Octahedral SnO₂/Graphene Composites with Performance at Room Temperature

ACS Applied Materials & amp; Interfaces 11, 12958-12967 DOI: 10.1021/acsami.8b22533

Citation Report

#	Article	IF	CITATIONS
1	Constructing one dimensional Co3O4 hierarchical nanofibers as efficient sensing materials for rapid acetone gas detection. Journal of Alloys and Compounds, 2019, 799, 513-520.	2.8	35
2	Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chinese Chemical Letters, 2020, 31, 1961-1965.	4.8	118
4	Hollow Pentagonal-Cone-Structured SnO ₂ Architectures Assembled with Nanorod Arrays for Low-Temperature Ethanol Sensing. ACS Applied Nano Materials, 2020, 3, 7720-7731.	2.4	25
5	Protonic Titanate Nanotube–Reduced Graphene Oxide Composites for Hydrogen Sensing. ACS Applied Nano Materials, 2020, 3, 10082-10093.	2.4	17
6	Robust, stretchable and photothermal self-healing polyurethane elastomer based on furan-modified polydopamine nanoparticles. Polymer, 2020, 190, 122219.	1.8	45
7	Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. Journal of Alloys and Compounds, 2020, 834, 155209.	2.8	21
8	Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol. Journal of Alloys and Compounds, 2021, 854, 157152.	2.8	76
9	Hydrothermally derived p–n MoS ₂ –ZnO from p–p MoS ₂ -ZIF-8 for an efficient detection of NO ₂ at room temperature. Journal of Materials Chemistry A, 2021, 9, 14722-14730.	5.2	44
10	SnO2 nanoparticles/reduced graphene oxide nanocomposite for fast ethanol vapor sensing at a low operating temperature with an excellent long-term stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 6550-6569.	1.1	13
11	Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO ₂ Aerogels. ACS Applied Materials & amp; Interfaces, 2021, 13, 20467-20478.	4.0	29
12	Rational construction and triethylamine sensing performance of foam shaped α-MoO3@SnS2 nanosheets. Chinese Chemical Letters, 2022, 33, 567-572.	4.8	32
13	Nitrogen-doped graphene quantum dots-modified mesoporous SnO2 hierarchical hollow cubes for low temperature detection of nitrogen dioxide. Sensors and Actuators B: Chemical, 2021, 339, 129882.	4.0	32
14	Layered SnO2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing. Sensors and Actuators B: Chemical, 2021, 346, 130452.	4.0	19
15	NO2 detection and redox capacitance reaction of Ag doped SnO2/rGO aerogel at room temperature. Journal of Alloys and Compounds, 2021, 886, 161287.	2.8	13
16	Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis. Current Analytical Chemistry, 2022, 18, 563-576.	0.6	13
17	A femtosecond laser-assembled SnO2 microbridge on interdigitated Au electrodes for gas sensing. Materials Letters, 2021, 308, 131120.	1.3	6
18	High Surface Area ZnO/rGO Aerogel for Sensitive and Selective No ₂ Detection at Room Temperature. SSRN Electronic Journal, 0, , .	0.4	0
19	Enhanced ppb-level formaldehyde sensing performance over Pt deposited SnO2 nanospheres. Journal of Alloys and Compounds, 2022, 899, 163230.	2.8	16

ION RE

ARTICLE IF CITATIONS # Boosting room-temperature ppb-level NO2 sensing over reduced graphene oxide by co-decoration of 20 5.0 29 α-Fe2O3 and SnO2 nanocrystals. Journal of Colloid and Interface Science, 2022, 612, 689-700. Activating and modifying the basal planes of MoS2 for superior NO2 sensing at room temperature. Sensors and Actuators B: Chemical, 2022, 359, 131539. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare 22 3.6 71 Metals, 2022, 41, 1818-1842 Enhanced Gas Sensing Performance of rGO Wrapped Crystal Facet-Controlled Co₃O₄ Nanocomposite Heterostructures. Journal of Physical Chemistry C, 2022, 126, 4879-4888. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sensors 24 4.0 96 and Actuators B: Chemical, 2022, 359, 131579. High surface area ZnO/rGO aerogel for sensitive and selective NO2 detection at room temperature. Journal of Alloys and Compounds, 2022, 908, 164567. 2.8 Enhanced room-temperature NO2 sensing performance of SnO2/Ti3C2 composite with double heterojunctions by controlling co-exposed {221} and {110} facets of SnO2. Sensors and Actuators B: 26 4.0 19 Chemical, 2022, 365, 131919. High energy facets and oxygen vacancies guided hierarchical tin dioxide microcubes assembled by 2.8 cross-stacked nanoslices for ethanol gas-sensing. Journal of Alloys and Compounds, 2022, 911, 164973. Crystal facet effect of tin dioxide nanocrystals on photocatalytic degradation and photo-assisted gas 28 1.3 6 sensing properties. CrystEngComm, 2022, 24, 3865-3871. MoO₃ Nanorods Decorated by PbMoO₄ Nanoparticles for Enhanced Trimethylamine Sensing Performances at Lów Working Temperature. ACS Applied Materials & amp; Interfaces, 2022, 14, 24610-24619. Light-assisted room temperature gas sensing performance and mechanism of direct Z-scheme 30 6.5 13 MoS2/SnO2 crystal faceted heterojunctions. Journal of Hazardous Materials, 2022, 436, 129246. SnO₂ Nanostructures Exposed with Various Crystal Facets for Temperature-Modulated 2.4 Sensing of Volatile Organic Compounds. ACS Applied Nano Materials, 2022, 5, 10636-10644. In2S3-Gr and In2S3-CNT nanocomposite thin films as gas sensors. Diamond and Related Materials, 2022, 32 1.8 3 128, 109215. Nano-Optomechanical Resonators Based Graphene/Au Membrane for Current Sensing, Journal of 2.7 Lightwave Technology, 2022, , 1-8. An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped 34 1.2 0 SnO2@Pt nanocomposite for the rapid detection of HIV-DNA. Journal of Materials Research, 0, , . Molecular adsorption behavior and photoelectric properties of SnO2 (221) crystal plane. Sensors and Actuators B: Chemical, 2023, 374, 132753. Highly sensitive NO2 gas sensor with a low detection limit based on Pt-modified MoS2 flakes. 36 1.37 Materials Letters, 2023, 330, 133386. ZnO/Ti3C2 composite with oxygen vacancies and Schottky barrier for effective detection of ppb-level 3.1 NO2 at room temperature. Applied Surface Science, 2023, 610, 155440.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Enhancing the thermoelectric power factor of nanostructured SnO2 via Bi substitution. Ceramics International, 2023, 49, 10360-10364.	2.3	6
39	Conversion of MoS2 to ternary alloyed MoS2â^xSex for resistive NO2 sensors. Sensors and Actuators B: Chemical, 2023, 378, 133137.	4.0	5
40	Synergistic adsorption effect on Co3O4(1 1 0) surface to promote the ethanol sensing properties: Experiment and theory. Applied Surface Science, 2023, 612, 155776.	3.1	8
41	Advances in Materials and Technologies for Gas Sensing from Environmental and Food Monitoring to Breath Analysis. Advanced Sustainable Systems, 2023, 7, .	2.7	10
42	High-Performance Ppb Level NO2 Gas Sensor Based on Colloidal SnO2 Quantum Wires/Ti3C2Tx MXene Composite. Nanomaterials, 2022, 12, 4464.	1.9	4
43	SnO ₂ Nanoparticle-Reduced Graphene Oxide Hybrids for Highly Selective and Sensitive NO ₂ Sensors Fabricated Using a Component Combinatorial Approach. ACS Applied Nano Materials, 2022, 5, 19053-19061.	2.4	4
44	Novel approaches towards design of metal oxide based hetero-structures for room temperature gas sensor and its sensing mechanism: A recent progress. Journal of Alloys and Compounds, 2023, 941, 168943.	2.8	23
45	Crystal facets-controlled NiO/SnO2 p-n heterostructures with engineered surface and interface towards triethylamine sensing. Journal of Alloys and Compounds, 2023, 947, 169503.	2.8	3
46	1D 2D and 3D anatase TiO2 sensitized with BNQDs for sensitive acetone detection. Surfaces and Interfaces, 2023, 38, 102847.	1.5	1
47	Boosted Light-Excited NO ₂ Detection Based on Hierarchical Z-Scheme MoS ₂ /SnO ₂ Heterostructure Microspheres at Room Temperature. Journal of Physical Chemistry C, 2023, 127, 4063-4071.	1.5	2
48	Silane coupling agent Î ³ -aminopropyltriethoxysilane-modified nanoparticles/polyurethane elastomer nanocomposites. Iranian Polymer Journal (English Edition), 2023, 32, 715-727.	1.3	2