effect of Thiol Compounds and Demetallation Rates from the Zn(II) Active Site of Metallo- \hat{I}^2 -lactamases (IMP-1 and IMP-6) Associated with a Single Amino Acid Substitution. ACS 242 1.8 Infectious Diseases, 2023, 9, 65-78. Overcoming intrinsic resistance in gram-negative bacteria using small molecule adjuvants. Bioorganic 243 1.0 10 and Medicinal Chemistry Letters, 2023, 80, 129113. Design, Synthesis, and Biological Evaluation of Boron-Containing Î²-Lactamase Inhibitors: Closed-Loop Education Experiences in an Undergraduate Medicinal Chemistry Course. Journal of Chemical 244 1.1 Education, 2023, 100, 803-810. Chemical Basis of Combination Therapy to Combat Antibiotic Resistance. Jacs Au, 2023, 3, 276-292. 246 3.6 23 247 NDM-9 resistance to taniborbactam. Lancet Infectious Diseases, The, 2023, 23, 401-402.

CITATION REPORT

#	Article	IF	CITATIONS
248	Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam activities against multidrug-resistant Enterobacterales from United States Medical Centers (2018–2022). Diagnostic Microbiology and Infectious Disease, 2023, 106, 115945.	0.8	10
249	A new complex of silver(I) with probenecid: Synthesis, characterization, and studies of antibacterial and extended spectrum I²-lactamases (ESBL) inhibition activities. Journal of Inorganic Biochemistry, 2023, 243, 112201.	1.5	Ο
250	Effectiveness of third-generation cephalosporins or piperacillin compared with cefepime or carbapenems for severe infections caused by wild-type AmpC β-lactamase-producing Enterobacterales: A multi-centre retrospective propensity-weighted study. International Journal of Antimicrobial Agents, 2023, 62, 106809.	1.1	6
251	Changing Epidemiology of Carbapenemases Among Carbapenem-Resistant Enterobacterales From United States Hospitals and the Activity of Aztreonam-Avibactam Against Contemporary Enterobacterales (2019–2021). Open Forum Infectious Diseases, 2023, 10, .	0.4	13
252	Inhibition of Enzymatic Acetylation-Mediated Resistance to Plazomicin by Silver Ions. Pharmaceuticals, 2023, 16, 236.	1.7	1
253	Structural Insights for Î ² -Lactam Antibiotics. Biomolecules and Therapeutics, 2023, 31, 141-147.	1.1	3
254	Ribosome-targeting antibiotics and resistance <i>via</i> ribosomal RNA methylation. RSC Medicinal Chemistry, 2023, 14, 624-643.	1.7	5
255	A new class A beta-lactamase gene blaCAE-1 coexists with blaAFM-1 in a novel untypable plasmid in Comamonas aquatica. Scientific Reports, 2023, 13, .	1.6	0
256	Long Term Characteristics of Clinical Distribution and Resistance Trends of Carbapenem-Resistant and Extended-Spectrum β-Lactamase Klebsiella pneumoniae Infections: 2014–2022. Infection and Drug Resistance, 0, Volume 16, 1279-1295.	1.1	5
257	Estimation, Evaluation and Characterization of Carbapenem Resistance Burden from a Tertiary Care Hospital, Pakistan. Antibiotics, 2023, 12, 525.	1.5	4
258	Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Advances, 2023, 13, 7798-7817.	1.7	4
259	Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Critical Reviews in Microbiology, 0, , 1-18.	2.7	7
260	Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS Omega, 2023, 8, 10757-10783.	1.6	21
261	Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine. Antibiotics, 2023, 12, 604.	1.5	4
262	Genetic and biochemical characterization of BIM-1, a novel acquired subgroup B1 MBL found in a <i>Pseudomonas</i> sp. strain from the Brazilian Amazon region. Journal of Antimicrobial Chemotherapy, 2023, 78, 1359-1366.	1.3	4
263	Phenotypic Characterization and Antibiograms of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated at the Human-Animal-Environment Interface Using a One Health Approach Among Households in Wakiso District, Uganda. Infection and Drug Resistance, 0, Volume 16, 2203-2216.	1.1	0
270	Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Advances in Microbial Physiology, 2023, , 221-307.	1.0	1
279	Benzoxaborole. , 2023, , 335-355.		0

#	Article	IF	CITATIONS
292	Challenges in the development of novel antibiotics. , 2023, , 65-85.		0
305	Antibiotic Resistance in Pathogens – a Global Concern. , 2023, , 150-174.		0
309	Antimicrobial Resistance Profiles of Multidrug-Resistant Enterobacteria Isolated from Feces of Weaned Piglets. Current Microbiology, 2024, 81, .	1.0	0