Biosynthesis and Signal Transduction of ABA, JA, and Bl Kentucky Bluegrass

International Journal of Molecular Sciences 20, 1289

DOI: 10.3390/ijms20061289

Citation Report

#	Article	IF	CITATIONS
1	OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. International Journal of Molecular Sciences, 2019, 20, 2360.	4.1	23
2	Transcriptome Profiling, Biochemical and Physiological Analyses Provide New Insights towards Drought Tolerance in Nicotiana tabacum L Genes, 2019, 10, 1041.	2.4	19
3	RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. International Journal of Molecular Sciences, 2020, 21, 167.	4.1	24
4	Beneficial Effects of Mixing Kentucky Bluegrass With Red Fescue via Plant-Soil Interactions in Black Soil of Northeast China. Frontiers in Microbiology, 2020, 11, 556118.	3.5	7
5	Transcriptome profiling reveals the effects of drought tolerance in Giant Juncao. BMC Plant Biology, 2021, 21, 2.	3.6	23
6	Gene expression differences for drought stress response in three cool-season turfgrasses. Itsrj, 0, , .	0.3	1
7	Plant Growth and Morphophysiological Modifications in Perennial Ryegrass under Environmental Stress., 0,,.		0
8	A Review on Kentucky Bluegrass Responses and Tolerance to Drought Stress. , 0, , .		2
9	Comparative Transcriptome Analysis Revealed Candidate Genes Potentially Related to Desiccation Sensitivity of Recalcitrant Quercus variabilis Seeds. Frontiers in Plant Science, 2021, 12, 717563.	3.6	8
10	Turf performance and physiological responses of native <i>Poa</i> species to summer stress in Northeast China. Peerl, 2021, 9, e12252.	2.0	7
11	Nitrogen assimilation and gene regulation of two Kentucky bluegrass cultivars differing in response to nitrate supply. Scientia Horticulturae, 2021, 288, 110315.	3.6	7
12	Transcript responses to drought in Kentucky bluegrass (Poa pratensis L.) germplasm varying in their tolerance to drought stress. Environmental and Experimental Botany, 2021, 190, 104571.	4.2	5
13	Exogenous application of acetic acid improves the survival rate of cotton by increasing abscisic acid and jasmonic acid contents under drought stress. Acta Physiologiae Plantarum, 2021, 43, 1.	2.1	12
14	Physiological, biochemical and gene-expressional responses to water deficit in apple subjected to partial root-zone drying (PRD). Plant Physiology and Biochemistry, 2020, 148, 333-346.	5.8	25
15	Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry (Morus Alba L.) Trees Against Drought. Frontiers in Plant Science, 2021, 12, 720452.	3.6	4
16	Role of abscisic acid in modulating drought acclimation, agronomic characteristics and <scp><i>β</i>â€<i>N</i>â€oxalylâ€Lâ€<i>α</i>c>,<scp><i>β</i>â€c>diaminopropionic acid (<scp><i>β</i>â€ODAP</scp>) accumulation in grass pea (<i>Lathyrus sativus</i>c>c) Journal of the Science of Food and Agriculture, 2022, 102, 2553-2562.</scp></scp>	3.5	5
17	Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry, 2021, 168, 128-142.	5.8	28
18	Comparing wholeâ€genome shotgun sequencing and DNA metabarcoding approaches for species identification and quantification of pollen species mixtures. Ecology and Evolution, 2021, 11, 16082-16098.	1.9	17

#	ARTICLE	IF	CITATIONS
19	High Concentration of CO2 Improve the Pb Resistance of Oryza sativa L. Seedlings by Enhancing Photosynthesis and Regulating Plant Endogenous Hormones. Journal of Plant Growth Regulation, 2022, 41, 3556-3567.	5.1	5
20	Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in <i>Poa pratensis</i> INA and Cell Biology, 2022, 41, 151-168.	1.9	3
21	Integrated transcriptome and small RNA sequencing analyses reveal a drought stress response network in Sophora tonkinensis. BMC Plant Biology, 2021, 21, 566.	3.6	4
22	Exploring the salt- and drought-tolerant genes of alfalfa through expression library screening strategy. Grass Research, 2021, 1, 1-14.	1.7	3
23	Differential Metabolomic Responses of Kentucky Bluegrass Cultivars to Low Nitrogen Stress. Frontiers in Plant Science, 2021, 12, 808772.	3.6	5
24	Hierarchical transcription factor and regulatory network for drought response in <i>Betula platyphylla</i> . Horticulture Research, 2022, 9, .	6.3	16
25	Current Studies of the Effects of Drought Stress on Root Exudates and Rhizosphere Microbiomes of Crop Plant Species. International Journal of Molecular Sciences, 2022, 23, 2374.	4.1	37
26	Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants. Tree Physiology, 2022, 42, 1827-1840.	3.1	19
36	Transcriptome analysis of maize pollen grains under drought stress during flowering. Crop and Pasture Science, 2022, , .	1.5	2
37	Overexpression of a Zea mays Brassinosteroid-Signaling Kinase Gene ZmBSK1 Confers Salt Stress Tolerance in Maize. Frontiers in Plant Science, 2022, 13, .	3.6	6
38	Genome-wide identification and expression analysis reveals spinach brassinosteroid-signaling kinase (BSK) gene family functions in temperature stress response. BMC Genomics, 2022, 23, .	2.8	5
39	ZmBSK1 positively regulates BR-induced H2O2 production via NADPH oxidase and functions in oxidative stress tolerance in maize. Plant Physiology and Biochemistry, 2022, 185, 325-335.	5.8	1
40	Application of 2,4-Epibrassinolide Improves Drought Tolerance in Tobacco through Physiological and Biochemical Mechanisms. Biology, 2022, 11, 1192.	2.8	10
41	Brassinosteroids induced drought resistance of contrasting drought-responsive genotypes of maize at physiological and transcriptomic levels. Frontiers in Plant Science, $0,13,.$	3.6	2
42	Physiological and transcriptomic analyses of the effects of coronatine on drought tolerance in Carex leucochlora. Environmental and Experimental Botany, 2023, 206, 105184.	4.2	2
44	Iris lactea var. chinensis plant drought tolerance depends on the response of proline metabolism, transcription factors, transporters and the ROS-scavenging system. BMC Plant Biology, 2023, 23, .	3.6	2
45	PtrVCS2 Regulates Drought Resistance by Changing Vessel Morphology and Stomatal Closure in Populus trichocarpa. International Journal of Molecular Sciences, 2023, 24, 4458.	4.1	2
46	Transcriptome and metabolome analysis reveals key genes and secondary metabolites of Casuarina equisetifolia ssp. incana in response to drought stress. BMC Plant Biology, 2023, 23, .	3.6	2

3

#	Article	IF	CITATIONS
47	Cloning, characterization and expression analysis of a brassinosteroids biosynthetic gene VvDET2 in Cabernet Sauvignon (Vitis vinifera L.). Plant Cell, Tissue and Organ Culture, 0, , .	2.3	0
48	Contents of endogenous brassinosteroids and the response to drought and/or exogenously applied 24-epibrassinolide in two different maize leaves. Frontiers in Plant Science, 0, 14 , .	3.6	3
49	Mining of long non-coding RNAs with target genes in response to rust based on full-length transcriptome in Kentucky bluegrass. Frontiers in Plant Science, $0,14,.$	3.6	3
50	Transcriptome analysis revealed MAPK and hormone pathway involving in exogenous melatonin-regulated salt tolerance in sour jujube. Fruit Research, 2023, 3, 0-0.	2.0	2
51	Advances in Crop Genetic Improvement to Overcome Drought Stress: Bibliometric and Meta-Analysis. Agriculture (Switzerland), 2023, 13, 1860.	3.1	0
52	Biochemical, physiological and molecular responses of rice to terminal drought stress: transcriptome profiling of leaf and root reveals the key stress-responsive genes. Journal of Plant Biochemistry and Biotechnology, 0, , .	1.7	0
53	Transcriptome Analysis of Native Kentucky Bluegrass (Poa pratensis L.) in Response to Osmotic Stress. Plants, 2023, 12, 3971.	3. 5	1
54	Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes and Genomics, 0, , .	1.4	0
55	Drought Stress Alleviator Melatonin Reconfigures Water-Stressed Barley (Hordeum vulgare L.) Plants' Photosynthetic Efficiency, Antioxidant Capacity, and Endogenous Phytohormone Profile. International Journal of Molecular Sciences, 2023, 24, 16228.	4.1	3
56	Plant growth coordination during stress conditions: Role of phytohormones. , 2024, , 249-275.		0
57	Transcriptome Analysis Reveals Key Genes Involved in the Response of Pyrus betuleafolia to Drought and High-Temperature Stress. Plants, 2024, 13, 309.	3 . 5	1
58	Mechanisms Underlying Allelopathic Disturbance of Herbicide Imazethapyr on Wheat and Its Neighboring Ryegrass (<i>Lolium perenne</i>). Journal of Agricultural and Food Chemistry, 2024, 72, 3445-3455.	5 . 2	0
59	Transcriptome Analysis Reveals the Mechanism by Which Exogenous Melatonin Treatment Delays Leaf Senescence of Postharvest Chinese Kale (BrassicaÂoleracea var. alboglabra). International Journal of Molecular Sciences, 2024, 25, 2250.	4.1	0