African swine fever

Antiviral Research 165, 34-41

DOI: 10.1016/j.antiviral.2019.02.018

Citation Report

#	Article	IF	CITATIONS
1	Salt inactivation of classical swine fever virus and African swine fever virus in porcine intestines confirms the existing in vitro casings model. Veterinary Microbiology, 2019, 238, 108424.	1.9	12
2	An Update on African Swine Fever Virology. Viruses, 2019, 11, 864.	3.3	84
3	Bead-Based Multiplex Assay for the Simultaneous Detection of Antibodies to African Swine Fever Virus and Classical Swine Fever Virus. Frontiers in Veterinary Science, 2019, 6, 306.	2.2	12
4	African Swine Fever: Fast and Furious or Slow and Steady?. Viruses, 2019, 11, 866.	3.3	61
5	African swine fever spread in China. Veterinary Record, 2019, 184, 559-559.	0.3	19
6	Silver nanoparticles as potential antiviral agents against African swine fever virus. Materials Research Express, 2019, 6, 1250g9.	1.6	63
7	Cas12a-Based On-Site and Rapid Nucleic Acid Detection of African Swine Fever. Frontiers in Microbiology, 2019, 10, 2830.	3.5	109
8	Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS ONE, 2019, 14, e0225657.	2.5	35
9	Development of a novel quantitative realâ€time PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transboundary and Emerging Diseases, 2020, 67, 284-297.	3.0	41
10	Molecular characterization of African swine fever virus from outbreaks in Namibia in 2018. Transboundary and Emerging Diseases, 2020, 67, 1008-1014.	3.0	14
11	The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. Journal of Biological Chemistry, 2020, 295, 1-12.	3.4	76
12	Structural Insight into African Swine Fever Virus dUTPase Reveals a Novel Folding Pattern in the dUTPase Family. Journal of Virology, 2020, 94, .	3.4	10
13	Novel Viruses Found in Antricola Ticks Collected in Bat Caves in the Western Amazonia of Brazil. Viruses, 2020, 12, 48.	3.3	10
14	Pan-Genomic Analysis of African Swine Fever Virus. Virologica Sinica, 2020, 35, 662-665.	3.0	12
15	A soft tick Ornithodoros moubata salivary protein OmCI is a potent inhibitor to prevent avian complement activation. Ticks and Tick-borne Diseases, 2020, 11, 101354.	2.7	11
16	Prevalence of African Swine Fever in China, 2018â€2019. Journal of Medical Virology, 2020, 92, 1023-1034.	5.0	34
17	Insights into African swine fever virus immunoevasion strategies. Journal of Integrative Agriculture, 2020, 19, 11-22.	3.5	13
18	African Swine Fever Circulation among Free-Ranging Pigs in Sardinia: Data from the Eradication Program. Vaccines, 2020, 8, 549.	4.4	25

#	ARTICLE	IF	Citations
19	African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration. MBio, 2020, 11 , .	4.1	38
20	Clinical Validation of Two Recombinase-Based Isothermal Amplification Assays (RPA/RAA) for the Rapid Detection of African Swine Fever Virus. Frontiers in Microbiology, 2020, 11, 1696.	3 . 5	88
21	New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Frontiers in Immunology, 2020, 11, 563362.	4.8	9
22	Multifaceted Immune Responses to African Swine Fever Virus: Implications for Vaccine Development. Veterinary Microbiology, 2020, 249, 108832.	1.9	31
23	Current State of Global African Swine Fever Vaccine Development under the Prevalence and Transmission of ASF in China. Vaccines, 2020, 8, 531.	4.4	76
24	Recent Advances in the Diagnosis of Classical Swine Fever and Future Perspectives. Pathogens, 2020, 9, 658.	2.8	18
25	Genetic profile of African swine fever virus responsible for the 2019 outbreak in northern Malawi. BMC Veterinary Research, 2020, 16, 316.	1.9	9
26	A visual onâ€site method for African swine fever virus detection in raw pig tissues. Journal of Food Safety, 2020, 40, e12848.	2.3	0
27	Field Verification of an African Swine Fever Virus Loop-Mediated Isothermal Amplification (LAMP) Assay during an Outbreak in Timor-Leste. Viruses, 2020, 12, 1444.	3.3	13
28	Development of a Directly Visualized Recombinase Polymerase Amplification–SYBR Green I Method for the Rapid Detection of African Swine Fever Virus. Frontiers in Microbiology, 2020, 11, 602709.	3.5	22
29	Quantification of soyaâ€based feed ingredient entry from ASFVâ€positive countries to the United States by ocean freight shipping and associated seaports. Transboundary and Emerging Diseases, 2020, 68, 2603-2609.	3.0	10
30	Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate. Journal of Animal Science and Biotechnology, 2020, 11, 114.	5. 3	47
31	Identification and Isolation of Two Different Subpopulations Within African Swine Fever Virus Arm/07 Stock. Vaccines, 2020, 8, 625.	4.4	16
32	Modulation of Type I Interferon System by African Swine Fever Virus. Pathogens, 2020, 9, 361.	2.8	32
33	Cow Manure Anaerobic Digestion or Composting – Energetic and Economic Analysis. , 2020, , .		3
34	Impaired Tâ€cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transboundary and Emerging Diseases, 2020, 67, 3016-3032.	3.0	31
35	Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Scientific Reports, 2020, 10, 8951.	3.3	25
36	Comparison of Macrophage Responses to African Swine Fever Viruses Reveals that the NH/P68 Strain is Associated with Enhanced Sensitivity to Type I IFN and Cytokine Responses from Classically Activated Macrophages. Pathogens, 2020, 9, 209.	2.8	29

3

#	Article	IF	CITATIONS
37	Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Frontiers in Veterinary Science, 2020, 7, 20.	2.2	24
38	One year of African swine fever outbreak in China. Acta Tropica, 2020, 211, 105602.	2.0	51
39	African swine fever vaccines: a promising work still in progress. Porcine Health Management, 2020, 6, 17.	2.6	69
40	Clinical and Pathological Study of the First Outbreak Cases of African Swine Fever in Vietnam, 2019. Frontiers in Veterinary Science, 2020, 7, 392.	2.2	26
41	Preparation and Application of Nanosensor in Safeguarding Heparin Supply Chain. SLAS Technology, 2020, 25, 397-403.	1.9	3
42	The Risk of Infection by African Swine Fever Virus in European Swine Through Boar Movement and Legal Trade of Pigs and Pig Meat. Frontiers in Veterinary Science, 2019, 6, 486.	2.2	57
43	Rapid detection of African swine fever virus using Cas12a-based portable paper diagnostics. Cell Discovery, 2020, 6, 18.	6.7	70
44	Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. Journal of Virology, 2020, 94, .	3.4	28
45	Development of a realâ€time PCR assay for detection of African swine fever virus with an endogenous internal control. Transboundary and Emerging Diseases, 2020, 67, 2446-2454.	3.0	47
46	Structure and Biochemical Characteristics of the Methyltransferase Domain of RNA Capping Enzyme from African Swine Fever Virus. Journal of Virology, 2021, 95, .	3.4	9
47	Novel Function of African Swine Fever Virus pE66L in Inhibition of Host Translation by the PKR/eIF2 \hat{l} ± Pathway. Journal of Virology, 2021, 95, .	3.4	17
48	African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-ÎB Signaling Pathway. Virologica Sinica, 2021, 36, 176-186.	3.0	59
49	Development a multiplex RT-PCR assay for simultaneous detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. Journal of Virological Methods, 2021, 287, 114006.	2.1	26
50	A stochastic simulation model of African swine fever transmission in domestic pig farms in the Red River Delta region in Vietnam. Transboundary and Emerging Diseases, 2021, 68, 1384-1391.	3.0	18
51	PORK PRODUCTION SYSTEMS IN CHINA: A REVIEW OF THEIR DEVELOPMENT, CHALLENGES AND PROSPECTS IN GREEN PRODUCTION. Frontiers of Agricultural Science and Engineering, 2021, 8, 15.	1.4	17
52	African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern. Agriculture (Switzerland), 2021, 11, 45.	3.1	12
53	Detection of African swine fever virus in freeâ€ranging wild boar in Southeast Asia. Transboundary and Emerging Diseases, 2021, 68, 2669-2675.	3.0	28
54	Cytokine Storm in Domestic Pigs Induced by Infection of Virulent African Swine Fever Virus. Frontiers in Veterinary Science, 2020, 7, 601641.	2.2	48

#	Article	IF	CITATIONS
55	Lower seroprevalence of Toxoplasma gondii in swine from central China after an outbreak of African swine fever. Parasite, 2021, 28, 55.	2.0	1
56	Nano-Biosensing Devices Detecting Biomarkers of Communicable and Non-communicable Diseases of Animals. Concepts and Strategies in Plant Sciences, 2021, , 415-434.	0.5	1
57	A scoping review of African swine fever virus spread between domestic and freeâ€living pigs. Transboundary and Emerging Diseases, 2021, 68, 2643-2656.	3.0	15
58	African swine fever: a New Zealand perspective on epidemiological risk factors for its occurrence. New Zealand Veterinary Journal, 2021, 69, 135-146.	0.9	4
59	African Swine Fever Laboratory Diagnosisâ€"Lessons Learned from Recent Animal Trials. Pathogens, 2021, 10, 177.	2.8	21
60	No evidence for African swine fever virus DNA in haematophagous arthropods collected at wild boar baiting sites in Estonia. Transboundary and Emerging Diseases, 2021, 68, 2696-2702.	3.0	13
61	A stochastic network-based model to simulate farm-level transmission of African swine fever virus in Vietnam. PLoS ONE, 2021, 16, e0247770.	2.5	7
62	An outbreak of African swine fever in small-scale pigs, Gauteng, South Africa, July 2020. International Journal of Infectious Diseases, 2021, 110, S44-S49.	3.3	12
63	African Swine Fever spread across Asia, 2018–2019. Transboundary and Emerging Diseases, 2021, 68, 2722-2732.	3.0	78
64	Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019. Pathogens, 2021, 10, 521.	2.8	18
65	African swine fever vaccine: Turning a dream into reality. Transboundary and Emerging Diseases, 2021, 68, 2657-2668.	3.0	21
66	Demand-driven spreading patterns of African swine fever in China. Chaos, 2021, 31, 061102.	2.5	6
67	A multiplex assay for the detection of antibodies to relevant swine pathogens in serum. Transboundary and Emerging Diseases, 2021, , .	3.0	0
68	Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals, 2021, 11, 2039.	2.3	20
69	African Swine Fever in Smallholder Sardinian Farms: Last 10 Years of Network Transmission Reconstruction and Analysis. Frontiers in Veterinary Science, 2021, 8, 692448.	2.2	21
70	Detection of African swine fever virus in pigs in Southwest Nigeria. Veterinary World, 2021, 14, 1840-1845.	1.7	7
71	GS-441524 inhibits African swine fever virus infection in vitro. Antiviral Research, 2021, 191, 105081.	4.1	10
72	Epidemiology of African Swine Fever and Its Risk in Nepal. Microbiology Research, 2021, 12, 580-590.	1.9	3

#	Article	IF	Citations
73	Synergistic effect of the responses of different tissues against African swine fever virus. Transboundary and Emerging Diseases, 2022, 69, .	3.0	10
74	Rapid Extraction and Detection of African Swine Fever Virus DNA Based on Isothermal Recombinase Polymerase Amplification Assay. Viruses, 2021, 13, 1731.	3.3	14
75	The Context of Application of Biosecurity for Control of African Swine Fever in Smallholder Pig Systems: Current Gaps and Recommendations. Frontiers in Veterinary Science, 2021, 8, 689811.	2.2	17
76	African Swine Fever Virus E120R Protein Inhibits Interferon Beta Production by Interacting with IRF3 To Block Its Activation. Journal of Virology, 2021, 95, e0082421.	3.4	54
77	African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. Journal of Virology, 2021, 95, e0119921.	3.4	54
78	A Review of Environmental Risk Factors for African Swine Fever in European Wild Boar. Animals, 2021, 11, 2692.	2.3	33
79	A Semiautomated Luciferase Immunoprecipitation Assay for Rapid and Easy Detection of African Swine Fever Virus Antibody. Journal of Clinical Microbiology, 2021, 59, e0099021.	3.9	11
80	Development and preliminary testing of a probe-based duplex real-time PCR assay for the detection of African swine fever virus. Molecular and Cellular Probes, 2021, 59, 101764.	2.1	6
81	Development of A Super-Sensitive Diagnostic Method for African Swine Fever Using CRISPR Techniques. Virologica Sinica, 2021, 36, 220-230.	3.0	12
82	The potential anti- African swine fever virus effects of medium chain fatty acids on in vitro feed model: An evaluation study using a field ASFV strain isolated in Vietnam. Open Veterinary Journal, 2021, 11, 346.	0.7	5
83	A colloidal gold test strip assay for the detection of African swine fever virus based on two monoclonal antibodies against P30. Archives of Virology, 2021, 166, 871-879.	2.1	15
85	Attempts at the development of a recombinant African swine fever virus strain with abrogated EP402R, 9GL, and A238L gene structure using the CRISPR/Cas9 system. Journal of Veterinary Research (Poland), 2020, 64, 197-205.	1.0	10
86	Comparative Pathology and Pathogenesis of African Swine Fever Infection in Swine. Frontiers in Veterinary Science, 2020, 7, 282.	2.2	71
87	Computational Analysis of African Swine Fever Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble. Pathogens, 2020, 9, 1078.	2.8	16
88	African swine fever in Benin and prevalence of the disease in Southern Benin: A retrospective study (2014-2018). Journal of Advanced Veterinary and Animal Research, 2020, 7, 464.	1.2	4
89	Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus. Journal of Veterinary Science, 2021, 22, e87.	1.3	13
90	A Deeper Insight into Evolutionary Patterns and Phylogenetic History of ASFV Epidemics in Sardinia (Italy) through Extensive Genomic Sequencing. Viruses, 2021, 13, 1994.	3.3	15
91	A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge. Journal of Virology, 2022, 96, JVI0150021.	3.4	18

#	Article	IF	CITATIONS
92	African Swine Fever Virus A528R Inhibits TLR8 Mediated NF-ÎB Activity by Targeting p65 Activation and Nuclear Translocation. Viruses, 2021, 13, 2046.	3.3	15
93	Rapid and ultra-sensitive detection of African swine fever virus antibody on site using QDM based-ASFV immunosensor (QAIS). Analytica Chimica Acta, 2022, 1189, 339187.	5.4	10
94	Structures and Functional Diversities of ASFV Proteins. Viruses, 2021, 13, 2124.	3.3	37
95	African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Veterinary Microbiology, 2021, 263, 109265.	1.9	37
96	Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes and Infections, 2021, 10, 2183-2193.	6.5	113
97	Identification and Characterization of a Novel Epitope of ASFV-Encoded dUTPase by Monoclonal Antibodies. Viruses, 2021, 13, 2175.	3.3	6
98	Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. International Immunopharmacology, 2021, 101, 108251.	3.8	8
99	The role of laboratories in mitigating the threat of Security Sensitive Biological Agents to animal health and agriculture. Microbiology Australia, 2020, 41, 136.	0.4	O
100	What Determines Pig Farmers' Epidemic Coping Behaviors: A Qualitative Analysis of Endemically Infected Areas in Relation to African Swine Fever. Veterinary Sciences, 2021, 8, 266.	1.7	3
101	The African Swine Fever Virus with MGF360 and MGF505 Deleted Reduces the Apoptosis of Porcine Alveolar Macrophages by Inhibiting the NF-κB Signaling Pathway and Interleukin-1β. Vaccines, 2021, 9, 1371.	4.4	11
102	Constraints to using livestock to meet dietary needs in developing countries: role of vaccines. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	0
103	Identification of African Swine Fever Virus Transcription within Peripheral Blood Mononuclear Cells of Acutely Infected Pigs. Viruses, 2021, 13, 2333.	3.3	13
104	Development of Real-Time PCR Based on A137R Gene for the Detection of African Swine Fever Virus. Frontiers in Veterinary Science, 2021, 8, 753967.	2.2	6
105	Evidence of coinfection of pigs with African swine fever virus and porcine circovirus 2. Archives of Virology, $2021, 1.$	2.1	4
106	Deletion of the <i>H240R</i> Gene of African Swine Fever Virus Decreases Infectious Progeny Virus Production Due to Aberrant Virion Morphogenesis and Enhances Inflammatory Cytokine Expression in Porcine Macrophages. Journal of Virology, 2022, 96, JVI0166721.	3.4	26
107	Predation on livestock as an indicator of drastic prey decline? The indirect effects of an African swine fever epidemic on predator–prey relations in Poland. Ecological Indicators, 2021, 133, 108419.	6.3	4
108	Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever. Journal of Veterinary Science, 2022, 23, e17.	1.3	2
109	A proteomics informed by transcriptomics insight into the proteome of Ornithodoros erraticus adult tick saliva. Parasites and Vectors, 2022, 15, 1.	2.5	31

#	Article	IF	CITATIONS
110	Development of a one-step multiplex qRT–PCR assay for the detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. BMC Veterinary Research, 2022, 18, 43.	1.9	18
111	Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein Oprl. Virology Journal, 2022, 19, 16.	3.4	5
112	African Swine Fever Virus MGF360-14L Negatively Regulates Type I Interferon Signaling by Targeting IRF3. Frontiers in Cellular and Infection Microbiology, 2021, 11, 818969.	3.9	24
113	Quantitative Risk Assessment of African Swine Fever Introduction into Spain by Legal Import of Live Pigs. Pathogens, 2022, 11, 76.	2.8	3
114	African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. Journal of Biological Chemistry, 2022, 298, 101480.	3.4	34
115	Breeding for disease resilience: opportunities to manage polymicrobial challenge and improve commercial performance in the pig industry. CABI Agriculture and Bioscience, 2022, 3, 6.	2.4	12
116	Rapid Detection of Genotype II African Swine Fever Virus Using CRISPR Cas13a-Based Lateral Flow Strip. Viruses, 2022, 14, 179.	3.3	19
117	Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs. Journal of Integrative Agriculture, 2022, 21, 819-825.	3.5	2
118	Phylogeography Reveals Association between Swine Trade and the Spread of Porcine Epidemic Diarrhea Virus in China and across the World. Molecular Biology and Evolution, 2022, 39, .	8.9	35
119	Transcriptome Profiling Reveals Features of Immune Response and Metabolism of Acutely Infected, Dead and Asymptomatic Infection of African Swine Fever Virus in Pigs. Frontiers in Immunology, 2021, 12, 808545.	4.8	14
120	Asking for trouble and getting what we ask for: African swine fever. Croatian Medical Journal, 2021, 62, 534-536.	0.7	0
121	Establishment and Classification of Temperature and Humidity Index Based on Physiological Responses of Early-Gestation Sows in Commercial House. SSRN Electronic Journal, 0, , .	0.4	0
122	African Swine Fever Virus Regulates Host Energy and Amino Acid Metabolism To Promote Viral Replication. Journal of Virology, 2022, 96, JVI0191921.	3.4	28
123	Differential diagnosis of the infection caused by wild-type or CD2v-deleted ASFV strains by quantum dots-based immunochromatographic assay. Letters in Applied Microbiology, 2022, 74, 1001-1007.	2.2	5
124	Development of a p72 trimer–based colloidal gold strip for detection of antibodies against African swine fever virus. Applied Microbiology and Biotechnology, 2022, 106, 2703-2714.	3.6	22
125	Impacts of an African Swine Fever Outbreak on Ontario's Pork Industry. Canadian Public Policy/ Analyse De Politiques, 2022, 48, 11-35.	1.6	0
126	Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit African Swine Fever Virus Replication. Frontiers in Immunology, 2022, 13, 827709.	4.8	4
127	Regulation of antiviral immune response by African swine fever virus (ASFV). Virologica Sinica, 2022, 37, 157-167.	3.0	31

#	Article	IF	CITATIONS
128	A Multi-Laboratory Comparison of Methods for Detection and Quantification of African Swine Fever Virus. Pathogens, 2022, 11, 325.	2.8	3
129	Facilitating Resilience during an African Swine Fever Outbreak in the Austrian Pork Supply Chain through Hybrid Simulation Modelling. Agriculture (Switzerland), 2022, 12, 352.	3.1	3
130	Bringing livestock back into the fold: Animal research in the <i>Annals of Applied Biology</i> â€"Past, present and future. Annals of Applied Biology, 2022, 181, 4-8.	2.5	0
131	The Development of a Real-Time Recombinase-Aid Amplification Assay for Rapid Detection of African Swine Fever Virus. Frontiers in Microbiology, 2022, 13, 846770.	3.5	4
132	Rapid and sensitive detection of African swine fever virus in pork using recombinase aided amplification combined with QDMs-based test strip. Analytical and Bioanalytical Chemistry, 2022, 414, 3885-3894.	3.7	5
133	Wild Boar Events and the Veterinarization of Multispecies Coexistence. Frontiers in Conservation Science, 2021, 2, .	1.9	11
134	MangalicatermelÅʻi preferenciÃjk és kockÃjzatvÃjllalÃjsi hajlandósÃjg az afrikai sertéspestis ÃjrnyékÃjbar KözgazdasÃjgi Szemle, 2021, 68, 1315-1335.	^{1.} 0.4	0
135	Key risk factors and impact of African swine fever spreading on pig production in Serbia. Acta Veterinaria, 2021, 71, 371-391.	0.5	6
136	Prevention and Control Strategies of African Swine Fever and Progress on Pig Farm Repopulation in China. Viruses, 2021, 13, 2552.	3.3	37
137	Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Scientific Reports, 2021, 11, 23476.	3.3	8
138	Ô±ÕºÕ«Õ£Õ¥Õ¶Õ«Õ¶Õ« Ö‡ Õ£Õ¥Õ¶Õ«Õ½Õ¿Õ¥Õ«Õ¶Õ« Õ½Õ«Õ¶Õ¥Ö€Õ£Õ«Õ½Õ¿Õ«Õ¯Õ°Õ¡Õ¯Õ¡Õ¾Õ	«Ö€Õ¸Ö,Ć	Ď¥2Õ¡ÕμÕ«
139	Isothermal nucleic acid amplification for food safety analysis. TrAC - Trends in Analytical Chemistry, 2022, 153, 116641.	11.4	43
144	Quantifying risk factors and potential geographic extent of African swine fever across the world. PLoS ONE, 2022, 17, e0267128.	2.5	13
145	Accurate, rapid and highly sensitive detection of African swine fever virus <i>via</i> graphene oxide-based accelerated strand exchange amplification. Analytical Methods, 2022, 14, 2072-2082.	2.7	2
146	Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines, 2022, 10, 707.	4.4	12
147	The Application of an Augmented Gravity Model to Measure the Effects of a Regionalization of Potential Risk Distribution of the US Cull Sow Market. Veterinary Sciences, 2022, 9, 215.	1.7	0
148	Point-of-Care and Label-Free Detection of Porcine Reproductive and Respiratory Syndrome and Swine Influenza Viruses Using a Microfluidic Device with Photonic Integrated Circuits. Viruses, 2022, 14, 988.	3.3	1
149	Working Safely with African Swine Fever Virus. Methods in Molecular Biology, 2022, 2503, 1-13.	0.9	2

#	Article	IF	CITATIONS
150	Necropsy Procedures and Evaluation of Macroscopic Lesions of Pigs Infected with African Swine Fever Virus. Methods in Molecular Biology, 2022, 2503, 15-49.	0.9	0
151	The assembled and annotated genome of the masked palm civet (<i>Paguma larvata</i>). GigaScience, 2022, 11, .	6.4	2
152	Establishment and Application of a Mgf505-7r Taqman-Based Real-Time Pcr for Asfv Diagnosis. SSRN Electronic Journal, 0, , .	0.4	0
153	Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN- \hat{l}^3 , and CTL Responses in Pigs. Frontiers in Veterinary Science, 0, 9, .	2.2	8
154	Establishment of a Dual Real-Time PCR Assay for the Identification of African Swine Fever Virus Genotypes I and II in China. Frontiers in Veterinary Science, 0, 9, .	2.2	9
155	African swine fever virus MGF505-3R inhibits cGAS-STING-mediated IFN- \hat{l}^2 pathway activation by degrading TBK1. Animal Diseases, 2022, 2, .	1.4	6
156	Molecular Characterization of African Swine Fever Virus From 2019-2020 Outbreaks in Guangxi Province, Southern China. Frontiers in Veterinary Science, 0, 9, .	2.2	15
157	Emerging infectious diseases may spread across pig trade networks in Thailand once introduced: a network analysis approach. Tropical Animal Health and Production, 2022, 54, .	1.4	3
158	The importance of fineâ€scale predictors of wild boar habitat use in an isolated population. Ecology and Evolution, 2022, 12, .	1.9	1
159	Earlyâ€phase risk assessments during the first epidemic year of African swine fever outbreaks in Vietnamese pigs. Veterinary Medicine and Science, 2022, 8, 1993-2004.	1.6	3
160	Development of an Indirect Elisa Against African Swine Fever Virus Using Two Recombinant Antigens, Partial P22 and P30. SSRN Electronic Journal, 0, , .	0.4	0
161	Temporal and Spatial Evolution of the African Swine Fever Epidemic in Vietnam. International Journal of Environmental Research and Public Health, 2022, 19, 8001.	2.6	5
162	Disinfectants against African Swine Fever: An Updated Review. Viruses, 2022, 14, 1384.	3.3	13
163	Experimental Infections of Pigs with African Swine Fever Virus (Genotype II); Studies in Young Animals and Pregnant Sows. Viruses, 2022, 14, 1387.	3.3	5
164	Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool. Viruses, 2022, 14, 1424.	3.3	5
165	Propidium Monoazide Combined With RT-qPCR Detects Infectivity of Porcine Epidemic Diarrhea Virus. Frontiers in Veterinary Science, 0, 9, .	2.2	2
166	Estimation of the probability risks of African swine fever outbreaks using the maximum entropy method in North Sumatra Province, Indonesia. Veterinary World, 0, , 1814-1820.	1.7	2
167	Immunobiological Characteristics of the Attenuated African Swine Fever Virus Strain Katanga-350. Viruses, 2022, 14, 1630.	3.3	2

#	Article	IF	Citations
168	Impact of human behavior on the spread of African swine fever virus: what every veterinarian should know. Journal of the American Veterinary Medical Association, 2022, 260, 1413-1417.	0.5	2
169	Clinical sequencing uncovers the genomic characteristics and mutation spectrum of the 2018 African swine fever virus in Guangdong, China. Frontiers in Veterinary Science, 0, 9, .	2.2	7
170	African Swine Fever Virus: A Review. Life, 2022, 12, 1255.	2.4	35
171	African Swine Fever Virus pl215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. Journal of Virology, 2022, 96, .	3.4	19
172	African Swine Fever Virus EP364R and C129R Target Cyclic GMP-AMP To Inhibit the cGAS-STING Signaling Pathway. Journal of Virology, 2022, 96, .	3.4	23
173	Establishment and Application of a Quantitative PCR Method for E248R Gene of African Swine Fever Virus. Veterinary Sciences, 2022, 9, 417.	1.7	3
174	Stochastic modelling of African swine fever in wild boar and domestic pigs: Epidemic forecasting and comparison of disease management strategies. Epidemics, 2022, 40, 100622.	3.0	5
175	Structural insights into the CP312R protein of the African swine fever virus. Biochemical and Biophysical Research Communications, 2022, 624, 68-74.	2.1	4
176	Development of an indirect ELISA against African swine fever virus using two recombinant antigens, partial p22 and p30. Journal of Virological Methods, 2022, 309, 114611.	2.1	8
177	What is a biosecurity measure? A definition proposal for animal production and linked processing operations. One Health, 2022, 15, 100433.	3.4	16
178	Toosendanin suppresses African swine fever virus replication through upregulating interferon regulatory factor 1 in porcine alveolar macrophage cultures. Frontiers in Microbiology, 0 , 13 , .	3.5	2
179	The African Swine Fever Isolate ASFV-Kenya-IX-1033 Is Highly Virulent and Stable after Propagation in the Wild Boar Cell Line WSL. Viruses, 2022, 14, 1912.	3.3	7
180	African Swine Fever Vaccinology: The Biological Challenges from Immunological Perspectives. Viruses, 2022, 14, 2021.	3.3	12
181	Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management. Frontiers in Veterinary Science, 0, 9, .	2.2	3
182	The 24.5-kb Left Variable Region Is Not a Determinant for African Swine Fever Virus to Replicate in Primary Porcine Alveolar Macrophages. Viruses, 2022, 14, 2119.	3.3	3
183	Influence of African Swine Fever Virus on Host Gene Transcription within Peripheral Blood Mononuclear Cells from Infected Pigs. Viruses, 2022, 14, 2147.	3.3	2
184	Genome-Wide Diversity Analysis of African Swine Fever Virus Based on a Curated Dataset. Animals, 2022, 12, 2446.	2.3	8
185	Wild boar visits to commercial pig farms in southwest England: implications for disease transmission. European Journal of Wildlife Research, 2022, 68, .	1.4	6

#	Article	IF	CITATIONS
186	In Silico Characterization of African Swine Fever Virus Nucleoprotein p10 Interaction with DNA. Viruses, 2022, 14, 2348.	3.3	2
187	Draft Genome Sequence Analysis of the Genotype II African Swine Fever Virus from India. Microbiology Resource Announcements, 0, , .	0.6	0
188	Adaptation of African swine fever virus to porcine kidney cells stably expressing CD163 and Siglec1. Frontiers in Immunology, 0, 13, .	4.8	6
189	One-Step Rapid and Sensitive ASFV p30 Antibody Detection via Nanoplasmonic Biosensors. Microbiology Spectrum, 2022, 10, .	3.0	5
190	Electric field-driven fabrication of anisotropic hydrogels from plant proteins: Microstructure, gel performance and formation mechanism. Food Hydrocolloids, 2023, 136, 108297.	10.7	9
191	A Naturally Occurring Microhomology-Mediated Deletion of Three Genes in African Swine Fever Virus Isolated from Two Sardinian Wild Boars. Viruses, 2022, 14, 2524.	3.3	1
192	Estimating transmission dynamics of African swine fever virus from experimental studies. Transboundary and Emerging Diseases, 2022, 69, 3858-3867.	3.0	3
193	Optimal reduced-mixing for an SIS infectious-disease model. Journal of Biological Dynamics, 2022, 16, 746-765.	1.7	1
194	A triton X-100 assisted PMAxx-qPCR assay for rapid assessment of infectious African swine fever virus. Frontiers in Microbiology, 0, 13, .	3.5	3
195	Experimental Infection of Domestic Pigs with African Swine Fever Virus Isolated in 2019 in Mongolia. Viruses, 2022, 14, 2698.	3.3	4
196	Small RNA sequencing and profiling of serum-derived exosomes from African swine fever virus-infected pigs. Journal of Animal Science, 0, , .	0.5	0
197	CRISPR-Cas based molecular diagnostics for foodborne pathogens. Critical Reviews in Food Science and Nutrition, 0, , 1-21.	10.3	9
198	Will swine veterinarians lead by meeting the next-generation needs of our industry?. Journal of the American Veterinary Medical Association, 2022, , 1-6.	0.5	0
199	Enhancing passive surveillance for African swine fever detection on U.S. swine farms. Frontiers in Veterinary Science, 0, 9, .	2.2	1
200	Estimation of the herd-level basic reproduction number for African swine fever in Vietnam, 2019. Veterinary World, 0, , 2850-2855.	1.7	1
201	The Tick-Borne Pathogens: An Overview of China's Situation. Acta Parasitologica, 2023, 68, 1-20.	1.1	8
202	A highly efficient indirect ELISA and monoclonal antibody established against African swine fever virus pK205R. Frontiers in Immunology, 0, 13 , .	4.8	4
203	The Indirect ELISA and Monoclonal Antibody against African Swine Fever Virus p17 Revealed Efficient Detection and Application Prospects. Viruses, 2023, 15, 50.	3.3	8

#	ARTICLE	IF	Citations
204	First Detection of African Swine Fever Virus Genotype IX at the Kenya Coast. International Journal of Virology, 2022, 18, 1-6.	0.4	0
205	African swine fever virus transmembrane protein pEP84R guides core assembly. PLoS Pathogens, 2023, 19, e1011136.	4.7	2
206	Multiepitope array as the key for African Swine Fever diagnosis. Veterinary Immunology and Immunopathology, 2023, 257, 110548.	1.2	0
207	Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of African Swine Fever Virus, Porcine Circovirus 2, and Pseudorabies Virus in East China from 2020 to 2022. Veterinary Sciences, 2023, 10, 106.	1.7	1
208	PI3K–Akt pathway-independent PIK3AP1 identified as a replication inhibitor of the African swine fever virus based on iTRAQ proteomic analysis. Virus Research, 2023, 327, 199052.	2.2	1
209	Establishment of a donor pig for xenotransplantation clinical trials based on the principle of Changsha Communiqu $\tilde{A}@.,0,,.$		0
210	Tick-borne diseases of animals. , 2023, , 107-129.		0
211	African Swine Fever Virus L83L Negatively Regulates the cGAS-STING-Mediated IFN-I Pathway by Recruiting Tollip To Promote STING Autophagic Degradation. Journal of Virology, 2023, 97, .	3.4	15
212	Nucleotide and codon usage biases involved in the evolution of African swine fever virus: A comparative genomics analysis. Journal of Basic Microbiology, 2023, 63, 499-518.	3.3	5
213	Transmission of African swine fever virus to the wild boars of Northeast India. Veterinary Quarterly, 2023, 43, 1-10.	6.7	5
215	Factors Influencing Disease Prevention and Control Behaviours of Hog Farmers. Animals, 2023, 13, 787.	2.3	4
216	Modeling the accuracy of a novel PCR and antibody ELISA for African swine fever virus detection using Bayesian latent class analysis. Frontiers in Veterinary Science, 0, 10, .	2.2	0
217	African Swine Fever Virus MGF505-7R Interacts with Interferon Regulatory Factor 9 to Evade the Type I Interferon Signaling Pathway and Promote Viral Replication. Journal of Virology, 2023, 97, .	3.4	4
218	Phosphorus in waste sources in Southern Vietnam: potential for recovery. Sustainable Environment Research, 2023, 33, .	4.2	0
219	Differential diagnosis of DNA viruses related to reproductive disorder on sows by multiplex-PCR technique. IOP Conference Series: Earth and Environmental Science, 2023, 1155, 012034.	0.3	0
220	African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase–STING and IFN Signaling Pathways. Journal of Immunology, 2023, 210, 1338-1350.	0.8	7
221	Complete genome analysis of African swine fever virus genotypes II, IX and XV from domestic pigs in Tanzania. Scientific Reports, 2023, 13, .	3.3	2
222	Tracing the Origin of Genotype II African Swine Fever Virus in China by Genomic Epidemiology Analysis. Transboundary and Emerging Diseases, 2023, 2023, 1-14.	3.0	4

#	Article	IF	Citations
223	Development of a highly sensitive pointâ€ofâ€care test for African swine fever that combines EZâ€Fast DNA extraction with LAMP detection: Evaluation using naturally infected swine whole blood samples from Vietnam. Veterinary Medicine and Science, 2023, 9, 1226-1233.	1.6	1
224	High-Risk Regions of African Swine Fever Infection in Mozambique. Viruses, 2023, 15, 1010.	3.3	1
225	Prediction of the spread of African swine fever through pig and carcass movements in Thailand using a network analysis and diffusion model. PeerJ, 0, 11, e15359.	2.0	0
226	African swine fever virus encoded protein MGF360-13L inhibits cGAS-STING-mediated IFN-I signaling pathway. Gene, 2023, 874, 147490.	2.2	2
227	Evaluation of Immune Nanoparticles for Rapid and Non-Specific Activation of Antiviral and Antibacterial Immune Responses in Cattle, Swine, and Poultry. Animals, 2023, 13, 1686.	2.3	0
228	African swine fever virus pS273R antagonizes stress granule formation by cleaving the nucleating protein G3BP1 to facilitate viral replication. Journal of Biological Chemistry, 2023, 299, 104844.	3.4	2
230	Screening and identification of the dominant antigens of the African swine fever virus. Frontiers in Veterinary Science, 0, 10 , .	2.2	3
231	Spatiotemporal Drivers of the African Swine Fever Epidemic in Lao PDR. Transboundary and Emerging Diseases, 2023, 2023, 1-9.	3.0	2
232	Combinational Deletions of <i>MGF110-9L</i> and <i>MGF505-7R</i> Genes from the African Swine Fever Virus Inhibit TBK1 Degradation by an Autophagy Activator PIK3C2B To Promote Type I Interferon Production. Journal of Virology, 2023, 97, .	3.4	4
233	New perspective on African swine fever: a bibliometrics study and visualization analysis. Frontiers in Veterinary Science, 0, 10 , .	2.2	1
234	Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nature Communications, 2023, 14, .	12.8	18
235	Crystal structure of African swine fever virus pE301R reveals a ring-shaped trimeric DNA sliding clamp. Journal of Biological Chemistry, 2023, 299, 104872.	3.4	3
236	Diseases of black soldier flies <i>Hermetia illucens</i> L. a future challenge for production?. Journal of Insects As Food and Feed, 0, , 1-4.	3.9	2
237	CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis. Emerging Microbes and Infections, 2023, 12, .	6.5	2
238	The Role of Wildlife and Pests in the Transmission of Pathogenic Agents to Domestic Pigs: A Systematic Review. Animals, 2023, 13, 1830.	2.3	0
239	Brincidofovir is a robust replication inhibitor against African swine fever virus <i>in vivo</i> and <i>in vitro</i> . Emerging Microbes and Infections, 2023, 12, .	6.5	0
240	An Intracellular Epitope of ASFV CD2v Protein Elicits Humoral and Cellular Immune Responses. Animals, 2023, 13, 1967.	2.3	0
241	PigSense: Structural Vibration-based Activity and Health Monitoring System for Pigs. ACM Transactions on Sensor Networks, 2024, 20, 1-43.	3.6	1

#	Article	IF	Citations
243	Function-guided selection of salivary antigens from Ornithodoros erraticus argasid ticks and assessment of their protective efficacy in rabbits. Ticks and Tick-borne Diseases, 2023, 14, 102218.	2.7	1
244	Pathobiological analysis of african swine fever virus contact-exposed pigs and estimation of the basic reproduction number of the virus in Vietnam. Porcine Health Management, 2023, 9, .	2.6	1
245	Vaccines for African swine fever: an update. Frontiers in Microbiology, 0, 14, .	3.5	15
246	Development and application of a TaqMan-based real-time PCR method for the detection of the ASFV MGF505-7R gene. Frontiers in Veterinary Science, 0, 10 , .	2.2	3
247	Investigation of the First African Swine Fever Outbreak in a Domestic Pig Farm in Hong Kong. Transboundary and Emerging Diseases, 2023, 2023, 1-15.	3.0	1
248	Evaluation of humoral and cellular immune responses induced by a cocktail of recombinant African swine fever virus antigens fused with Oprl in domestic pigs. Virology Journal, 2023, 20, .	3.4	2
249	Emodin and rhapontigenin inhibit the replication of African swine fever virus by interfering with virus entry. Veterinary Microbiology, 2023, 284, 109794.	1.9	2
250	Participatory assessment of management and biosecurity practices of smallholder pig farms in North East India. Frontiers in Veterinary Science, 0, 10 , .	2.2	1
251	A new vaccination regimen using adenovirus-vectored vaccine confers effective protection against African swine fever virus in swine. Emerging Microbes and Infections, 2023, 12, .	6.5	5
252	Visual isothermal amplification detection of ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas-12a. Analytical Biochemistry, 2023, 676, 115235.	2.4	0
253	Target capture sequencing for the first Nigerian genotype I ASFV genome. Microbial Genomics, 2023, 9, .	2.0	0
254	ldentification and epitope mapping of anti-p72 single-chain antibody against African swine fever virus based on phage display antibody library1. Journal of Integrative Agriculture, 2023, , .	3.5	1
256	African Swine Fever Virus pF778R Attenuates Type I Interferon Response by Impeding STAT1 Nuclear Translocation. Virus Research, 2023, 335, 199190.	2.2	0
257	How Does Epidemic Prevention Training for Pig Breeding Affect Cleaning and Disinfection Procedures Adoption? Evidence from Chinese Pig Farms. Veterinary Sciences, 2023, 10, 516.	1.7	1
258	SY18î"L60L: a new recombinant live attenuated African swine fever virus with protection against homologous challenge. Frontiers in Microbiology, 0, 14 , .	3.5	1
259	Enzyme-free and sensitive method for single-stranded nucleic acid detection based on CHA and HCR. Analytical Methods, 2023, 15, 4243-4251.	2.7	1
260	Metabolomic analysis of pig spleen reveals African swine fever virus infection increased acylcarnitine levels to facilitate viral replication. Journal of Virology, 2023, 97, .	3.4	0
261	Unamplified system for sensitive and typing detection of ASFV by the cascade platform that CRISPR-Cas12a combined with graphene field-effect transistor. Biosensors and Bioelectronics, 2023, , 115637.	10.1	1

#	Article	IF	CITATIONS
262	Factors Affecting the Spread, Diagnosis, and Control of African Swine Fever in the Philippines. Pathogens, 2023, 12, 1068.	2.8	2
263	Investigation of Risk Factors Associated with the African Swine Fever Outbreaks in the Nizhny Novgorod Region of Russia, 2011–2022. Transboundary and Emerging Diseases, 2023, 2023, 1-14.	3.0	O
264	The Influencing Factors of "Post-African Swine Fever―Pig Farm Biosecurity: Evidence from Sichuan Province, China. Animals, 2023, 13, 3053.	2.3	0
265	A Whole-Genome Analysis of the African Swine Fever Virus That Circulated during the First Outbreak in Vietnam in 2019 and Subsequently in 2022. Viruses, 2023, 15, 1945.	3.3	O
266	Spatiotemporal Patterns of African Swine Fever in Wild Boar in the Russian Federation (2007–2022): Using Clustering Tools for Revealing High-Risk Areas. Animals, 2023, 13, 3081.	2.3	0
268	Risk of African swine fever incursion into the Netherlands by wild boar carcasses and meat carried by Dutch hunters from hunting trips abroad. Microbial Risk Analysis, 2023, 25, 100276.	2.3	O
269	Expression of ASFV p17 in CHO cells and identification of one novel epitope using a monoclonal antibody. Virus Research, 2023, 336, 199194.	2,2	0
270	Quantitative risk assessment of African swine fever introduction into Spain by legal import of swine products. Research in Veterinary Science, 2023, 163, 104990.	1.9	1
272	Colorimetric detection of African swine fever (ASF)-associated microRNA based on rolling circle amplification and salt-induced gold nanoparticle aggregation. Talanta, 2024, 267, 125159.	5.5	0
273	The diffusion metrics of African swine fever in wild boar. Scientific Reports, 2023, 13, .	3.3	1
274	Combining several indicators to assess the effectiveness of tailor-made health plans in pig farms. , 0, 3, .		1
275	Understanding the interface between European wild boar (Sus scrofa) and domestic pigs (Sus scrofa) Tj ETQq $1\ 1$	0,784314	l rgBT /Overl
276	What can we learn from the five-year African swine fever epidemic in Asia?. Frontiers in Veterinary Science, 0, 10, .	2.2	2
277	Assessment of different factors on the influence of glass wool concentration for detection of main swine viruses in water samples. PeerJ, 0, 11, e16171.	2.0	0
278	Swine industry stakeholders' perception on the use of water-based foam as an emergency mass depopulation method. PLoS ONE, 2023, 18, e0290400.	2.5	0
279	Establishment and characterization of a novel indirect ELISA method based on ASFV antigenic epitope-associated recombinant protein. International Journal of Biological Macromolecules, 2023, 253, 127311.	7.5	O
280	Increased Presence of Circulating Cell-Free, Fragmented, Host DNA in Pigs Infected with Virulent African Swine Fever Virus. Viruses, 2023, 15, 2133.	3.3	1
281	Development of an Early Diagnostic Device for African Swine Fever through Real-time Temperature Monitoring Ear-tags (RTMEs). Journal of Sensor Science and Technology, 2023, 32, 275-279.	0.2	O

#	ARTICLE	IF	CITATIONS
282	Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fever. Viruses, 2023, 15, 2169.	3.3	2
283	A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. Journal of Nanobiotechnology, 2023, 21, .	9.1	0
284	Riding apoptotic bodies for cell–cell transmission by African swine fever virus. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
285	A Robust Quadruple Protein-Based Indirect ELISA for Detection of Antibodies to African Swine Fever Virus in Pigs. Microorganisms, 2023, 11, 2758.	3.6	0
286	Identification of Linear Epitopes in the C-Terminal Region of ASFV p72 Protein. Microorganisms, 2023, 11, 2846.	3.6	0
287	Preparation and epitope mapping of monoclonal antibodies against African swine fever virus p22 protein. International Journal of Biological Macromolecules, 2024, 255, 128111.	7.5	0
288	Tetrandrine (TET) inhibits African swine fever virus entry into cells by blocking the PI3K/Akt pathway. Virus Research, 2024, 339, 199258.	2.2	0
289	Stability of African swine fever virus genome under different environmental conditions. Veterinary World, 2023, , 2374-2381.	1.7	1
290	Biosecurity measures to prevent African swine fever in pig fattening farms. Practica Veterinara Ro, 2023, 4, 50-52.	0.0	0
291	Current detection methods of African swine fever virus. Frontiers in Veterinary Science, $0,10,.$	2.2	1
292	The p30 protein of the African swine fever virus behaves as an RNase. Virology, 2024, 590, 109967.	2.4	0
293	Rapid conversion of porcine pluripotent stem cells into macrophages with chemically defined conditions. Journal of Biological Chemistry, 2024, 300, 105556.	3.4	1
294	African Swine Fever and Its Control Measures in Wild Boar: A "De Iure Condito―Analysis in the European Union. Animals, 2024, 14, 14.	2.3	0
295	The Long-Jumping of African Swine Fever: First Genotype II Notified in Sardinia, Italy. Viruses, 2024, 16, 32.	3.3	0
296	Identification of the p34 Protein of African Swine Fever Virus as a Novel Viral Antigen with Protection Potential. Viruses, 2024, 16, 38.	3.3	0
297	A novel conserved B-cell epitope in pB602L of African swine fever virus. Applied Microbiology and Biotechnology, 2024, 108, .	3.6	0
298	Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Scientific Reports, 2024, 14 , .	3.3	0
299	Genomic Epidemiology of African Swine Fever Virus Identified in Domestic Pig Farms in South Korea during 2019–2021. Transboundary and Emerging Diseases, 2024, 2024, 1-11.	3.0	0

#	Article	IF	Citations
300	Passive Surveillance as a Key Tool for African Swine Fever Eradication in Wild Boar: A Protocol to Find Carcasses Tested and Validated in the Mediterranean Island of Sardinia. Viruses, 2024, 16, 136.	3.3	0
301	Inefficient Transmission of African Swine Fever Virus to Sentinel Pigs from an Environment Contaminated by ASFV-Infected Pigs under Experimental Conditions. Transboundary and Emerging Diseases, 2024, 2024, 1-16.	3.0	1
302	Assessing the impact of shocks on household vulnerability: evidence from rural areas in Vietnam. Environment, Development and Sustainability, 0, , .	5.0	0
303	Identification of L $11L$ and L $7L$ as virulence-related genes in the African swine fever virus genome. Frontiers in Microbiology, 0, 15 , .	3.5	0
304	Recent progress and major gaps in the vaccine development for African swine fever. Brazilian Journal of Microbiology, 2024, 55, 997-1010.	2.0	0
305	A Deep Sequencing Strategy for Investigation of Virus Variants within African Swine Fever Virus-Infected Pigs. Pathogens, 2024, 13, 154.	2.8	0
306	The African Swine Fever Virus Virulence Determinant DP96R Suppresses Type I IFN Production Targeting IRF3. International Journal of Molecular Sciences, 2024, 25, 2099.	4.1	0
307	In vitro SELEX and application of an African swine fever virus (ASFV) p30 protein specific aptamer. Scientific Reports, 2024, 14, .	3.3	0
308	ASFV pA151R negatively regulates type I IFN production via degrading E3 ligase TRAF6. Frontiers in lmmunology, 0, 15 , .	4.8	0
309	Structure of the recombinant RNA polymerase from African Swine Fever Virus. Nature Communications, 2024, 15 , .	12.8	0
310	Single-cell profiling of African swine fever virus disease in the pig spleen reveals viral and host dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
311	Structure-function analysis of the ATPase domain of African swine fever virus topoisomerase. MBio, 2024, 15, .	4.1	0
312	Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. Npj Vaccines, 2024, 9, .	6.0	0
313	Temporal and Spatial Trends in Livestock Manure Discharge and Water Pollution Risk in Chaohu Lake Basin. Sustainability, 2024, 16, 2396.	3.2	0