CITATION REPORT List of articles citing

Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter

DOI: 10.1002/adma.201900861 Advanced Materials, 2019, 31, e1900861.

Source: https://exaly.com/paper-pdf/73386565/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
31	Synergistic additive-mediated CVD growth and chemical modification of 2D materials. <i>Chemical Society Reviews</i> , 2019 , 48, 4639-4654	58.5	66
30	Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures. <i>ACS Nano</i> , 2019 , 13, 13047-13055	16.7	28
29	Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	12
28	Second-harmonic generation of structured light by transition-metal dichalcogenide metasurfaces. <i>Physical Review A</i> , 2020 , 102,	2.6	2
27	Ultrabroadband Tuning and Fine Structure of Emission Spectra in Lanthanide Er-Doped ZnSe Nanosheets for Display and Temperature Sensing. <i>ACS Nano</i> , 2020 , 14, 16003-16012	16.7	22
26	Wafer-Scale Organic Complementary Inverters Fabricated with Self-Assembled Monolayer Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000515	6.4	4
25	Epitaxial Growth and Determination of Band Alignment of Bi2Te3IWSe2 Vertical van der Waals Heterojunctions. 2020 , 2, 1351-1359		5
24	Analogue two-dimensional semiconductor electronics. <i>Nature Electronics</i> , 2020 , 3, 486-491	28.4	31
23	WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. <i>Informalia Materilly</i> , 2020 , 2, 656-697	23.1	49
22	Vertical Chemical Vapor Deposition Growth of Highly Uniform 2D Transition Metal Dichalcogenides. <i>ACS Nano</i> , 2020 , 14, 4646-4653	16.7	49
21	Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. <i>Nano Research</i> , 2021 , 14, 1768-1783	10	8
20	Electronics based on two-dimensional materials: Status and outlook. <i>Nano Research</i> , 2021 , 14, 1752-170	67 10	21
19	Strain-Directed Layer-By-Layer Epitaxy Toward van der Waals Homo- and Heterostructures. 2021 , 3, 44	2-453	3
18	2D MoS2 Charge Injection Memory Transistors Utilizing Hetero-Stack SiO2/HfO2 Dielectrics and Oxide Interface Traps. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100074	6.4	0
17	Fermi-Level Pinning Free High-Performance 2D CMOS Inverter Fabricated with Van Der Waals Bottom Contacts. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001212	6.4	11
16	A SPICE Compact Model for Ambipolar 2-D-Material FETs Aiming at Circuit Design. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 3096-3103	2.9	0
15	High-performance n-type transistors based on CVD-grown large-domain trilayer WSe2. <i>APL Materials</i> , 2021 , 9, 071109	5.7	1

CITATION REPORT

14	Large-Scale Uniform-Patterned Arrays of Ultrathin All-2D Vertical Stacked Photodetector Devices. <i>ACS Applied Materials & Devices</i> , 2021, 13, 34696-34704	9.5	2
13	Polarity Control and Weak Fermi-Level Pinning in PdSe Transistors. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 43480-43488	9.5	5
12	Growth Mechanisms and Morphology Engineering of Atomic Layer-Deposited WS. <i>ACS Applied Materials & ACS Applied & ACS Applied & ACS Applied & ACS Appl</i>	9.5	2
11	Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. <i>Nanoscale</i> , 2021 , 13, 6713-6751	7.7	13
10	Substitutionally Doped MoSe for High-Performance Electronics and Optoelectronics. <i>Small</i> , 2021 , 17, e2102855	11	3
9	Compact I-V Model for Ambipolar Field-Effect Transistors With 2D Transition Metal Dichalcogenide as Semiconductor. <i>IEEE Nanotechnology Magazine</i> , 2020 , 19, 841-848	2.6	O
8	Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides. <i>CrystEngComm</i> ,	3.3	1
7	Scalably Nanomanufactured Atomically Thin Materials-Based Wearable Health Sensors. <i>Small Structures</i> , 2100120	8.7	3
6	Two-Dimensional Materials-Based Static Random-Access Memory Advanced Materials, 2021, e2107894	- 24	O
5	A perspective on high-entropy two-dimensional materials. <i>SusMat</i> , 2022 , 2, 65-75		O
4	Utilizing trapped charge at bilayer 2D MoS2/SiO2 interface for memory applications <i>Nanotechnology</i> , 2022 ,	3.4	O
3	Ambipolar Nonvolatile Memory Behavior and Reversible Type-Conversion in MoSe 2 /MoSe 2 Transistors with Modified Stack Interface. 2205567		O
2	Epitaxial van der Waals contacts for low schottky barrier MoS2 field effect transistors.		0
1	Integrated Low-Dimensional Semiconductors for Scalable Low-power CMOS Logic.		О