Co-Electrodeposited porous PEDOT–CNT microelectronic micro-supercapacitors with high energy density, high r

Nanoscale 11, 7761-7770 DOI: 10.1039/c9nr00765b

Citation Report

#	Article	IF	CITATIONS
1	Growth of close-packed crystalline polypyrrole on graphene oxide via in situ polymerization of two-monomer-connected precursors. Nanoscale, 2019, 11, 15641-15646.	2.8	14
2	Design of 2D Self-Supported Hybrid CuSe@PANI Core/Shell Nanosheet Arrays for High-Performance Flexible Microsupercapacitors. Journal of Physical Chemistry C, 2019, 123, 29133-29143.	1.5	14
3	Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability. Journal of Power Sources, 2019, 438, 227032.	4.0	9
4	Integration of VS2 nanosheets into carbon for high energy density micro-supercapacitor. Journal of Alloys and Compounds, 2020, 823, 151769.	2.8	32
5	PEDOT hollow nanospheres for integrated bifunctional electrochromic supercapacitors. Organic Electronics, 2020, 77, 105497.	1.4	28
6	Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Advances, 2020, 2, 70-108.	2.2	164
7	Supercapacitors based on (carbon nanostructure)/PEDOT/(eggshell membrane) electrodes. Journal of Electroanalytical Chemistry, 2020, 856, 113658.	1.9	25
8	Fabrication of petal-like Ni3S2 nanosheets on 3D carbon nanotube foams as high-performance anode materials for Li-ion batteries. Electrochimica Acta, 2020, 331, 135383.	2.6	26
9	Interwoven Nanowire Based Onâ€Chip Asymmetric Microsupercapacitor with High Integrability, Areal Energy, and Power Density. Advanced Energy Materials, 2020, 10, 2001873.	10.2	40
10	Structural Engineering and Coupling of Two-Dimensional Transition Metal Compounds for Micro-Supercapacitor Electrodes. ACS Central Science, 2020, 6, 1901-1915.	5.3	53
11	Capillary force driven printing of asymmetric Na-ion micro-supercapacitors. Journal of Materials Chemistry A, 2020, 8, 22083-22089.	5.2	8
12	3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virtual and Physical Prototyping, 2020, 15, 511-519.	5.3	43
13	A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coordination Chemistry Reviews, 2020, 422, 213441.	9.5	121
14	Electrodeposited Films of Graphene, Carbon Nanotubes, and Their Mixtures for Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 10003-10013.	2.4	17
15	Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO ₂ /PEDOT:PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode. Journal of Materials Chemistry A, 2020, 8, 19588-19602.	5.2	59
16	Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 57330-57342.	4.0	16
17	Bilayered microelectrodes based on electrochemically deposited MnO ₂ /polypyrrole towards fast charge transport kinetics for micro-supercapacitors. RSC Advances, 2020, 10, 18245-18251.	1.7	10
18	Low-dimensional carbon-based nanomaterials for energy conversion and storage applications. , 2020, , 15-68.		2

CITATION REPORT

#	Article	IF	CITATIONS
19	Advances of Electrode Materials. , 2020, , 389-389.		1
20	Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Materials Today Advances, 2020, 8, 100086.	2.5	49
21	High Stable Supercapacitors Based on Poly(2,3-dihydrothieno[3,4- <i>b</i>][1,4]dioxin-2-yl)methanol Nanonet@Nanotube Array by Template-Free Electrochemical Preparation. Journal of the Electrochemical Society, 2020, 167, 100548.	1.3	2
22	Preparation of Porous Carbon Nanofibers with Tailored Porosity for Electrochemical Capacitor Electrodes. Materials, 2020, 13, 729.	1.3	13
23	Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen. Journal of Electroanalytical Chemistry, 2020, 860, 113869.	1.9	41
24	Janus-faced film with dual function of conductivity and pseudo-capacitance for flexible supercapacitors with ultrahigh energy density. Chemical Engineering Journal, 2020, 388, 124197.	6.6	21
25	Self-assembly of pendant functional groups grafted PEDOT as paracetamol detection material. Physical Chemistry Chemical Physics, 2020, 22, 3592-3603.	1.3	5
26	Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. Journal of Energy Chemistry, 2020, 49, 224-232.	7.1	53
27	Stamp-assisted flexible graphene-based micro-supercapacitors. Journal of Power Sources, 2020, 462, 228166.	4.0	27
28	Confinement of single polyoxometalate clusters in molecular-scale cages for improved flexible solid-state supercapacitors. Nanoscale, 2020, 12, 11887-11898.	2.8	31
29	A novel ternary composite aerogel for high-performance supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125644.	2.3	16
30	Allâ€MXene Cottonâ€Based Supercapacitorâ€Powered Human Body Thermal Management System. ChemElectroChem, 2021, 8, 648-655.	1.7	33
31	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
32	Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behavior. Journal of Composites Science, 2021, 5, 25.	1.4	2
33	Poly(<i>ortho</i> -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devices. Journal of Materials Chemistry A, 2021, 9, 10487-10496.	5.2	5
34	Electrochemical self-assembled core/shell PEDOT@MoS2 composite with ultra-high areal capacitance for supercapacitor. Electrochimica Acta, 2021, 370, 137791.	2.6	11
35	PEDOT-hydroxypropyl-β-cyclodextrin Inclusion Complex as Additive for Epoxy Coating with Enhanced Anticorrosion Performance. International Journal of Electrochemical Science, 2021, 16, 210443.	0.5	2
36	Co-electrodeposited porous poplar flower-like poly(hydroxymethyl-3,4-ethylenedioxythiophene)/PEG/WS2 hybrid material for high-performance supercapacitor. Journal of Electroanalytical Chemistry, <u>2021, 891, 115261.</u>	1.9	4

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Facile synthesis of ultrathin ZnCo2O4 nanosheets/carbon cloth composite electrode fo supercapacitors with high-rate and excellent reversibility. Materials Letters, 2021, 293,	r hybrid 129636.	1.3	6
38	Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties Responses. Polymers, 2021, 13, 2834.	s and Tissue	2.0	23
39	Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer Cellulose. ACS Applied Energy Materials, 2021, 4, 8629-8640.	PEDOT and	2.5	10
40	Poly(5â€nitroindole) Thin Film as Conductive and Adhesive Interfacial Layer for Robust Advanced Functional Materials, 2021, 31, 2105857.	Neural Interface.	7.8	15
41	High performance 2D MXene based conducting polymer hybrids: synthesis to emerging Journal of Materials Chemistry C, 2021, 9, 10193-10215.	g applications.	2.7	31
42	Electrochemical assembly of homogenized poly(3,4-ethylenedioxythiophene methanol) nano-networks and their high performances for supercapacitor electrodes. Ionics, 2020	/SWCNT), 26, 3631-3642.	1.2	17
44	Conducting Polymers-Based Supercapacitors. , 2022, , 486-496.			4
45	Metal-organic framework materials for supercapacitors. Journal of Physics: Conference 2021, 012008.	Series, 2021,	0.3	5
46	Fabrication of High-Performance Flexible Supercapacitor Electrodes with Poly(3,4-ethylenedioxythiophene) (PEDOT) Grown on Carbon-Deposited Polyurethane 2021, 14, 7393.	Sponge. Energies,	1.6	5
47	Surface acoustic wave sensor based on Au/TiO2/PEDOT with dual response to carbon c humidity. Analytica Chimica Acta, 2022, 1190, 339264.	lioxide and	2.6	16
48	Flexible and Self-Healable Supercapacitor with High Capacitance Restoration. ACS Appl Materials, 2022, 5, 2211-2220.	ied Energy	2.5	18
49	Capacitive studies of electrodeposited PEDOT-maleimide. Journal of Materials Chemistr 8440-8458.	y A, 2022, 10,	5.2	7
50	Layer-by-Layer Electrode Fabrication for Improved Performance of Porous Polyimide-Bas Supercapacitors. Materials, 2022, 15, 4.	sed	1.3	5
51	Cobalt vanadium chalcogenide microspheres decorated with dendrite-like fiber nanostr flexible wire-typed energy conversion and storage microdevices. Nanoscale, 2022, 14, 9	uctures for 9150-9168.	2.8	13
52	Space-Partitioning and metal coordination in Free-Standing Covalent organic framewor Over 230 mWh/cm3 energy density for flexible in-Plane Micro-Supercapacitors. Chemic Journal, 2022, 447, 137447.	'k Nano-Films: :al Engineering	6.6	10
53	Ultraâ€Sensitive and Quickâ€Responsive Hybridâ€Supercapacitive Iontronic Pressure S Electronics and Artificial Tactile Applications. Advanced Materials Technologies, 2022, 7	Gensor for Intuitive 7, .	3.0	9
54	Microsized Electrochemical Energy Storage Devices and Their Fabrication Techniques F Applications. Advanced Materials Technologies, 2023, 8, .	or Portable	3.0	11
55	Interdigital <scp>MnO₂</scp> / <scp>PEDOT</scp> Alternating Stacked M for <scp>Highâ€Performance On hip</scp> Microsupercapacitor and Humidity Sens Environmental Materials, 0, , .	licroelectrodes sing. Energy and	7.3	9

CITATION REPORT

#	Article	IF	CITATIONS
56	Bending Resistance Covalent Organic Framework Superlattice: "Nano-Hourglass―Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors. Nano-Micro Letters, 2023, 15, .	14.4	12
57	Sustainability of current state-of-the-art supercapacitors: a case study. , 2023, , 713-744.		0
58	Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technological Dreams for Powering Embedded Electronics?. ACS Omega, 2023, 8, 8977-8990.	1.6	6
59	Carbon nanostructures for energy generation and storage. , 2023, , 57-94.		0
66	Advancements in silicon carbide-based supercapacitors: materials, performance, and emerging applications. Nanoscale, 0, , .	2.8	0