Pollens destroy respiratory epithelial cell anchors and d

Scientific Reports 9, 4787

DOI: 10.1038/s41598-019-41305-y

Citation Report

#	Article	IF	Citations
1	Report of the Fourth International Havemeyer Workshop on Equid Herpesviruses (EHV) EHVâ€1, EHVâ€2 and EHVâ€5. Equine Veterinary Journal, 2019, 51, 565-568.	1.7	8
2	Deoxynivalenol, but not fumonisin B1, aflatoxin B1 or diesel exhaust particles disrupt integrity of the horse's respiratory epithelium and predispose it for equine herpesvirus type 1 infection. Veterinary Microbiology, 2019, 234, 17-24.	1.9	7
3	Initiating pollen sensitization – complex source, complex mechanisms. Clinical and Translational Allergy, 2020, 10, 36.	3.2	33
4	Strong correlation between air-liquid interface cultures and in vivo transcriptomics of nasal brush biopsy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1056-L1062.	2.9	26
5	Comparative proteomics of common allergenic tree pollens of birch, alder, and hazel. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1743-1753.	5.7	5
6	Climate change, aeroallergens, and the aeroexposome. Environmental Research Letters, 2021, 16, 035006.	5. 2	22
7	The Pathogenesis and Immune Evasive Mechanisms of Equine Herpesvirus Type 1. Frontiers in Microbiology, 2021, 12, 662686.	3. 5	17
8	Direct effects of mast cell proteases, tryptase and chymase, on bronchial epithelial integrity proteins and anti-viral responses. BMC Immunology, 2021, 22, 35.	2.2	10
9	On pollen and airborne virus transmission. Physics of Fluids, 2021, 33, 063313.	4.0	17
10	Equine respiratory viruses, airway inflammation and performance in thoroughbred racehorses. Veterinary Microbiology, 2021, 257, 109070.	1.9	10
11	Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis, 2021, 85, 615-626.	1.4	35
12	Pollen Proteases Play Multiple Roles in Allergic Disorders. International Journal of Molecular Sciences, 2020, 21, 3578.	4.1	17
13	Bacterial Toxins from Staphylococcus aureus and Bordetella bronchiseptica Predispose the Horse's Respiratory Tract to Equine Herpesvirus Type 1 Infection. Viruses, 2022, 14, 149.	3.3	1
14	Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1418-1449.	5.7	132
15	Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma. Chinese Medical Journal, 2022, 135, 519-531.	2.3	7
16	Pollen allergy and pollen sensitization: a new look at an old subject. Allergologiâ I Immunologiâ V Pediatrii, 2022, , 4-15.	0.1	1
17	Contribution of the immune response to the pathogenesis of equine herpesvirus-1 (EHV-1): Are there immune correlates that predict increased risk or protection from EHV-1 myeloencephalopathy?. Veterinary Journal, 2022, 282, 105827.	1.7	3
18	How Do Pollen Allergens Sensitize?. Frontiers in Molecular Biosciences, 0, 9, .	3.5	5

CITATION REPORT

#	Article	IF	CITATIONS
19	The External Exposome and Allergies: From the Perspective of the Epithelial Barrier Hypothesis. Frontiers in Allergy, $0, 3, .$	2.8	30
20	Pollen, respiratory viruses, and climate change: Synergistic effects on human health. Environmental Research, 2023, 219, 115149.	7.5	2
21	Pollen Dispersion and Deposition in Real-World Urban Settings: A Computational Fluid Dynamic Study. Aerosol Science and Engineering, 0, , .	1.9	0
22	Common Pollen Modulate Immune Responses against Viral-Like Challenges in Airway Coculture Model. Journal of Immunology Research, 2023, 2023, 1-10.	2.2	0
23	Differential infection behavior of African swine fever virus (ASFV) genotype I and II in the upper respiratory tract. Veterinary Research, 2023, 54, .	3.0	0
24	Skin, gut, and lung barrier: Physiological interface and target of intervention for preventing and treating allergic diseases. Allergy: European Journal of Allergy and Clinical Immunology, 0, , .	5.7	0