Encapsulating segment-like antimony nanorod in hollo high-rate anodes for rechargeable K-ion batteries

Nano Research 12, 1025-1031

DOI: 10.1007/s12274-019-2335-6

Citation Report

#	Article	IF	CITATIONS
3	Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassiumâ€Ion Battery with High Capacity and Long Cycle Life. Advanced Materials Interfaces, 2020, 7, 1901829.	1.9	36
4	Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horizons, 2020, 5, 1586-1595.	4.1	45
5	Recent advances in alloy-based anode materials for potassium ion batteries. Rare Metals, 2020, 39, 970-988.	3.6	68
6	Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy, 2020, 77, 105118.	8.2	82
7	VO2@Carbon foam as a freestanding anode material for potassium-ion batteries: First principles and experimental study. Journal of Alloys and Compounds, 2020, 845, 156232.	2.8	14
8	Bi–Sb Nanocrystals Embedded in Phosphorus as High-Performance Potassium Ion Battery Electrodes. ACS Nano, 2020, 14, 11648-11661.	7.3	103
9	Ballâ€Milling Strategy for Fast and Stable Potassiumâ€Ion Storage in Antimonyâ€ <i>Carbon</i> Composite Anodes. ChemElectroChem, 2020, 7, 4587-4593.	1.7	6
10	Encapsulating Ultrafine Sb Nanoparticles in Na ⁺ Pre-Intercalated 3D Porous Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene Nanostructures for Enhanced Potassium Storage Performance. ACS Nano, 2020, 14, 13938-13951.	7.3	91
11	Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage. Chemical Communications, 2020, 56, 11803-11806.	2.2	43
12	Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€Ion Battery Anodes via Inâ€Situ TEM. Angewandte Chemie - International Edition, 2020, 59, 14504-14510.	7.2	82
13	Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€Ion Battery Anodes via Inâ€Situ TEM. Angewandte Chemie, 2020, 132, 14612-14618.	1.6	47
14	Antimonyâ€based nanomaterials for highâ€performance potassiumâ€ion batteries. EcoMat, 2020, 2, e12027.	6.8	35
16	Covalent sulfur embedding in inherent N,P co-doped biological carbon for ultrastable and high rate lithium–sulfur batteries. Nanoscale, 2020, 12, 8991-8996.	2.8	25
17	Self-supporting N-rich Cu ₂ Se/C nanowires for highly reversible, long-life potassium-ion storage. Sustainable Energy and Fuels, 2020, 4, 2453-2461.	2.5	18
18	Eco-Friendly Synthesis of Self-Supported N-Doped Sb ₂ S ₃ -Carbon Fibers with High Atom Utilization and Zero Discharge for Commercial Full Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6897-6906.	2.5	51
19	Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Research, 2020, 13, 2650-2657.	5.8	39
20	Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Research, 2020, 13, 802-809.	5.8	61
21	N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale, 2020, 12, 4309-4313.	2.8	41

#	Article	IF	CITATIONS
22	Controlled Design of Wellâ€Dispersed Ultrathin MoS ₂ Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious "Houses―for K Ions. Advanced Functional Materials, 2020, 30, 1908755.	7.8	138
23	Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Science Bulletin, 2020, 65, 1003-1012.	4.3	87
24	Flexible Antimony@Carbon Integrated Anode for Highâ€Performance Potassiumâ€Ion Battery. Advanced Materials Technologies, 2020, 5, 2000199.	3.0	53
25	Recent Developments in Alloyingâ€ŧype Anode Materials for Potassiumâ€lon Batteries. Chemistry - an Asian Journal, 2020, 15, 1648-1659.	1.7	14
26	MXenes: Advanced materials in potassium ion batteries. Chemical Engineering Journal, 2021, 404, 126565.	6.6	71
27	A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage. Science China Materials, 2021, 64, 1047-1057.	3.5	21
28	A cage compound precursor-derived Sb/Sb ₂ O ₄ /Fe ₃ C nanocomposite anchored on reduced graphene oxide as an anode for potassium ion batteries. New Journal of Chemistry, 2021, 45, 993-1000.	1.4	8
29	Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM. Journal of Energy Chemistry, 2021, 59, 405-418.	7.1	12
30	Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Research, 2021, 14, 992-997.	5.8	25
31	Advanced Anode Materials of Potassium Ion Batteries: from Zero Dimension to Three Dimensions. Nano-Micro Letters, 2021, 13, 12.	14.4	121
32	Electrolytic alloy-type anodes for metal-ion batteries. Rare Metals, 2021, 40, 329-352.	3.6	45
33	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	8.3	51
35	FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage. Nano Research, 2022, 15, 217-224.	5.8	20
36	Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14, 4442-4470.	5.8	76
37	Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. Nano Research, 2021, 14, 3545-3551.	5.8	16
38	Rational regulation ultra-microporous structure size for enhanced potassium ion storage performance. Electrochimica Acta, 2021, 378, 138141.	2.6	16
39	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for Fast K ⁺ Diffusion and Storage. , 2021, 3, 790-798.		10
40	Recent Developments of Antimony-Based Anodes for Sodium- and Potassium-Ion Batteries. Transactions of Tianjin University, 2022, 28, 6-32.	3.3	14

#	Article	IF	Citations
41	Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Materials, 2021, 39, 239-249.	9.5	84
42	V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chemical Engineering Journal, 2021, 419, 129607.	6.6	89
43	Enhanced pseudocapacitive behaviors of Sb-based anodes for lithium ion batteries via dual modification approach of Fe doping combined with double carbon coatings. Journal of Alloys and Compounds, 2021, 889, 161658.	2.8	6
44	Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering. Journal of Materials Science and Technology, 2022, 102, 272-277.	5.6	10
45	Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. Journal of Colloid and Interface Science, 2022, 607, 1109-1119.	5.0	4
46	Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chemical Science, 2021, 12, 2345-2356.	3.7	43
47	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
48	Manganese phosphoxide/Ni ₅ P ₄ hybrids as an anode material for high energy density and rate potassium-ion storage. Journal of Materials Chemistry A, 2021, 9, 13936-13949.	5.2	5
50	Cocoon Silk-Derived, Hierarchically Porous Carbon as Anode for Highly Robust Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2020, 12, 113.	14.4	74
51	Recent progress of electrode materials cooperated with potassium bis(fluorosulfonyl)imide–containing electrolyte for K-ion batteries. Materials Today Advances, 2020, 6, 100035.	2.5	13
52	Ultrafine antimony (Sb) nanoparticles encapsulated into a carbon microfiber framework as an excellent LIB anode with a superlong life of more than 5000 cycles. Nanotechnology, 2020, 31, 215403.	1.3	8
53	Insights into Metal/Metalloid-Based Alloying Anodes for Potassium Ion Batteries. , 2021, 3, 1572-1598.		25
54	Recent Progress and Perspectives on Alloying Anodes for Potassiumâ€lon Batteries. ChemNanoMat, 2021, 7, 1291-1308.	1.5	7
55	Carbon Hollow Tube-Confined Sb/Sb ₂ S ₃ Nanorod Fragments as Highly Stable Anodes for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51066-51077.	4.0	44
56	Opportunities in Na/K [hexacyanoferrate] frameworks for sustainable non-aqueous Na ⁺ /K ⁺ batteries. Sustainable Energy and Fuels, 2022, 6, 550-595.	2.5	6
57	Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries. Chemical Engineering Journal, 2022, 433, 133815.	6.6	13
58	<i>In-Situ</i> Perfusing Sb Nanoparticles into Hierarchical N-Doped Carbon Microspheres Towards K ⁺ -Storing Performances. SSRN Electronic Journal, 0, , .	0.4	0
59	Nanoscale localized growth of SnSb for general-purpose high performance alkali (Li, Na, K) ion storage. Chemical Engineering Journal, 2022, 431, 134318.	6.6	11

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
60	Exploration of CrPO4@N-doped carbon composite as advanced anode material for potassium-ion batteries. Electrochimica Acta, 2022, 409, 139996.	2.6	2
61	Recent Advances and Perspectives of Battery-Type Anode Materials for Potassium Ion Storage. ACS Nano, 2021, 15, 18931-18973.	7.3	160
62	Hierarchical porous carbon-incorporated metal-based nanocomposites for secondary metal-ion batteries. , 2022, , 179-216.		1
63	In-Situ Synthesis of Antimony Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Framework as High Performance Anode Material for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
64	Sb2se3/Sb Embedded in Carbon Nanofibers as Flexible and Twistable Anode for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
65	Construction of <scp>Carbonâ€Coated</scp> Cobalt Sulfide Hybrid Networks <scp>Interâ€Connected</scp> by Carbon Nanotubes for <scp>Performanceâ€Enhanced Potassiumâ€Ion</scp> Storage. Chinese Journal of Chemistry, 2022, 40, 1313-1320.	2.6	3
66	In situ perfusing Sb particles into porous N-doped carbon microspheres and their electrochemical properties in potassium ion batteries. Journal of Alloys and Compounds, 2022, 906, 164263.	2.8	5
67	Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassium″on Battery Anode. Advanced Science, 2022, 9, e2200683.	5.6	53
68	Dual-Carbon confinement strategy of antimony anode material enabling advanced potassium ion storage. Journal of Colloid and Interface Science, 2022, 622, 738-747.	5.0	13
69	In-situ synthesis of antimony nanoparticles encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chemical Engineering Journal, 2022, 446, 137302.	6.6	12
70	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	8.3	26
71	Snâ€, Sb―and Biâ€Based Anodes for Potassium Ion Battery. Chemical Record, 2022, 22, .	2.9	13
72	Enhancing Potassium Storage Performance in VO ₂ /V ₂ O ₃ @C Nanosheets by Synergistic Effect of Oxygen Vacancy and Câ€Oâ€V Bond. ChemElectroChem, 2022, 9, .	1.7	6
73	Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Research, 2022, 15, 9019-9025.	5.8	9
74	Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage Materials, 2022, 51, 327-360.	9.5	19
75	Sb2Se3/Sb embedded in carbon nanofibers as flexible and twistable anode for potassium-ion batteries. Journal of Power Sources, 2022, 545, 231917.	4.0	6
76	Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chemical Engineering Journal, 2022, 450, 138408.	6.6	27
77	Achieving stable and fast potassium storage of Sb2S3@MXene anode via interfacial bonding and electrolyte chemistry. Chemical Engineering Journal, 2023, 451, 138891.	6.6	20

#	Article	IF	CITATIONS
78	Integrated Anodes from Heteroatoms (N, S, and F) Co-Doping Antimony/Carbon Composite for Efficient Alkaline Ion (Li ⁺ /K ⁺) Storage. ACS Applied Energy Materials, 2022, 5, 12925-12936.	2.5	2
79	Sb particles embedded in N-doped carbon spheres wrapped by graphene for superior K+â^'Storing performances. Ceramics International, 2023, 49, 4273-4280.	2.3	1
80	Achieving high-capacity and long-life K+ storage enabled by constructing yolk-shell Sb2S3@N, S-doped carbon nanorod anodes. Journal of Energy Chemistry, 2023, 76, 547-556.	7.1	20
81	Directly Deposited Antimony on a Copper Silicide Nanowire Array as a Highâ€Performance Potassiumâ€lon Battery Anode with a Long Cycle Life. Advanced Functional Materials, 2023, 33, .	7.8	9
82	Advances in Fine Structure Optimizations of Layered Transitionâ€Metal Oxide Cathodes for Potassiumâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	16
83	Air-stabilized pore structure engineering of antimony-based anode by electrospinning for potassium ion batteries. Journal of Colloid and Interface Science, 2023, 633, 352-361.	5.0	9
84	Research Progress of Constructing Anode Materials for Potassium Ion Batteries Based on Electrospinning Technology. , 2023, 4, 8-14.		0
85	Sb2Te3 hexagonal nanoplates as conversion-alloying anode materials for superior potassium-ion storage via physicochemical confinement effect of dual carbon matrix. Chemical Engineering Journal, 2023, 461, 141957.	6.6	10
86	One-dimensional metal-organic frameworks: Synthesis, structure and application in electrocatalysis. , 2023, 1, 100010.		2
87	Multilevel spatial confinement of transition metal selenides porous microcubes for efficient and stable potassium storage. Journal of Colloid and Interface Science, 2023, 644, 10-18.	5.0	6