A greener, fast, and cost-effective smartphone-based di quantification of ethanol in distilled beverages

Microchemical Journal 147, 437-443 DOI: 10.1016/j.microc.2019.03.054

Citation Report

#	Article	IF	CITATIONS
1	A review of smartphone pointâ€ofâ€care adapter design. Engineering Reports, 2019, 1, e12039.	1.7	30
2	Field analysis free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and accuracy. Microchemical Journal, 2019, 150, 104200.	4.5	15
3	Using a Flatbed Scanner and Automated Digital Image Analysis To Determine the Total Phenolic Content in Beer. Journal of Chemical Education, 2019, 96, 2315-2321.	2.3	19
4	Feasibility of paper microzone plates for greener determination of the alcoholic content of beverages by thermal infrared enthalpimetry. Analytical Methods, 2019, 11, 4983-4990.	2.7	5
5	Determination of Ethanol in Beers Using a Flatbed Scanner and Automated Digital Image Analysis. Food Analytical Methods, 2020, 13, 249-259.	2.6	20
6	Approaching Diesel Fuel Quality in Chemistry Lab Classes: Undergraduate Student's Achievements on Determination of Biodiesel Content in Diesel Oil Applying Solvatochromic Effect. Journal of Chemical Education, 2020, 97, 4462-4468.	2.3	5
7	PhotoMetrix and colorimetric image analysis using smartphones. Journal of Chemometrics, 2020, 34, e3251.	1.3	34
8	A spot test for total esters determination in sugarcane spirits exploiting smartphone-based digital images. Analytical Methods, 2020, 12, 3918-3923.	2.7	3
9	Applications of smartphones in food analysis. , 2021, , 249-268.		3
10	Water-responsive tough 1D hydrogel with programmable deformations for actuators and chemical sensors. Smart Materials and Structures, 2021, 30, 075014.	3.5	11
11	A concise review on food quality assessment using digital image processing. Trends in Food Science and Technology, 2021, 118, 106-124.	15.1	48
12	Spot test for fast determination of hydrogen peroxide as a milk adulterant by smartphone-based digital image colorimetry. Microchemical Journal, 2020, 157, 105042.	4.5	38
13	Colorimetric hand-held sensors and biosensors with a small digital camera as signal recorder, a review. Reviews in Analytical Chemistry, 2020, 39, 20-30.	3.2	22
14	Simple monitoring of pH and urea in whole blood using wearable smart woman pad. BioImpacts, 2020, 12, 43-50.	1.5	0
15	Phosphate determination in environmental, biological and industrial samples using a smartphone as a capture device. New Journal of Chemistry, O, , .	2.8	3
16	A simple and cost-effective smartphone-based digital imaging device for the quantification of selected heavy metals in Thai rice. Analytical Methods, 2022, 14, 165-173.	2.7	7
17	A high-throughput, cheap, and green method for determination of ethanol in cachaça and vodka using 96-well-plate images. Talanta, 2022, 241, 123229.	5.5	9
18	Home-Made Membraneless Vaporization Gas-Liquid Separator for Colorimetric Determination of Ethanol in Alcoholic Beverages. Journal of Analytical Methods in Chemistry, 2022, 2022, 1-9.	1.6	Ο

TATION PEDO

#	Article	IF	CITATIONS
19	Simple and cost-effective approaches for quantification of reducing sugar exploiting digital image analysis. Journal of Food Composition and Analysis, 2022, 113, 104719.	3.9	7
20	Purge and trap in-tube colorimetric detection method for the determination of ethanol in alcoholic and non-alcoholic beverages. Advances in Sample Preparation, 2022, 4, 100043.	3.0	0
21	Hypothesis Tests and Exploratory Analysis Using R Commander and Factoshiny. Journal of Chemical Education, 2023, 100, 267-278.	2.3	6
22	Fluorescence-Based Accurate Estimation of Chlorophyll in Tea Leaves Using Smartphone. IEEE Sensors Journal, 2023, 23, 14864-14871.	4.7	0
23	Digital image-based quantification of ethanol in distilled spirits using red cabbage (Brassica oleracea) extract. Chemical Papers, 0, , .	2.2	0
24	Smartphone-based digital images in analytical chemistry: Why, when, and how to use. TrAC - Trends in Analytical Chemistry, 2023, 168, 117284.	11.4	5
25	Development of a novel app-based system for the digital color read out of time-temperature-indicators and to monitor shelf life along the chain. Food Packaging and Shelf Life, 2023, 40, 101198.	7.5	1
26	SmartAnalysis: A sustainable digital-image colorimetry method for ethanol determination in alcohol-based hand sanitizer. Ars Pharmaceutica, 2024, 65, 126-138,	0.3	0