Preliminary Assessment of Turbidity and Chlorophyll In Sentinel-2A and Sentinel-3A Satellites in South Florida

Remote Sensing

11,645

DOI: 10.3390/rs11060645

Citation Report

#	Article	IF	Citations
1	Earth observation applications for coastal sustainability: potential and challenges for implementation. Anthropocene Coasts, 2019, 2, 306-329.	1.5	16
2	Sentinel 2 Analysis of Turbidity Patterns in a Coastal Lagoon. Remote Sensing, 2019, 11, 2926.	4.0	32
3	DepthLearn: Learning to Correct the Refraction on Point Clouds Derived from Aerial Imagery for Accurate Dense Shallow Water Bathymetry Based on SVMs-Fusion with LiDAR Point Clouds. Remote Sensing, 2019, 11, 2225.	4.0	26
4	LDAP: Lightweight Dynamic Auto-Reconfigurable Protocol in an IoT-Enabled WSN for Wide-Area Remote Monitoring. Remote Sensing, 2020, 12, 3131.	4.0	13
5	Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sensing of Environment, 2020, 250, 112047.	11.0	149
6	Symbiodiniaceae diversity of Palythoa tuberculosa in the central and southern Red Sea influenced by environmental factors. Coral Reefs, 2020, 39, 1619-1633.	2.2	2
7	A Combined Machine Learning and Residual Analysis Approach for Improved Retrieval of Shallow Bathymetry from Hyperspectral Imagery and Sparse Ground Truth Data. Remote Sensing, 2020, 12, 3489.	4.0	13
8	Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data. Estuarine, Coastal and Shelf Science, 2020, 241, 106814.	2.1	37
9	Retrieval and Validation of Water Turbidity at Metre-Scale Using Pléiades Satellite Data: A Case Study in the Gironde Estuary. Remote Sensing, 2020, 12, 946.	4.0	8
10	Coastal coverage of ESA' Sentinel 2 mission. Advances in Space Research, 2020, 65, 2636-2644.	2.6	50
11	Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomatics, Natural Hazards and Risk, 2020, 11, 1175-1195.	4.3	105
12	Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sensing, 2020, 12, 2069.	4.0	27
13	A Bathymetry Mapping Approach Combining Log-Ratio and Semianalytical Models Using Four-Band Multispectral Imagery Without Ground Data. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2695-2709.	6.3	22
14	Remote sensing of shallow waters – A 50Âyear retrospective and future directions. Remote Sensing of Environment, 2020, 240, 111619.	11.0	158
15	Towards Routine Mapping of Shallow Bathymetry in Environments with Variable Turbidity: Contribution of Sentinel-2A/B Satellites Mission. Remote Sensing, 2020, 12, 451.	4.0	69
16	Intertidal Bathymetry Extraction with Multispectral Images: A Logistic Regression Approach. Remote Sensing, 2020, 12, 1311.	4.0	11
17	Optical Water Type Guided Approach to Estimate Optical Water Quality Parameters. Remote Sensing, 2020, 12, 931.	4.0	28
18	Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images With Machine Learning Algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9132-9146.	4.9	31

#	Article	IF	CITATIONS
19	ICESatâ€2 Elevation Retrievals in Support of Satelliteâ€Derived Bathymetry for Global Science Applications. Geophysical Research Letters, 2021, 48, e2020GL090629.	4.0	48
20	Spaceâ€Borne Cloudâ€Native Satelliteâ€Derived Bathymetry (SDB) Models Using ICESatâ€2 And Sentinelâ€2. Geophysical Research Letters, 2021, 48, e2020GL092170.	4.0	62
21	Confidence Measure of the Shallow-Water Bathymetry Map Obtained through the Fusion of Lidar and Multiband Image Data. Journal of Remote Sensing, 2021, 2021, .	6.7	19
22	Coastal water bathymetry for critical zone management using regression tree models from Gaofen-6 imagery. Ocean and Coastal Management, 2021, 204, 105522.	4.4	9
23	Prediction of Depth of Seawater Using Fuzzy C-Means Clustering Algorithm of Crowdsourced SONAR Data. Sustainability, 2021, 13, 5823.	3.2	6
24	Hot moments and hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis. Science of the Total Environment, 2021, 769, 145053.	8.0	29
25	Coastal morphology from space: A showcase of monitoring the topography-bathymetry continuum. Remote Sensing of Environment, 2021, 261, 112469.	11.0	38
26	Assessment of water quality in a tropical ramsar wetland of southern India in the wake of COVID-19. Remote Sensing Applications: Society and Environment, 2021, 23, 100604.	1.5	8
27	Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil. Environmental Monitoring and Assessment, 2021, 193, 606.	2.7	2
28	Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine. Frontiers in Marine Science, 2021, 8, .	2.5	1
29	On the use of Sentinel-2 satellites and lidar surveys for the change detection of shallow bathymetry: The case study of North Carolina inlets. Coastal Engineering, 2021, 169, 103936.	4.0	23
30	Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: from a single image to multi-temporal approaches using Sentinel-2A/B. Optics Express, 2020, 28, 11742.	3.4	40
31	Updates to and Performance of the cBathy Algorithm for Estimating Nearshore Bathymetry from Remote Sensing Imagery. Remote Sensing, 2021, 13, 3996.	4.0	16
32	TURBIDITY PATTERNS IN THE ALBUFERA LAKE, SPAIN, AND THEIR RELATION TO IRRIGATION CYCLES. , 2019, , .		1
33	Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports. Remote Sensing, 2021, 13, 4328.	4.0	6
34	Satellite-Derived Topography and Morphological Evolution around Authie Macrotidal Estuary (France). Journal of Marine Science and Engineering, 2021, 9, 1354.	2.6	3
35	An APMLP Deep Learning Model for Bathymetry Retrieval Using Adjacent Pixels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 235-246.	4.9	11
36	Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: assessment of atmospheric correction algorithms and depth derivation models in shallow waters. Optics Express, 2022, 30, 3238.	3.4	24

#	ARTICLE	IF	CITATIONS
37	A Portable Algorithm to Retrieve Bottom Depth of Optically Shallow Waters from Top-Of-Atmosphere Measurements. Journal of Remote Sensing, 2022, 2022, .	6.7	19
38	Very High-Resolution Satellite-Derived Bathymetry and Habitat Mapping Using Pleiades-1 and ICESat-2. Remote Sensing, 2022, 14, 133.	4.0	24
39	Evaluation of surface water quality of Ukkadam lake in Coimbatore using UAV and Sentinel-2 multispectral data. International Journal of Environmental Science and Technology, 2023, 20, 3205-3220.	3.5	7
40	Land Cover Change and Water Quality: How Remote Sensing Can Help Understand Driver–Impact Relations in the Lake Titicaca Basin. Water (Switzerland), 2022, 14, 1021.	2.7	6
41	An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image. Wetlands Ecology and Management, 2022, 30, 405-422.	1.5	6
42	Satellite Derived Bathymetry with Sentinel-2 Imagery: Comparing Traditional Techniques with Advanced Methods and Machine Learning Ensemble Models. Marine Geodesy, 2022, 45, 435-461.	2.0	7
43	Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms. , 2022, , .		0
44	A Purely Spaceborne Open Source Approach for Regional Bathymetry Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	6.3	14
45	Changes in Water Quality of River Ganga Passing Through Urban Cities with Remote Sensing and GIS Support. Water Science and Technology Library, 2022, , 335-346.	0.3	0
46	A Physics-Assisted Convolutional Neural Network for Bathymetric Mapping Using ICESat-2 and Sentinel-2 Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	3
47	Ocean Remote Sensing Techniques and Applications: A Review (Part II). Water (Switzerland), 2022, 14, 3401.	2.7	12
49	Bio-optical properties of the Brazilian Abrolhos Bank's shallow coral-reef waters. Frontiers in Remote Sensing, 0, 3, .	3.5	0
50	Retrieval of lake water surface albedo from Sentinel-2 remote sensing imagery. Journal of Hydrology, 2023, 617, 128904.	5.4	4
51	Combining Remote and In-situ Sensing for Autonomous Underwater Vehicle Localization and Navigation. , 2022, , .		0
52	Confronting turbidity, the major challenge for satellite-derived coastal bathymetry. Science of the Total Environment, 2023, 870, 161898.	8.0	8
53	Satellite-derived bathymetry integrating spatial and spectral information of multispectral images. Applied Optics, 2023, 62, 2017.	1.8	2
54	Satellite-Derived Bathymetry with Sediment Classification Using ICESat-2 and Multispectral Imagery: Case Studies in the South China Sea and Australia. Remote Sensing, 2023, 15, 1026.	4.0	6
55	Mapping bathymetry and shallow water benthic habitats in inland and coastal waters with Sentinel-2. Journal of Limnology, 0, 82, .	1.1	0

#	ARTICLE	IF	CITATIONS
56	Predictive model for monitoring water turbidity in a subtropical lagoon using Sentinel-2A/B MSI images. Revista Brasileira De Recursos Hidricos, 0, 28, .	0.5	0
57	Semi-automated bathymetry using Sentinel-2 for coastal monitoring in the Western Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 2023, 120, 103328.	1.9	0
58	River cross-section measurement using unreviewed aerial vehicle with an improved bathymetry instrument. Journal of Hydrology, 2023, 624, 129737.	5 . 4	0
59	Impact of Sodium Tripolyphosphate on the Rheological Properties of Dams Sediments and Friction Factor during Hydraulic Dredging of Dams. Advanced Materials Research, 0, 1177, 111-120.	0.3	0
60	Monitoring river turbidity after a mine tailing dam failure using an empirical model derived from Sentinel-2 imagery. Anais Da Academia Brasileira De Ciencias, 2023, 95, .	0.8	1
61	An Appraisal of Atmospheric Correction and Inversion Algorithms for Mapping High-Resolution Bathymetry Over Coral Reef Waters. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-11.	6.3	3
62	Turbidity dynamics in Indian peninsular river mouths derived from Kd490 reveals key anthropogenic drivers. Science of the Total Environment, 2023, 896, 165162.	8.0	0
63	Monitoring turbidity in a highly variable estuary using Sentinel 2-A/B for ecosystem management applications. Frontiers in Marine Science, 0, 10 , .	2.5	0
64	A Sub-Bottom Type Adaption-Based Empirical Approach for Coastal Bathymetry Mapping Using Multispectral Satellite Imagery. Remote Sensing, 2023, 15, 3570.	4.0	0
65	SaTSeaD: Satellite Triangulated Sea Depth Open-Source Bathymetry Module for NASA Ames Stereo Pipeline. Remote Sensing, 2023, 15, 3950.	4.0	1
66	Shallow Water Bathymetry Retrieval Based on an Improved Deep Learning Method Using GF-6 Multispectral Imagery in Nanshan Port Waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, , 1-13.	4.9	0
67	A Global Review of Progress in Remote Sensing and Monitoring of Marine Pollution. Water (Switzerland), 2023, 15, 3491.	2.7	0
68	Combined Retrievals of Turbidity from Sentinel-2A/B and Landsat-8/9 in the Taihu Lake through Machine Learning. Remote Sensing, 2023, 15, 4333.	4.0	0
69	Estimation of Water Quality Parameters in Oligotrophic Coastal Waters Using Uncrewed-Aerial-Vehicle-Obtained Hyperspectral Data. Journal of Marine Science and Engineering, 2023, 11, 2026.	2.6	1
70	Monitoring of wetland turbidity using multi-temporal Landsat-8 and Landsat-9 satellite imagery in the Bisalpur wetland, Rajasthan, India. Environmental Research, 2024, 241, 117638.	7.5	5
71	Satellite–Derived Bathymetry in Shallow Waters: Evaluation of Gokturk-1 Satellite and a Novel Approach. Remote Sensing, 2023, 15, 5220.	4.0	0
72	Effect of atmospheric corrections on shallow sea bathymetric mapping using gaofen-2 imagery: a case study in Lingyang Reef, South China Sea. Marine Geodesy, 2024, 47, 59-82.	2.0	0
73	Seamless Seafloor Topography Determination From Shallow to Deep Waters Over Island Areas Using Airborne Gravimetry. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-19.	6. 3	0

#	Article	IF	CITATIONS
74	ESTIMATION OF COASTAL WATERS TURBIDITY USING SENTINEL-2 IMAGERY. Geodesy and Cartography, 2023, 49, 180-185.	0.5	0
75	Satellite bathymetry estimation in the optically complex northern Baltic Sea. Estuarine, Coastal and Shelf Science, 2024, 298, 108634.	2.1	O
76	Mapping of nearshore bathymetry using Gaofen-6 images for the Yellow River Delta-Laizhou Bay, China. Ecological Informatics, 2024, 80, 102497.	5.2	O
77	Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Physics-Informed CNN. Remote Sensing, 2024, 16, 511.	4.0	O
78	Preliminary Results of Satellite-Derived Nearshore Bathymetry. , 0, , .		0