Calcium-Carboxyl Intrabridging during Interfacial Poly Improve Antifouling Performance of Thin Film Compos

Environmental Science & amp; Technology 53, 4371-4379 DOI: 10.1021/acs.est.8b05690

Citation Report

#	Article	IF	CITATIONS
1	The upper bound of thin-film composite (TFC) polyamide membranes for desalination. Journal of Membrane Science, 2019, 590, 117297.	4.1	381
2	A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers, 2019, 11, 1252.	2.0	326
3	New insights into the organic fouling mechanism of an <i>in situ</i> Ca ²⁺ modified thin film composite forward osmosis membrane. RSC Advances, 2019, 9, 38227-38234.	1.7	10
4	Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination. Journal of Membrane Science, 2020, 595, 117518.	4.1	46
5	Fabrication of high performance nanofiltration membrane on a coordination-driven assembled interlayer for water purification. Separation and Purification Technology, 2020, 235, 116192.	3.9	43
6	Solvent activation before heat-treatment for improving reverse osmosis membrane performance. Journal of Membrane Science, 2020, 595, 117565.	4.1	35
7	1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. Journal of Membrane Science, 2020, 599, 117830.	4.1	39
8	In-situ covalently bonded supramolecular-based protective layer for improving chlorine resistance of thin-film composite nanofiltration membranes. Desalination, 2020, 474, 114197.	4.0	57
9	Dual-functional acyl chloride monomer for interfacial polymerization: Toward enhanced water softening and antifouling performance. Separation and Purification Technology, 2020, 237, 116362.	3.9	22
10	Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. Journal of Membrane Science, 2020, 598, 117672.	4.1	238
11	A novel cockscomb-like substrate-supported TFN-FO membrane with a dispersed bovine serum albumin (BSA)/gold nanoparticles (GNPs) interface layer exhibiting high performance. Desalination, 2020, 496, 114732.	4.0	4
12	Degradation of secondary polyamide reverse osmosis membrane by hypochlorite in the presence of calcium ions. Polymer Degradation and Stability, 2020, 181, 109351.	2.7	7
13	Polyhydroxy Group Functionalized Zwitterion for a Polyamide Nanofiltration Membrane with High Water Permeation and Antifouling Performance. ACS Applied Polymer Materials, 2020, 2, 3850-3858.	2.0	14
14	Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination, 2020, 491, 114557.	4.0	56
15	Molecular Understanding of Ion Effect on Polyzwitterion Conformation in an Aqueous Environment. Langmuir, 2020, 36, 7648-7657.	1.6	10
16	Fabrication of High-Performance Thin-Film Composite Nanofiltration Membrane by Dynamic Calcium-Carboxyl Intra-Bridging during Post-Treatment. Membranes, 2020, 10, 137.	1.4	13
17	Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties. Environmental Science: Nano, 2020, 7, 803-816.	2.2	49
18	Constructing substrate of low structural parameter by salt induction for high-performance TFC-FO membranes. Journal of Membrane Science, 2020, 600, 117866.	4.1	24

CITATION REPORT

#	Article	IF	CITATIONS
19	High-performance nanofiltration membrane structured with enhanced stripe nano-morphology. Journal of Membrane Science, 2020, 600, 117852.	4.1	57
20	A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. Science of the Total Environment, 2020, 729, 138876.	3.9	40
21	Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. Journal of Colloid and Interface Science, 2020, 571, 155-165.	5.0	47
22	Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. Journal of Membrane Science, 2021, 620, 118901.	4.1	48
23	Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance. Separation and Purification Technology, 2021, 254, 117604.	3.9	31
24	Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal–Organic Framework. Environmental Science & Technology, 2021, 55, 5324-5334.	4.6	28
25	Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS Applied Materials & Interfaces, 2021, 13, 22621-22634.	4.0	18
26	Evaluation of Performance of Existing RO Drinking Water Stations in the North Central Province, Sri Lanka. Membranes, 2021, 11, 383.	1.4	12
27	Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. Water Research, 2021, 195, 116976.	5.3	90
28	Fabrication of nanofiltration membrane on MoS2 modified PVDF substrate for excellent permeability, salt rejection, and structural stability. Chemical Engineering Journal, 2021, 416, 129154.	6.6	46
29	Novel thin-film composite membrane with ultrathin surface mineralization layer engineered by electrostatic attraction induced In-situ assembling process for high-performance nanofiltration. Chemical Engineering Journal, 2021, 417, 127903.	6.6	20
30	Importance of Surface Carboxyl Groups on Biofouling Development and Control for Thin Film Composite (TFC) Polyamide Membranes. ACS ES&T Engineering, 0, , .	3.7	2
31	Positively charged membranes constructed via complexation for chromium removal through micellar-enhanced forward osmosis. Chemical Engineering Journal, 2021, 420, 129837.	6.6	16
32	Fabrication and performance of reticular ceramic fiber membranes by freeze casting using a gel network. Journal of the European Ceramic Society, 2021, 41, 6586-6595.	2.8	9
33	MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Separation and Purification Technology, 2021, 275, 119150.	3.9	34
34	Enhancing the long-term separation stability of TFC membrane by the covalent bond between synthetic amino-substituted polyethersulfone substrate and polyamide layer. Journal of Membrane Science, 2021, 637, 119637.	4.1	15
35	Coordination-crosslinked polyimide supported membrane for ultrafast molecular separation in multi-solvent systems. Chemical Engineering Journal, 2022, 427, 130941.	6.6	28
36	Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater. Desalination, 2020, 487, 114503.	4.0	64

#	Article	IF	CITATIONS
37	Impacts of sodium bicarbonate and co-amine monomers on properties of thin-film composite membrane for water treatment. International Journal of Environmental Science and Technology, 0, , 1.	1.8	0
38	Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chemical Society Reviews, 2022, 51, 672-719.	18.7	182
39	Mechanistic Insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration Membranes. Environmental Science & Technology, 2022, 56, 1927-1937.	4.6	32
40	Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. Journal of Cleaner Production, 2022, 333, 130171.	4.6	57
41	Polyamide thin film nanocomposite membrane with internal void structure mediated by silica and SDS for highly permeable reverse-osmosis application. Composites Communications, 2022, , 101092.	3.3	3
42	Green Fabrication of Thin Film Composite Polyamide Membrane for Water Purification Via Inkjet Printing Technology. SSRN Electronic Journal, 0, , .	0.4	0
43	Performance of TFN nanofiltration membranes through embedding internally modified titanate nanotubes. Korean Journal of Chemical Engineering, 2022, 39, 1902-1918.	1.2	6
44	Poly(vinylidene fluoride) Substrate-Supported Polyamide Membrane for High-Temperature Water Nanofiltration. ACS Applied Polymer Materials, 2022, 4, 3820-3832.	2.0	10
45	Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Separation and Purification Technology, 2022, 295, 121348.	3.9	11
46	Turning waste into adsorbent: Modification of discarded orange peel for highly efficient removal of Cd(II) from aqueous solution. Biochemical Engineering Journal, 2022, 185, 108497.	1.8	10
47	A Mof-Based Trap with Strong Affinity Toward Low-Concentration Heavy Metal Ions. SSRN Electronic Journal, 0, , .	0.4	0
48	In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS Applied Materials & amp; Interfaces, 2022, 14, 28842-28853.	4.0	12
49	A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Separation and Purification Technology, 2022, 301, 121946.	3.9	6
50	Fabrication of thin film composite polyamide membrane for water purification via inkjet printing of aqueous and solvent inks. Desalination, 2022, 541, 116027.	4.0	9
51	Antibiofouling Characteristics and Mechanisms in an Anammox Membrane Bioreactor Based on an Optimized Photocatalytic Technology─Photocatalytic Optical Fibers. Environmental Science & Technology, 2022, 56, 16144-16155.	4.6	5
52	IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties. Coatings, 2022, 12, 1823.	1.2	1
53	Hollow porous carbon spheres (HPCSs) doped thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Journal of Environmental Chemical Engineering, 2023, 11, 109252.	3.3	1
54	Synthesis and Characterization of Nanofiltration Membrane. , 2023, , 17-35.		0

#	Article	IF	CITATIONS
55	Concentration of phenolic compounds from olive washing wastewater by forward osmosis using table olive fermentation brine as draw solution. Environmental Technology and Innovation, 2023, 30, 103054.	3.0	3
56	Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: A critical review. Water Research, 2023, 234, 119821.	5.3	7

CITATION REPORT