Review of Biomass Resources and Conversion Technolo Production in Hawaiâ€I and Tropical Regions

Energy & amp; Fuels 33, 2699-2762 DOI: 10.1021/acs.energyfuels.8b03001

Citation Report

#	Article	IF	CITATIONS
1	Highly selective conversion of natural oil to alcohols or alkanes over a Pd stabilized CuZnAl catalyst under mild conditions. Green Chemistry, 2019, 21, 5046-5052.	4.6	15
2	Microscale Analyses of Mineral Particles in Sugar Cane Bagasse and Straw Shed Light on How Debris Can Be Incorporated into Biomass. Energy & Fuels, 2019, 33, 9965-9973.	2.5	6
3	Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis. Renewable Energy, 2020, 149, 1339-1351.	4.3	25
4	Carbon flow through energycane agroecosystems established postâ€intensive agriculture. GCB Bioenergy, 2020, 12, 806-817.	2.5	5
5	Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production. Molecular Catalysis, 2022, 523, 111207.	1.0	10
6	Prospects and perspectives foster enhanced research on bio-aviation fuels. Journal of Environmental Management, 2020, 274, 111214.	3.8	37
7	Results of the International Energy Agency Bioenergy Round Robin on the Analysis of Heteroatoms in Biomass Liquefaction Oils. Energy & Fuels, 2020, 34, 11123-11133.	2.5	9
8	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Industrial & Engineering Chemistry Research, 2020, 59, 16957-16969.	1.8	76
9	A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology, 2020, 312, 123596.	4.8	171
10	Microalgae Oil Upgrading over Zeolite-Based Catalysts. ACS Symposium Series, 2021, , 89-124.	0.5	6
11	Recent Catalytic Approaches for the Production of Cycloalkane Intermediates from Ligninâ€Based Aromatic Compounds: A Review. ChemistrySelect, 2021, 6, 1715-1733.	0.7	8
12	Fuel Properties of Pongamia (<i>Milletia pinnata</i>) Seeds and Pods Grown in Hawaii. ACS Omega, 2021, 6, 9222-9233.	1.6	9
13	Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels. Agronomy, 2021, 11, 838.	1.3	5
14	Identification of Active Metal Carbide and Nitride Catalytic Facets for Hydrodeoxygenation Reactions. Journal of Physical Chemistry C, 2021, 125, 8630-8637.	1.5	13
15	The fate of fuel-nitrogen during the thermo-oxidative degradation of nitrogen-rich wood waste. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105026.	2.6	1
17	Catalytic pyrolysis of coconut oil soap using zeolites for bio-hydrocarbon production. Biomass Conversion and Biorefinery, 0, , 1.	2.9	4
18	Conversion of levulinic acid to valuable chemicals: a review. Journal of Chemical Technology and Biotechnology, 2021, 96, 3009-3024.	1.6	29
19	Tuning hierarchical ZSM-5 for green jet fuel production from soybean oil via control of Pt location and grafted TPABr content. Catalysis Communications. 2021. 155. 106288.	1.6	4

CITATION REPORT

#	Article	IF	CITATIONS
20	Combustion Behavior of Algal Biochars Obtained at Different Pyrolysis Heating Rates. ACS Omega, 2021, 6, 19144-19152.	1.6	6
21	Energy and exergy analysis of bio-jet fuel production from lignocellulosic biomass via aqueous conversion. Case Studies in Thermal Engineering, 2021, 26, 101006.	2.8	14
22	Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renewable and Sustainable Energy Reviews, 2021, 151, 111564.	8.2	61
23	Water leaching for improving fuel properties of pongamia Pod: Informing process design. Fuel, 2021, 305, 121480.	3.4	2
24	The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. Environmental Research, 2022, 204, 112043.	3.7	25
25	Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review. International Journal of Renewable Energy Development, 2022, 11, 111-132.	1.2	5
26	Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review. International Journal of Renewable Energy Development, 2022, 11, 111-132.	1.2	1
27	Continuousâ€Flow Synthesis of 5â€Hydroxymethylfurfural, Furfural from Monosaccharides: A Simple, Fast, and Practical Method. ChemistrySelect, 2021, 6, 10827-10833.	0.7	10
29	Energy and exergy analyses of bio-jet fuel production from full components in lignocellulosic biomass via aqueous-phase conversion. Applied Thermal Engineering, 2022, 201, 117723.	3.0	9
30	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.	23.0	223
30 31	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441. Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation. , 2022, , 331-361.	23.0	223 6
30 31 32	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation., 2022,, 331-361.Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy, 2022, 245, 123210.	23.0 4.5	223 6 8
30 31 32 33	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation., 2022, , 331-361.Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy, 2022, 245, 123210.Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Science of the Total Environment, 2022, 820, 153233.	23.0 4.5 3.9	223 6 8 9
30 31 32 33 34	 Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441. Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation., 2022, , 331-361. Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy, 2022, 245, 123210. Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Science of the Total Environment, 2022, 820, 153233. Amination of biomass to nitrogen-containing compounds., 2022, 593-612. 	23.0 4.5 3.9	223 6 8 9 1
 30 31 32 33 34 35 	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation. , 2022, , 331-361.Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy, 2022, 245, 123210.Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Science of the Total Environment, 2022, 820, 153233.Amination of biomass to nitrogen-containing compounds. , 2022, , 593-612.The pyrolysis kinetics and heat exchange performance of biomass hydrocarbon pinane. Fuel, 2022, 317, 123453.	23.0 4.5 3.9 3.4	 223 6 8 9 1 5
30 31 32 33 34 35 36	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation., 2022,, 331-361.Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy, 2022, 245, 123210.Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Science of the Total Environment, 2022, 820, 153233.Amination of biomass to nitrogen-containing compounds., 2022, , 593-612.The pyrolysis kinetics and heat exchange performance of biomass hydrocarbon pinane. Fuel, 2022, 317, 123453.The role of artificial neural networks in bioproduct development: a case of modeling and optimization studies., 2022, 417-431.	23.0 4.5 3.9 3.4	 223 6 8 9 1 5 2
 30 31 32 33 34 35 36 37 	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation., 2022, , 331-361.Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy, 2022, 245, 123210.Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Science of the Total Environment, 2022, 820, 153233.Amination of biomass to nitrogen-containing compounds., 2022, 593-612.The pyrolysis kinetics and heat exchange performance of biomass hydrocarbon pinane. Fuel, 2022, 317, 123453.The role of artificial neural networks in bioproduct development: a case of modeling and optimization studies., 2022, , 417-431.Recent Approaches in the Catalytic Transformation of Biomassâ€Derived 5â€Hydroxymethylfurfural into 2,5a€Diformylfuran. ChemSusChem, 2022, 15, .	23.0 4.5 3.9 3.4 3.4	 223 6 8 9 1 5 2 18

CITATION REPORT

#	Article	IF	CITATIONS
39	Integrated biopolymer and bioenergy production from organic wastes: Recent advances and future outlook. , 2022, , 261-283.		1
40	Review on development of ionic liquids in lignocellulosic biomass refining. Journal of Molecular Liquids, 2022, 359, 119326.	2.3	20
41	Challenges and emerging approaches in life cycle assessment of engineered nanomaterials usage in anaerobic bioreactor. , 2022, , 207-222.		0
42	Eco-Friendly Synthesis of 5-Hydroxymethylfurfural and Its Applications as a Starting Material to Synthesize Valuable Heterocyclic Compounds. ACS Sustainable Chemistry and Engineering, 2022, 10, 8673-8684.	3.2	14
43	Employing a Socio-Technical System Approach in Prospective Life Cycle Assessment: A Case of Large-Scale Swedish Sustainable Aviation Fuels. Frontiers in Sustainability, 0, 3, .	1.3	6
44	Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: A review of recent progress. Energy Conversion and Management, 2022, 268, 115956.	4.4	73
45	Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 2022, 168, 112815.	8.2	54
46	Aviation Biofuels: Conversion Routes and Challenges. , 2023, , 33-85.		3
47	Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review. Journal of Energy Chemistry, 2023, 79, 611-638.	7.1	33
48	Feedstocks and challenges to biofuel development. , 2023, , 93-121.		0
49	Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: Latest innovation avenues, insights, challenges, and future perspectives. Chemosphere, 2023, 318, 137954.	4.2	9
50	Economic opportunities and challenges in biojet production: A literature review and analysis. Biomass and Bioenergy, 2023, 170, 106727.	2.9	7
53	Joint application of chemical and thermal approaches for processing of plant biomass waste. AIP Conference Proceedings, 2023, , .	0.3	0
56	Comparative Analysis of Biojet Fuel Production from Different Potential Substrates. Clean Energy Production Technologies, 2024, , 61-84.	0.3	0