Single Atoms and Clusters Based Nanomaterials for Hyd Evolution Reactions, and Full Water Splitting

Advanced Energy Materials 9, 1900624 DOI: 10.1002/aenm.201900624

Citation Report

#	Article	IF	CITATIONS
1	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie, 2019, 131, 12599-12605.	1.6	29
2	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie - International Edition, 2019, 58, 12469-12475.	7.2	307
3	Ultrafine Co ₃ O ₄ Nanoparticles within Nitrogenâ€Đoped Carbon Matrix Derived from Metal–Organic Complex for Boosting Lithium Storage and Oxygen Evolution Reaction. Small, 2019, 15, e1904260.	5.2	23
4	Exploring the Influence of Halogen Coordination Effect of Stable Bimetallic MOFs on Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15830-15836.	1.7	27
5	Amorphous Rutheniumâ€Sulfide with Isolated Catalytic Sites for Pt‣ike Electrocatalytic Hydrogen Production Over Whole pH Range. Small, 2019, 15, e1904043.	5.2	71
6	Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nature Communications, 2019, 10, 5195.	5.8	120
7	Monoatomic Platinum-Anchored Metallic MoS ₂ : Correlation between Surface Dopant and Hydrogen Evolution. Journal of Physical Chemistry Letters, 2019, 10, 6081-6087.	2.1	53
8	In Situ Decoration of Ultrafine Ru Nanocrystals on N-Doped Graphene Tube and Their Applications as Oxygen Reduction and Hydrogen Evolution Catalyst. ACS Applied Energy Materials, 2019, 2, 7330-7339.	2.5	32
9	Pt-like hydrogen evolution on a V ₂ O ₅ /Ni(OH) ₂ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 15794-15800.	5.2	31
10	Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on Nâ€Doped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	10.2	224
11	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
12	Phosphorus-triggered synergy of phase transformation and chalcogenide vacancy migration in cobalt sulfide for an efficient oxygen evolution reaction. Nanoscale, 2020, 12, 3129-3134.	2.8	39
13	Self-supported hierarchical CoFe-LDH/NiCo2O4/NF core-shell nanowire arrays as an effective electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 818, 153345.	2.8	58
14	Highly selective electrocatalytic oxidation of benzyl C–H using water as safe and sustainable oxygen source. Green Chemistry, 2020, 22, 7543-7551.	4.6	31
15	Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. Journal of Materials Chemistry A, 2020, 8, 23906-23918.	5.2	32
16	A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. Journal of Power Sources, 2020, 474, 228621.	4.0	86
17	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry, 2020, 2, 1020-1033.	4.4	46
18	Recent progress of Ni–Fe layered double hydroxide and beyond towards electrochemical water splitting. Nanoscale Advances, 2020, 2, 5555-5566.	2.2	52

#	Article	IF	CITATIONS
19	Recent Developments on the Single Atom Supported at 2D Materials Beyond Graphene as Catalysts. ACS Catalysis, 2020, 10, 9634-9648.	5.5	102
20	Mesoporous cobalt‑iron based materials as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 873, 114443.	1.9	4
21	Recent Progress on NiFeâ€Based Electrocatalysts for the Oxygen Evolution Reaction. Small, 2020, 16, e2003916.	5.2	192
22	A general doping rule: rational design of Ir-doped catalysts for the oxygen evolution reaction. Chemical Communications, 2020, 56, 15201-15204.	2.2	9
23	Molecule template method for precise synthesis of Mo-based alloy clusters and electrocatalytic nitrogen reduction on partially reduced PtMo alloy oxide cluster. Nano Energy, 2020, 78, 105211.	8.2	38
24	Urea-assisted enhanced electrocatalytic activity of MoS ₂ –Ni ₃ S ₂ for overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 3588-3597.	3.0	32
25	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 422, 213468.	9.5	38
26	Platinum Single Atoms Supported on Nanoarray-Structured Nitrogen-Doped Graphite Foil with Enhanced Catalytic Performance for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 38106-38112.	4.0	24
27	Twoâ€Phase Colloidal Synthesis of Amorphous Ironâ€Doped Manganese Phosphate Hollow Nanospheres for Efficient Water Oxidation. Advanced Sustainable Systems, 2020, 4, 2000128.	2.7	8
28	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563
29	Dynamic structure evolution of free-standing S-doped porous Co-Fe microspheres with enhanced oxygen evolution electrocatalysis in alkaline media. Electrochimica Acta, 2020, 361, 137038.	2.6	14
30	Recent Progress in Nonâ€Precious Metal Single Atomic Catalysts for Solar and Nonâ€Solar Driven Hydrogen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000151.	2.7	14
31	Facile Synthesis of Sulfur-Doped Mesoporous Carbon Nitride Supported Defect-Rich Cobalt Sulfide for Electrocatalytic Water Oxidation. Crystal Growth and Design, 2020, 20, 6321-6328.	1.4	12
32	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie, 2020, 132, 23999-24007.	1.6	16
33	Spaceâ€Confined Yolkâ€Shell Construction of Fe ₃ O ₄ Nanoparticles Inside Nâ€Doped Hollow Mesoporous Carbon Spheres as Bifunctional Electrocatalysts for Longâ€Term Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 2005834.	7.8	119
34	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 23791-23799.	7.2	69
35	A binder- and carbon-free hydrogen evolution electro-catalyst in alkaline media based on nitrogen-doped Ni(OH)2 nanobelts/3D Ni foam. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	4
36	Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18492-18514.	5.2	47

#	Article	IF	CITATIONS
37	Ru/RuO ₂ Nanoparticle Composites with N-Doped Reduced Graphene Oxide as Electrocatalysts for Hydrogen and Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 12269-12277.	2.4	68
38	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
39	Metalâ€Organicâ€Frameworkâ€Derived Cobaltâ€Doped Carbon Material for Electrochemical Ammonia Synthesis under Ambient Conditions. ChemElectroChem, 2020, 7, 4900-4905.	1.7	12
40	Improving the Catalytic Activity of Carbonâ€Supported Single Atom Catalysts by Polynary Metal or Heteroatom Doping. Small, 2020, 16, e1906782.	5.2	124
41	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
42	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
43	Ultrastable MXene@Pt/SWCNTs' Nanocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2020, 30, 2000693.	7.8	164
44	Electrodeposited Organic–Inorganic Nanohybrid as Robust Bifunctional Electrocatalyst for Water Splitting. Inorganic Chemistry, 2020, 59, 7469-7478.	1.9	15
45	Creating active interfaces as a strategy to improve electrochemical water splitting reactions. JPhys Energy, 2020, 2, 041001.	2.3	10
46	Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. Journal of Energy Chemistry, 2020, 51, 280-284.	7.1	84
47	Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Science China Chemistry, 2020, 63, 810-817.	4.2	25
48	Assisting Atomic Dispersion of Fe in N-Doped Carbon by Aerosil for High-Efficiency Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 25832-25842.	4.0	17
49	Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. Journal of Colloid and Interface Science, 2020, 577, 101-108.	5.0	27
50	Catalytic oxidation of cyclohexene by supported gold nanoclusters synthesized in a two-liquid phases system containing eucalyptus essential oil. Molecular Catalysis, 2020, 488, 110922.	1.0	8
51	Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy and Environmental Science, 2020, 13, 3447-3458.	15.6	197
52	Fe ₃ O ₄ /FeS ₂ heterostructures enable efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 14145-14151.	5.2	36
53	Electronically Modulated CoP by Ce Doping as a Highly Efficient Electrocatalyst for Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 10009-10016.	3.2	114
54	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	10.2	62

#	Article	IF	CITATIONS
55	Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: A density functional theory study. Catalysis Communications, 2020, 144, 106090.	1.6	20
56	Hierarchical nickel-vanadium nanohybrid with strong electron transfer for accelerated hydrogen evolution reaction. Applied Surface Science, 2020, 528, 146982.	3.1	14
57	Amorphous/low-crystalline core/shell-type nanoparticles as highly efficient and self-stabilizing catalysts for alkaline hydrogen evolution. Chemical Communications, 2020, 56, 8984-8987.	2.2	4
58	Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. Energy Storage Materials, 2020, 33, 73-81.	9.5	81
59	Novel 3-D urchin-like Ni– Co–W porous nanostructure as efficient bifunctional superhydrophilic electrocatalyst for both hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2020, 45, 17504-17516.	3.8	11
60	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	4.0	74
61	Single Ni Atoms Anchored on Porous Fewâ€Layer g ₃ N ₄ for Photocatalytic CO ₂ Reduction: The Role of Edge Confinement. Small, 2020, 16, e2002411.	5.2	175
62	DFT study on tailoring the structural, electronic and optical properties of bilayer graphene through metalloids intercalation. Chemical Physics, 2020, 536, 110828.	0.9	4
63	Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Applied Surface Science, 2020, 514, 145943.	3.1	37
64	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	5.6	190
65	Atomic Layer Deposition of Cobalt Phosphide for Efficient Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 17172-17176.	7.2	47
66	Die Atomlagenabscheidung von Cobaltphosphid zum Zwecke einer effizienten Wasserspaltung. Angewandte Chemie, 2020, 132, 17324-17329.	1.6	2
67	2D MOFs with Ni(II), Cu(II), and Co(II) as Efficient Oxygen Evolution Electrocatalysts: Rationalization of Catalytic Performance <i>vs</i> Structure of the MOFs and Potential of the Redox Couples. ACS Applied Materials & Interfaces, 2020, 12, 33679-33689.	4.0	64
68	Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon, 2020, 168, 588-596.	5.4	12
69	Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental, 2020, 277, 119282.	10.8	166
70	Single Ni Atoms and Clusters Embedded in Nâ€Đoped Carbon "Tubes on Fibers―Matrix with Bifunctional Activity for Water Splitting at High Current Densities. Small, 2020, 16, e2002511.	5.2	38
71	Unveiling the real active sites of Ni based metal organic framework electrocatalysts for the oxygen evolution reaction. Electrochimica Acta, 2020, 354, 136682.	2.6	34
72	Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2020, 10, 188.	1.6	53

#	Article	IF	CITATIONS
73	Formation of cobalt phosphide nanodisks as a bifunctional electrocatalyst for enhanced water splitting. Sustainable Energy and Fuels, 2020, 4, 1616-1620.	2.5	14
74	Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. Journal of Materials Chemistry A, 2020, 8, 5209-5216.	5.2	136
75	Amorphous MoOX-Stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy, 2020, 70, 104529.	8.2	142
76	Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 4369-4375.	5.2	100
77	Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as high-efficiency catalysts for electrolytic water splitting. Nanoscale, 2020, 12, 5848-5856.	2.8	32
78	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
79	Characterization of the hydroxy fueled compression ignition engine under dual fuel mode: Experimental and numerical simulation. International Journal of Hydrogen Energy, 2020, 45, 8067-8081.	3.8	32
80	Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2000531.	7.8	153
81	Few-atom cluster model systems for a hydrogen economy. Advances in Physics: X, 2020, 5, 1754132.	1.5	8
82	Understanding Surface Modulation to Improve the Photo/Electrocatalysts for Water Oxidation/Reduction. Molecules, 2020, 25, 1965.	1.7	8
83	Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514, 146073.	3.1	15
84	Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon, 2020, 164, 121-128.	5.4	48
85	Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nature Sustainability, 2020, 3, 556-563.	11.5	186
86	Three-dimensional self-supporting NiFe-X (X = OH, O, P) nanosheet arrays for high-efficiency overall water splitting. 2D Materials, 2020, 7, 035016.	2.0	14
87	Bimetallic Co/Mo ₂ C Nanoparticles Embedded in 3D Hierarchical Nâ€doped Carbon Heterostructures as Highly Efficient Electrocatalysts for Water Splitting. ChemCatChem, 2020, 12, 3737-3745.	1.8	26
88	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	10.8	102
89	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	7.3	55
90	Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. Journal of Energy Chemistry, 2021, 55, 244-255.	7.1	104

	CITATION	Report	
# 91	ARTICLE Comments on "A facile two-step synthesis of Ag/CuCo2O4 supported on nickel foam as a high-performance electrocatalyst for oxygen evolution reaction. Materials Letters 275 (2020) 128094.― Materials Letters, 2021, 283, 128951.	IF 1.3	Citations
92	Reply to Comment on "A facile two-step synthesis of Ag/CuCo2O4 supported on nickel foam as a high-performance electrocatalyst for oxygen evolution reaction― Materials Letters, 2021, 283, 128969.	1.3	0
93	Multi-site catalyst derived from Cr atoms-substituted CoFe nanoparticles for high-performance oxygen evolution activity. Chemical Engineering Journal, 2021, 404, 126513.	6.6	41
94	Design Strategies of Transitionâ€Metal Phosphate and Phosphonate Electrocatalysts for Energyâ€Related Reactions. ChemSusChem, 2021, 14, 130-149.	3.6	48
95	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	9.5	140
96	Electrochemical Reduction of Carbon Dioxide and Iron Oxide in Molten Salts to Fe/Fe ₃ C Modified Carbon for Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 2148-2152.	1.6	14
97	Electrochemical Reduction of Carbon Dioxide and Iron Oxide in Molten Salts to Fe/Fe ₃ C Modified Carbon for Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 2120-2124.	7.2	92
98	Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100398.	3.2	56
99	Single metal atom decorated photocatalysts: Progress and challenges. Nano Research, 2021, 14, 934-944.	5.8	62
100	Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Research, 2021, 14, 1985-2002.	5.8	98
101	Multilayer hollow MnCo2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 2021, 421, 127831.	6.6	84
102	One-pot solution-free construction for hybrids of molybdenum carbide nanoparticles and porous N-doped carbon nanoplates as efficient electrocatalyst of hydrogen evolution. Journal of Alloys and Compounds, 2021, 861, 157935.	2.8	8
103	Mechanism of transition metal cluster catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 3484-3492.	3.8	17
104	Multiatom Catalysts for Energyâ€Related Electrocatalysis. Advanced Sustainable Systems, 2021, 5, 2000213.	2.7	13
105	Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants. Chemical Engineering Journal, 2021, 413, 127545.	6.6	102
106	Tungstate-modulated Ni/Ni(OH) ₂ interface for efficient hydrogen evolution reaction in neutral media. Journal of Materials Chemistry A, 2021, 9, 1456-1462.	5.2	57
107	Well-dispersed ultrafine CoFe nanoalloy decorated N-doped hollow carbon microspheres for rechargeable/flexible Zn-air batteries. Chemical Engineering Journal, 2021, 407, 127961.	6.6	75
108	The controlled synthesis of V-doped MoS ₂ -Ni _x S _y hollow nanospheres and their electrocatalytic performance in hydrogen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 698-703.	2.5	6

#	Article	IF	CITATIONS
109	Substitutionally Dispersed Highâ€Oxidation CoO <i>_x</i> Clusters in the Lattice of Rutile TiO ₂ Triggering Efficient CoTi Cooperative Catalytic Centers for Oxygen Evolution Reactions. Advanced Functional Materials, 2021, 31, 2009610.	7.8	82
110	Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts. Journal of Power Sources, 2021, 485, 229335.	4.0	43
111	High Density and Unit Activity Integrated in Amorphous Catalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000096.	6.9	102
112	Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: Exploitation of challenges and current progressions. Polyhedron, 2021, 193, 114871.	1.0	23
113	Strategies to Develop Earthâ€Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pHâ€Neutral or pHâ€Nearâ€Neutral Electrolytes. Small Methods, 2021, 5, e2000719.	4.6	31
114	Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648.	23.0	361
115	Synthesis of transition metal sulfide nanostructures for water splitting. , 2021, , 311-341.		1
116	Sensing Materials: 2D Semiconductors for Biosensing. , 2021, , .		0
117	Multiâ€5cale Design of Metal–Organic Frameworkâ€Derived Materials for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12, 2003410.	10.2	81
118	Heteroatomâ€Doping of Nonâ€Noble Metalâ€Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy. Small Methods, 2021, 5, e2000988.	4.6	165
119	Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting. Sustainable Energy and Fuels, 2021, 5, 1347-1365.	2.5	30
120	Atomic layer deposition-triggered hierarchical core/shell stable bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 21132-21141.	5.2	10
121	Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 2663-2695.	18.7	333
122	Nanoporous RuO2 characterized by RuO(OH)2 surface phase as an efficient bifunctional catalyst for overall water splitting in alkaline solution. Journal of Electroanalytical Chemistry, 2021, 881, 114955.	1.9	14
123	Edge-effect enhanced catalytic CO oxidation by atomically dispersed Pt on nitride-graphene. Journal of Materials Chemistry A, 2021, 9, 2093-2098.	5.2	5
124	Promotion of hydrogen evolution catalysis by ordered hierarchically porous electrodes. Catalysis Science and Technology, 2021, 11, 2997-3001.	2.1	8
125	Functionalization of Magnetic Nanoparticles for Tomorrow's Applications. , 2021, , 547-573.		0
126	Fe, Ni-codoped W ₁₈ O ₄₉ grown on nickel foam as a bifunctional electrocatalyst for boosted water splitting. Dalton Transactions, 2021, 50, 11604-11609.	1.6	3

#	Article	IF	CITATIONS
127	Perfecting electrocatalysts <i>via</i> imperfections: towards the large-scale deployment of water electrolysis technology. Energy and Environmental Science, 2021, 14, 1722-1770.	15.6	213
128	First-principles investigation of two-dimensional covalent–organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 5615-5626.	2.5	13
129	A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 3511-3519.	5.2	21
130	Facile Construction of Metal Phosphides (MP, M = Co, Ni, Fe, and Cu) Wrapped in Three-Dimensional N,P-Codoped Carbon Skeleton toward Highly Efficient Hydrogen Evolution Catalysis and Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 9820-9829.	4.0	27
131	Controlled Synthesis and Structure Engineering of Transition Metalâ€based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zincâ€Air Battery and Waterâ€Splitting Devices. ChemSusChem, 2021, 14, 1659-1673.	3.6	12
132	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
133	Na/Al Codoped Layered Cathode with Defects as Bifunctional Electrocatalyst for Highâ€Performance Liâ€ion Battery and Oxygen Evolution Reaction. Small, 2021, 17, e2005605.	5.2	31
134	Flowerâ€like Feâ€Coâ€M (M=S, O, P and Se) Nanosheet Arrays Grown on Nickel Foam as Highâ€efficiency Bifunctional Electrocatalysts. Chemistry - an Asian Journal, 2021, 16, 959-965.	1.7	6
135	Aid of cobalt ions in boosting the electrocatalytic oxygen and hydrogen evolution functions of NdFeO3 perovskite nanostructures. Journal of Materials Research and Technology, 2021, 11, 2246-2254.	2.6	18
136	Phase evolution of vulcanized Co3O4 catalysts during oxygen evolution reaction. Applied Surface Science, 2021, 546, 148819.	3.1	21
137	Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. Npj Computational Materials, 2021, 7, .	3.5	46
138	Facile synthesis of flower-like P-doped nickel-iron disulfide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Journal of Power Sources, 2021, 490, 229552.	4.0	32
139	Molecular Precursor Route to CuCo ₂ S ₄ Nanosheets: A High-Performance Pre-Catalyst for Oxygen Evolution and Its Application in Zn–Air Batteries. Inorganic Chemistry, 2021, 60, 6721-6730.	1.9	22
140	Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten, 2021, 3, 161-180.	2.0	60
141	Ultrathin B, N co-doped porous carbon nanosheets derived from intumescent flame retardant for rechargeable Zn-air battery. Journal of Power Sources, 2021, 493, 229665.	4.0	15
142	Applications of single-atom catalysts. Nano Research, 2022, 15, 38-70.	5.8	115
143	Incorporating MoO ₃ Patches into a Ni Oxyhydroxide Nanosheet Boosts the Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 26064-26073.	4.0	26
144	Metallized Ni(OH) ₂ ·NiO/FeOOH on Ni Foam as a Highly Effective Water Oxidation Catalyst Prepared by Surface Treatment: Oxidation–Corrosion Equilibrium. ACS Applied Energy Materials, 2021, 4, 5599-5605.	2.5	2

ARTICLE IF CITATIONS Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported 145 46 2.6 electrodeposited Ni-Cu-P@Ni-Cu nano-micro dendrite catalyst. Electrochimica Acta, 2021, 382, 138335. Photocatalytic overall water splitting by graphitic carbon nitride. InformaÄnÃ-MateriÃ; ly, 2021, 3, 931-961. 146 8.5 74 Synthesis of Fe3C@C core-shell catalysts with controlled shell composition for robust oxygen 147 3.122 evolution reaction. Applied Surface Science, 2021, 551, 149445. Carbon-Based Catalysts for Selective Electrochemical Nitrogen-to-Ammonia Conversion. ACS 148 Sustainable Chemistry and Engineering, 2021, 9, 7687-7703. Temperature-Controlled Structural Variations of Meticulous Fibrous Networks of NiFe-Polymeric 149 Zeolite Imidazolate Frameworks for Enhanced Performance in Electrocatalytic Water-Splitting 1.9 10 Reactions. Inorganic Chemistry, 2021, 60, 12467-12480. Fe₂O₃/NiO Interface for the Electrochemical Oxygen Evolution in Seawater and Domestic Sewage. ACS Applied Materials & amp; Interfaces, 2021, 13, 37152-37161. 4.0 Computational screening of bifunctional single atom electrocatalyst based on boron nitride 151 2.2 18 nanoribbon for water splitting. Applied Catalysis A: General, 2021, 622, 118235. Tungsten Oxide/Reduced Graphene Oxide Aerogel with Lowâ€Content Platinum as Highâ€Performance 5.2 24 Electrocatalyst for Hydrogen Evolution Reaction. Small, 2021, 17, e2102159. Engineering of aerogelâ€based electrocatalysts for oxygen evolution reaction. Electrochemical Science 153 1.2 1 Advances, 2022, 2, e2100113. Construction of heterostructured CoP/CN/Ni: Electron redistribution towards effective hydrogen 154 6.6 generation and oxygen reduction. Chemical Engineering Journal, 2021, 415, 129031. Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS₂ via Tiny Zn Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry - A European 155 19 1.7 Journal, 2021, 27, 15992-15999. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 5.2 2021, 2, e1Ó6. Recent developments in the use of single-atom catalysts for water splitting. Chinese Journal of 157 6.9 44 Catalysis, 2021, 42, 1269-1286. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Research, 2022, 15, 818-837. 5.8 Highly Conductive Amorphous Pentlandite Anchored with Ultrafine Platinum Nanoparticles for 159 33 7.8 Efficient pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2105372. Cathodic corrosion as a facile and universal method for the preparation of supported metal single 5.8 atoms. Nano Research, 2022, 15, 1838-1844. Electronic structure modulation of nickel hydroxide and tungsten nanoparticles for fast structure transformation and enhanced oxygen evolution reaction activity. Chemical Engineering Journal, 2021, 161 6.6 21 418, 129403. Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis. Applied Catalysis B: Environmental, 2021, 292, 120168.

#	Article	IF	CITATIONS
163	Innovative strategies toward challenges in PV-powered electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 60, 410-416.	7.1	23
164	Ordered mesoporous Pt-Ru-Ir nanostructures as superior bifunctional electrocatalyst for oxygen reduction/oxygen evolution reactions. Journal of Colloid and Interface Science, 2022, 608, 207-218.	5.0	26
165	Bimetallic Cuâ^'Coâ^'Se Nanotube Arrays Assembled on 3D Framework: an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ChemSusChem, 2021, 14, 5065-5074.	3.6	13
166	IrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weakâ€Lightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie, 2021, 133, 26994-27001.	1.6	4
167	Atomically Dispersed Catalytic Sites: A New Frontier for Cocatalyst/Photocatalyst Composites toward Sustainable Fuel and Chemical Production. Catalysts, 2021, 11, 1168.	1.6	7
168	Fe–N–C Single-Atom Catalyst Coupling with Pt Clusters Boosts Peroxidase-like Activity for Cascade-Amplified Colorimetric Immunoassay. Analytical Chemistry, 2021, 93, 12353-12359.	3.2	55
169	Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem, 2021, 14, 4636-4657.	3.6	28
170	IrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weakâ€Lightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 26790-26797.	7.2	23
171	Ultrastable NiFeOOH/NiFe/Ni electrocatalysts prepared by in-situ electro-oxidation for oxygen evolution reaction at large current density. Applied Surface Science, 2021, 564, 150440.	3.1	30
172	Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. Chinese Journal of Catalysis, 2021, 42, 1831-1842.	6.9	38
173	Atomically dispersed Ni–N4 species and Ni nanoparticles constructing N-doped porous carbon fibers for accelerating hydrogen evolution. Carbon, 2021, 185, 96-104.	5.4	10
174	An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Applied Catalysis B: Environmental, 2021, 297, 120405.	10.8	127
175	A high-performance electrocatalyst composed of nickel clusters encapsulated with a carbon network on TiN nanaowire arrays for the oxygen evolution reaction. Applied Surface Science, 2021, 567, 150779.	3.1	25
176	Synergistic metal-oxide interaction for efficient self-reconstruction of cobalt oxide as highly active water oxidation electrocatalyst. Journal of Catalysis, 2021, 404, 80-88.	3.1	15
177	Interfacial heteroâ€phase construction in nickel/molybdenum selenide hybrids to promote the water splitting performance. Applied Materials Today, 2021, 25, 101175.	2.3	12
178	Regulating electrolytic Fe0.5CoNiCuZn high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. Journal of Materials Science and Technology, 2021, 93, 110-118.	5.6	42
179	A cage-confinement strategy to fabricate Pt-Mo6Co6C heterojunction for highly efficient PH-universal hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298, 120579.	10.8	36
180	Tailoring surface and interface electronic structure of NiFe LDH via V doping for enhanced oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 885, 160929.	2.8	24

#	Article	IF	CITATIONS
181	Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chemical Engineering Journal, 2022, 428, 131133.	6.6	42
182	Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review. Materials Advances, 2021, 2, 1177-1189.	2.6	12
183	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	15.6	176
184	A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. Nanoscale, 2021, 13, 10624-10648.	2.8	53
185	Anode co-valorization for scalable and sustainable electrolysis. Green Chemistry, 2021, 23, 7917-7936.	4.6	16
186	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
187	First principles and machine learning based superior catalytic activities and selectivities for N ₂ reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts. Journal of Materials Chemistry A, 2021, 9, 9203-9213.	5.2	67
188	Modulation of Cu and Rh single-atoms and nanoparticles for high-performance hydrogen evolution activity in acidic media. Journal of Materials Chemistry A, 2021, 9, 10326-10334.	5.2	70
189	In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting. Advanced Fiber Materials, 2021, 3, 117-127.	7.9	53
190	Thermostable carbon-supported subnanometer-sized (<1 nm) Pt clusters for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 21972-21980.	5.2	13
191	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
192	A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3007-3011.	3.0	143
193	Fe-doping induced localized amorphization in ultrathin α-Ni(OH) ₂ nanomesh for superior oxygen evolution reaction catalysis. Journal of Materials Chemistry A, 2021, 9, 14372-14380.	5.2	44
194	Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Science China Materials, 2021, 64, 1127-1138.	3.5	44
195	Utilizing in-situ polymerization of pyrrole to fabricate composited hollow nanospindles for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 274, 119112.	10.8	23
196	Controlled synthesis and fine-tuned interface of NiS nanoparticles/Bi2WO6 nanosheets heterogeneous as electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146718.	3.1	16
197	Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy, 2020, 75, 104913.	8.2	119
198	Recent advances in electrocatalysts for seawater splitting. Nano Materials Science, 2023, 5, 101-116.	3.9	86

ARTICLE IF CITATIONS A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide 199 2.2 10 range of adatoms. Nanoscale Advances, 2020, 2, 5905-5911. Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic 2.8 applications. Nanoscale, 2020, 12, 12712-12730. Accurately manipulating hierarchical flower-like Fe₂P@CoP@nitrogen-doped carbon 201 2.8 8 spheres as an efficient carrier material of Pt-based catalyst. Nanoscale, 2021, 13, 18226-18236. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced 13.1 Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186. Constructing Hierarchical Fluffy CoO–Co₄N@NiFe-LDH Nanorod Arrays for Highly Effective Overall Water Splitting and Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 203 3.2 48 2021, 9, 14180-14192. Scalable Synthesis of Sm₂O₃/Fe₂O₃/Acancy-Based Gyroid-Inspired Morphology: With Enhanced Electrocatalytic Activity for Oxygen Evolution Performance. Energy & amp; Fuels, 2021, 35, 17820-17832. 204 2.5 Novel Two-Dimensional MA₂N₄ Materials for Photovoltaic and Spintronic 205 2.1 30 Applications. Journal of Physical Chemistry Letters, 2021, 12, 10120-10127. Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution 206 7.1 109 reaction: A review. Journal of Energy Chemistry, 2022, 67, 101-137. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science 207 2.3 11 and Engineering, 2021, 15, 1380-1407. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano 208 5.8 Research, 2022, 15, 2870-2876. Single-atom dispersed Cu or Co on 2H-MoS2 monolayer for improving electrocatalytic activity of 209 1.5 9 overall water splitting. Surfaces and Interfaces, 2021, 27, 101538. Recent Advances in Complex Hollow Electrocatalysts for Water Splitting. Advanced Functional 107 Materials, 2022, 32, 2108681. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. 212 19.8 159 Nature Energy, 2021, 6, 1054-1066. Hierarchical Fe–Mn binary metal oxide core–shell nano-polyhedron as a bifunctional electrocatalyst for efficient water splitting. Dalton Transactions, 2021, 50, 17265-17274. 1.6 Low-loading Ir decorated cobalt encapsulated N-doped carbon nanotubes/porous carbon sheet 214 implements efficient hydrogen/oxygen trifunctional electrocatalysis. Chemical Engineering Journal, 6.6 24 2022, 430, 132825. Boron-based materials modified on the surface of TiO2 nanorods via electroless plating toward 24 high-efficient solar-driven water splitting. Chemical Engineering Journal, 2022, 430, 132881. Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for 216 10.2 73 Water Splitting via Distinctive Mechanistic Pathways. Advanced Energy Materials, 2021, 11, 2102388. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current 54 developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214289.

#	Article	IF	CITATIONS
219	Flexible, compressible, versatile biomass-derived freestanding carbon monoliths as binder- and substrate-free tri-functional electrodes for solid-state zinc-air batteries and overall water splitting. Applied Catalysis B: Environmental, 2022, 304, 120977.	10.8	17
220	Highâ€entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat, 2021, 1, 482-505.	7.8	59
221	Highly Mesoporous Cobalt-Hybridized 2D Cu ₃ P Nanosheet Arrays as Boosting Janus Electrocatalysts for Water Splitting. Inorganic Chemistry, 2021, 60, 18325-18336.	1.9	8
222	Defectâ€Assisted Anchoring of Pt Single Atoms on MoS ₂ Nanosheets Produces Highâ€Performance Catalyst for Industrial Hydrogen Evolution Reaction. Small, 2022, 18, e2104824.	5.2	36
223	Vanadium-Doping and Interface Engineering for Synergistically Enhanced Electrochemical Overall Water Splitting and Urea Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 57392-57402.	4.0	40
224	Universal low-temperature oxidative thermal redispersion strategy for green and sustainable fabrication of oxygen-rich carbons anchored metal nanoparticles for hydrogen evolution reactions. Chemical Engineering Journal, 2022, 433, 133648.	6.6	73
225	Atomically Dispersed, Low oordinate Co–N Sites on Carbon Nanotubes as Inexpensive and Efficient Electrocatalysts for Hydrogen Evolution. Small, 2022, 18, e2105335.	5.2	23
226	Ultrafast Roomâ€Temperature Synthesis of Selfâ€Supported NiFeâ€Layered Double Hydroxide as Largeâ€Current–Density Oxygen Evolution Electrocatalyst. Small, 2022, 18, e2104354.	5.2	50
227	Potential of MXene-Based Heterostructures for Energy Conversion and Storage. ACS Energy Letters, 2022, 7, 78-96.	8.8	69
228	Low Overpotential Overall Water Splitting by a Cooperative Interface of Cobalt-Iron Hydroxide and Iron Oxyhydroxide. SSRN Electronic Journal, 0, , .	0.4	0
229	Recent advances in composite and heterostructured photoactive materials for the photochemical conversion of solar energy. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100588.	3.2	7
230	Recent advances in MoS ₂ -based materials for electrocatalysis. Chemical Communications, 2022, 58, 2259-2278.	2.2	30
231	Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. Nanoscale, 2022, 14, 1107-1122.	2.8	6
232	Coupling surfactant-free Ru nanoclusters with defect carbon for efficient pH-universal hydrogen evolution. Catalysis Communications, 2022, 162, 106401.	1.6	1
233	Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 432, 134303.	6.6	35
234	A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Energy, 2022, 93, 106870.	8.2	37
235	Metal-organic frameworks derived RuP2 with yolk-shell structure and efficient performance for hydrogen evolution reaction in both acidic and alkaline media. Applied Catalysis B: Environmental, 2022, 305, 121043.	10.8	37
236	Understanding ultra-dispersed CeO modified iridium clusters as bifunction electrocatalyst for high-efficiency water splitting in acid electrolytes. Journal of Rare Earths, 2023, 41, 208-214.	2.5	13

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
237	Stable Pd–Cu Hydride Catalyst for Efficient Hydrogen Evolution. Nano Letters, 2022	, 22, 1391-1397.	4.5	41
238	Electrocatalytic hydrogenation of lignin monomer to methoxy-cyclohexanes with high efficiency. Green Chemistry, 2022, 24, 142-146.	faradaic	4.6	11
239	Machine learning assisted high-throughput screening of transition metal single atom b hydrogen evolution electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 6679-		5.2	74
240	Construction of Fe ₂ O ₃ Nanosheet Arrays by Sulfur Doping t Alkaline Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 1793-1800.	oward Efficient	2.5	12
241	The Pivotal Role of sâ€; pâ€; and fâ€Block Metals in Water Electrolysis: Status Quo and Advanced Materials, 2022, 34, e2108432.	l Perspectives.	11.1	55
242	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Elect Acta, 2022, 409, 139835.	trochimica	2.6	8
243	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic ap State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	plications:	8.3	34
244	Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clus enhanced hydrogen evolution catalysis. Chemical Engineering Journal, 2022, 435, 135	ters for 102.	6.6	28
245	Pentagonal PdX2 (X = S, Se) nanosheets with X vacancies as high-performance electro hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, , .	catalysts for the	1.3	2
246	Interface rich CuO/Al ₂ CuO ₄ surface for selective ethylene p electrochemical CO ₂ conversion. Energy and Environmental Science, 202		15.6	54
247	Dual-metal atom incorporated N-doped graphenes as oxygen evolution reaction electro activities achieved by site synergies. Journal of Materials Chemistry A, 2022, 10, 8309-	ocatalysts: high 3323.	5.2	18
248	Atomically ordered Pt ₃ Mn intermetallic electrocatalysts for the oxygen re reaction in fuel cells. Journal of Materials Chemistry A, 2022, 10, 7399-7408.	duction	5.2	26
249	Fe-CoP/C composite nanoplate derived from 2D porphyrin MOF as an efficient catalyst evolution reaction. New Journal of Chemistry, 2022, 46, 8271-8276.	for oxygen	1.4	6
250	Tuning Catalyst Activation and Utilization Via Controlled Electrode Patterning for Lowá Highâ€Efficiency Water Electrolyzers. Small, 2022, 18, e2107745.	i€Łoading and	5.2	30
251	Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydro iron oxyhydroxide. Cell Reports Physical Science, 2022, 3, 100762.	oxide and	2.8	43
252	What is Next in Anionâ€Exchange Membrane Water Electrolyzers? Bottlenecks, Benefi ChemSusChem, 2022, 15, .	ts, and Future.	3.6	77
253	The catalytic effect of RuM-C catalyst attached to carbon- based support for hydrogen reaction. Nanotechnology, 2022, 33, 285704.	evolution	1.3	2
254	Interface design and composition regulation of cobalt-based electrocatalysts for oxyge reaction. International Journal of Hydrogen Energy, 2022, 47, 10547-10572.	n evolution	3.8	34

#	Article	IF	CITATIONS
255	NiPN/Ni Nanoparticle-Decorated Carbon Nanotube Forest as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting in an Alkaline Electrolyte. ACS Applied Nano Materials, 2022, 5, 5335-5345.	2.4	4
256	Atomically dispersed ultralow-platinum loading on Ti3C2T MXene as efficient catalyst for hydrogen evolution reaction. Electrochimica Acta, 2022, 411, 140091.	2.6	8
257	Long-range interconnected nanoporous Co/Ni/C composites as bifunctional electrocatalysts for long-life rechargeable zinc-air batteries. Electrochimica Acta, 2022, 413, 140183.	2.6	14
258	Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 616, 338-346.	5.0	21
259	3D holey hierarchical nanoflowers assembled by cobalt phosphide embedded N-doped carbon nanosheets as bifunctional electrocatalyst for highly efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 616, 379-388.	5.0	24
260	Size effect of Rhodium nanoparticles supported on carbon black on the performance of hydrogen evolution reaction. Carbon, 2022, 194, 303-309.	5.4	12
261	3D core-shell structured NiFe layered double hydroxide with NiCo2O4 as an efficient electrocatalysts for oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2022, 166, 110730.	1.9	5
262	Directionally In Situ Selfâ€Assembled, Highâ€Density, Macroporeâ€Oriented, CoPâ€Impregnated, 3D Hierarchical Porous Carbon Sheet Nanostructure for Superior Electrocatalysis in the Hydrogen Evolution Reaction. Small, 2022, 18, e2103866.	5.2	24
263	Pt ₃ Fe Nanoparticles on B,N-Codoped Carbon as Oxygen Reduction and pH-Universal Hydrogen Evolution Electrocatalysts. ACS Applied Nano Materials, 2022, 5, 318-325.	2.4	11
264	Fiber Materials for Electrocatalysis Applications. Advanced Fiber Materials, 2022, 4, 720-735.	7.9	48
265	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
266	One step synthesis of Co-Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129041.	2.3	8
267	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
268	Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Research, 2022, 15, 6084-6090.	5.8	111
269	Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214555.	9.5	32
270	Magnetic Field Enhanced Electrocatalytic Oxygen Evolution of NiFeâ€LDH/Co ₃ O ₄ pâ€n Heterojunction Supported on Nickel Foam. Small Methods, 2022, 6, e2200084.	4.6	39
271	Two-dimensional transition metal-based electrocatalyst and their application in water splitting. Materials Science and Technology, 2022, 38, 535-555.	0.8	9
272	Modulating the Intrinsic Electrocatalytic Activity of Copper Sulfide by Silver Doping for Electrocatalytic Overall Water Splitting. ChemElectroChem, 2022, 9, .	1.7	9

#	Article	IF	CITATIONS
273	Mainâ€Group Metal Singleâ€Atomic Regulators in Dualâ€Metal Catalysts for Enhanced Electrochemical CO ₂ Reduction. Small, 2022, 18, e2201391.	5.2	39
274	Dynamic active sites in NiFe oxyhydroxide upon Au nanoparticles decoration for highly efficient electrochemical water oxidation. Nano Energy, 2022, 98, 107328.	8.2	20
275	Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Progress in Materials Science, 2022, 128, 100964.	16.0	40
276	One-step ultrafast laser induced synthesis of strongly coupled 1T-2H MoS2/N-rGO quantum-dot heterostructures for enhanced hydrogen evolution. Chemical Engineering Journal, 2022, 445, 136618.	6.6	10
277	Unveiling the Role of Charge Transfer in Enhanced Electrochemical Nitrogen Fixation at Single-Atom Catalysts on BX Sheets (X = As, P, Sb). Journal of Physical Chemistry Letters, 2022, 13, 4530-4537.	2.1	29
278	Superconducting and non-superconducting fault current limiters: the developmental journey and upcoming prospects. Australian Journal of Electrical and Electronics Engineering, 2022, 19, 379-395.	0.7	1
279	Ru-Optimized Geometric Sites of Cations in Cofe/Cofe2o4 Electrocatalysts with Graphitic Carbon Shells for Boosting Water Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
280	Intrinsic Catalytic Activity for the Alkaline Hydrogen Evolution of Layer-Expanded MoS ₂ Functionalized with Nanoscale Ni and Co Sulfides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7117-7133.	3.2	6
281	Co-Based Nanosheets with Transitional Metal Doping for Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 1788.	1.9	0
282	Ru-optimized geometric sites of cations in CoFe/CoFe2O4 electrocatalysts with graphitic carbon shells for boosting water oxidation. Electrochimica Acta, 2022, 425, 140665.	2.6	6
283	Designing of highly-efficient oxygen evolution reaction electrocatalyst FeCo-hydroxyl phosphates: Theory and experiment. Chemical Engineering Journal, 2022, 446, 137151.	6.6	5
284	Bifunctional atomically dispersed ruthenium electrocatalysts for efficient bipolar membrane water electrolysis. Inorganic Chemistry Frontiers, 2022, 9, 4142-4150.	3.0	11
285	Cu-Based Multicomponent Metallic Compound Materials as Electrocatalyst for Water Splitting. Frontiers in Chemistry, 0, 10, .	1.8	5
286	Transition Metal Nonâ€Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	5.2	47
287	Surface Design Strategy of Catalysts for Water Electrolysis. Small, 2022, 18, .	5.2	138
288	Mo-induced in-situ architecture of NixCoyP/Co2P heterostructure nano-networks on nickel foam as bifunctional electrocatalysts for overall water splitting. Sustainable Materials and Technologies, 2022, 33, e00461.	1.7	11
289	Improving C–N–FeO _{<i>x</i>} Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catalysis, 2022, 12, 7443-7452.	5.5	12
290	Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production. Renewable Energy, 2022, 195, 283-292.	4.3	6

#	Article	IF	CITATIONS
291	MXenes for electrocatalysis applications: Modification and hybridization. Chinese Journal of Catalysis, 2022, 43, 2057-2090.	6.9	76
292	Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chemical Engineering Journal, 2022, 446, 137452.	6.6	37
293	Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 624, 704-712.	5.0	15
294	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749.	15.6	107
295	Bifunctional Petal-Like Carbon-Nitrogen Doped Nifeox/ Nickel Foam Nanohybrid Electrocatalyst for Efficient Overall Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
296	A Universal Strategy for Synthesizing Nanosized Transition-Metal Phosphides@N,P-Codoped Carbon Electrocatalysts Toward Overall Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
297	Room Temperature Preparation of Two-Dimensional Black Phosphorus@Metal Organic Framework Heterojunctions and Their Efficient Overall Water-Splitting Electrocatalytic Reactions. ACS Applied Materials & Interfaces, 2022, 14, 31502-31509.	4.0	24
298	Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction. Materials for Renewable and Sustainable Energy, 2022, 11, 131-141.	1.5	20
299	FeAlCr is an economical catalyst for oxygen evolution in acid. Results in Materials, 2022, 15, 100303.	0.9	0
300	Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of newly emergent nanocatalysts. International Journal of Hydrogen Energy, 2022, 47, 26915-26955.	3.8	16
301	Alloy electrocatalysts. EnergyChem, 2023, 5, 100083.	10.1	24
302	Macro/Microâ€Environment RegulatingÂCarbonâ€Supported Singleâ€Atom Catalysts for Hydrogen/Oxygen Conversion Reactions. Small, 2022, 18, .	5.2	37
303	Co-Mo microcolumns decorated with trace Pt for large current density hydrogen generation in alkaline seawater. Applied Catalysis B: Environmental, 2022, 317, 121762.	10.8	30
304	Synergistically Coupling of Manganese-Doped CoP Nanowires Arrays with Highly Dispersed Ni(PO ₃) ₂ Nanoclusters toward Efficient Overall Water Splitting. Inorganic Chemistry, 2022, 61, 14201-14210.	1.9	6
305	Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nature Communications, 2022, 13, .	5.8	112
306	Cathodic Protection System against a Reverse-Current after Shut-Down in Zero-Gap Alkaline Water Electrolysis. Jacs Au, 2022, 2, 2491-2500.	3.6	14
307	Platinum nickel alloy-MXene catalyst with inverse opal structure for enhanced hydrogen evolution in both acidic and alkaline solutions. Nano Research, 2023, 16, 195-201.	5.8	14
308	Highly-dispersed Ni, N-doped Mo2C nanoparticles prepared from organic-derived polyoxomolybdates for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 28915-28923.	3.8	5

#	Article	IF	CITATIONS
309	Synergies of Adjacent Sites in Atomically Dispersed Ruthenium toward Achieving Stable Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 13453-13461.	1.9	73
310	Recent advances in electrocatalysts for seawater splitting in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29685-29697.	3.8	38
311	Biomass-derived carbon fiber with atomic Mn-N4 sites for efficient electrocatalytic oxygen reduction reaction. Journal of Materials Science, 2022, 57, 15943-15953.	1.7	2
312	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
313	Investigation of glucose electrooxidation mechanism over Nâ€modified metalâ€doped graphene electrode by density functional theory approach. Journal of Computational Chemistry, 0, , .	1.5	3
314	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie, 2022, 134, .	1.6	4
315	Three-dimensional ordered macroporous design of heterogeneous nickel-iron phosphide as bifunctional electrocatalyst for enhanced overall water splitting. Applied Surface Science, 2023, 607, 154905.	3.1	14
316	Novel transition-metal phosphides@N, P-codoped carbon electrocatalysts synthesized via a universal strategy for overall water splitting. Journal of Alloys and Compounds, 2023, 932, 167253.	2.8	8
317	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	9.5	22
318	Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts. Nanoscale, 2022, 14, 13490-13499.	2.8	3
319	Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chinese Journal of Catalysis, 2022, 43, 2453-2483.	6.9	33
320	Regulating the coordination environment of a metal–organic framework for an efficient electrocatalytic oxygen evolution reaction. Energy Advances, 2022, 1, 641-647.	1.4	2
321	Boosting the Electrocatalytic Activity of Nise by Introducing Mnco as an Efficient Heterostructured Electrocatalyst for Large-Current-Density Alkaline Seawater Splitting. SSRN Electronic Journal, 0, , .	0.4	0
322	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	4.1	12
323	Cobalt–manganese sulfide hybridized Fe-doped 1T-Vanadium disulfide 3D-Hierarchical core-shell nanorods for extreme low potential overall water-splitting. Materials Today Nano, 2022, 20, 100272.	2.3	18
324	Pt Atomic Layers Boosted Hydrogen Evolution Reaction in Nonacidic Media. Advanced Energy Materials, 2022, 12, .	10.2	30
325	Cu2O-templated fabrication of Ni(OH)2·0.75H2O hollow tubes for electrocatalytic oxygen evolution reaction. Progress in Natural Science: Materials International, 2022, 32, 554-560.	1.8	8
326	Atomically Dispersed Fe–N ₅ Sites Anchored in Porous N-Doped Carbon Nanofibers for Effective Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 13505-13513.	3.2	1

#	Article	IF	CITATIONS
327	Formation of Nitrogen-Coordinated Metal Sites (M = Fe, Co) via Solution-Phase Coordination on Nickel- And Nitrogen-Co-Doped Carbon Templates with Metal Vacancy-N _x Sites. Journal of the Electrochemical Society, 2022, 169, 106507.	1.3	1
328	Synthesis of Ni2P/Ni5P4 on porous N decorated rGO foam for efficiently electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 38571-38582.	3.8	11
329	Orbital Orientation-based Theoretical Design of Single-Atom Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 16656-16662.	1.5	1
330	Ultrasmall molybdenum-iron nitride nanoparticles confined carbon nanotubes hybrids for efficient overall water splitting. Functional Composites and Structures, 2022, 4, 035008.	1.6	7
331	Cost-effective electrocatalysts for Hydrogen Evolution Reactions (HER): Challenges and Prospects. International Journal of Hydrogen Energy, 2022, 47, 38964-38982.	3.8	27
332	Theoretically revealing the activity origin of the hydrogen evolution reaction on carbon-based single-atom catalysts and finding ideal catalysts for water splitting. Journal of Materials Chemistry A, 2022, 10, 24362-24372.	5.2	5
333	Transition metal single atom embedded GaN monolayer surface for efficient and selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 24280-24289.	5.2	5
334	Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Research, 2023, 16, 2218-2223.	5.8	26
335	Improved Electrochemical Performance from Nano-Cobalt Oxide: Bifunctional Application in Energy Generation and Storage. ACS Applied Energy Materials, 2022, 5, 12907-12915.	2.5	6
336	Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclustersâ€based Materials. Small, 2022, 18, .	5.2	85
337	Ruâ^'RuO ₂ Nanoparticles Decorated on Various Substrates via Reductionâ€Hydrolysis Strategy for Boosting Overall Waterâ€Splitting Performance. ChemCatChem, 2022, 14, .	1.8	3
338	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	1.9	11
339	Recent Advances in Niâ \in Based Electrocatalysts for Hydrogen Evolution Reaction. Energy Technology, 2023, 11, .	1.8	11
340	Synergy of Platinum Single Atoms and Platinum Atomic Clusters on Sulfurâ€Doped Titanium Nitride Nanotubes for Enhanced Hydrogen Evolution Reaction. Small, 2022, 18, .	5.2	13
341	Mo–Ag nanocomposite catalysts for the oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2023, 172, 111041.	1.9	2
342	Dual-purpose nickel-iron layered double hydroxides by controlled lanthanide and phosphide incorporation for promoting overall water splitting efficiency. Journal of Alloys and Compounds, 2023, 933, 167743.	2.8	7
343	Improving the hydrogen evolution reaction activity of molybdenum-based heterojunction nanocluster capsules via electronic modulation by erbium–nitrogen–phosphorus ternary doping. Chemical Engineering Journal, 2023, 454, 140079.	6.6	14
344	Electrocatalysis in Li–O2 battery over single-atom catalyst based on g-C3N4 substrate. Applied Surface Science, 2023, 610, 155481.	3.1	5

#	Article	IF	CITATIONS
345	A platinum modulated tungsten oxide on Ag nanowires network as an indicator for in-situ visualized evaluation of the hydrogen evolution performance. International Journal of Hydrogen Energy, 2023, 48, 3364-3372.	3.8	2
346	Advanced In Situ Characterization Techniques for Direct Observation of Gasâ€Involved Electrochemical Reactions. Energy and Environmental Materials, 2023, 6, .	7.3	8
347	Progress of oxygen and hydrogen evolution reactions in parallel with chlorine evolution on manganese single-atom catalysts based on perfect and defective porphyrin, corrole, and phthalocyanine. International Journal of Hydrogen Energy, 2023, 48, 2973-2989.	3.8	5
348	2D transitional-metal nickel compounds monolayer: Highly efficient multifunctional electrocatalysts for the HER, OER and ORR. International Journal of Hydrogen Energy, 2023, 48, 4242-4252.	3.8	17
349	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
350	A nanoelectrode-based study of water splitting electrocatalysts. Materials Horizons, 2023, 10, 52-64.	6.4	4
351	Highly dispersed Pt/CuO nanoclusters in N-doped porous carbon array for superior hydrogen evolution. Chemical Engineering Journal, 2023, 455, 140856.	6.6	13
352	Si regulation of hydrogen adsorption on nanoporous PdSi hybrids towards enhancing electrochemical hydrogen evolution activity. Inorganic Chemistry Frontiers, 2023, 10, 1101-1111.	3.0	3
353	Superhydrophilic and superaerophobic Ni–Mo alloy grown on 3D Ni foam with heterogeneous structure as self-standing electrocatalysts toward efficient alkaline HER. Solid State Sciences, 2023, 136, 107089.	1.5	3
354	DFT calculation screened CoCu and CoFe dual-atom catalysts with remarkable hydrogen evolution reaction activity. Applied Catalysis B: Environmental, 2023, 324, 122244.	10.8	5
355	Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coordination Chemistry Reviews, 2023, 478, 214969.	9.5	35
356	A study of twoâ€dimensional single atomâ€supported <scp>MXenes</scp> as hydrogen evolution reaction catalysts using density functional theory and machine learning. International Journal of Quantum Chemistry, 2023, 123, .	1.0	4
357	Engineering Single-Atom Sites into Pore-Confined Nanospaces of Porphyrinic Metal–Organic Frameworks for the Highly Efficient Photocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2022, 144, 22747-22758.	6.6	53
358	Reduced Potential Barrier of Sodium-Substituted Disordered Rocksalt Cathode for Oxygen Evolution Electrocatalysts. Nanomaterials, 2023, 13, 10.	1.9	6
359	Single‣ayer Platinum Cluster Catalyst for Efficient Hydrogen Electroâ€Production. Advanced Functional Materials, 2023, 33, .	7.8	5
360	Selectively Enhanced Electrocatalytic Oxygen Evolution within Nanoscopic Channels Fitting a Specific Reaction Intermediate for Seawater Splitting. Small, 2023, 19, .	5.2	11
361	Nickel–Vanadium–Manganese Trimetallic Nitride as Energy Saving, Efficient Bifunctional Electrocatalyst for Alkaline Water Splitting via Urea Electrocatalysis. Inorganic Chemistry, 2023, 62, 3349-3357.	1.9	14
362	MOF-Derived Noble Metal-Free Electrocatalysts for Water Splitting. ACS Symposium Series, 0, , 77-99.	0.5	1

#	Article	IF	CITATIONS
364	Immobilizing Lowâ€Cost Metal Nitrides in Electrochemically Reconstructed Platinum Group Metal (PGM)â€Free Oxyâ€(Hydroxides) Surface for Exceptional OER Kinetics in Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2023, 13, .	10.2	15
365	Nanostructured carbon electrocatalysts for clean energy conversion and storage: A mini review on the structural impactA. Frontiers in Materials, 0, 9, .	1.2	0
366	Recent advances in cobalt disulfide for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 9231-9243.	3.8	10
367	All-in-One Process for Mass Production of Membrane-Type Carbon Aerogel Electrodes for Solid-State Rechargeable Zinc-Air Batteries. Membranes, 2022, 12, 1243.	1.4	0
368	Transition metals incorporated on phosphorene sheet as cost-effective single atom catalysts for hydrogen evolution reaction: A DFT study. Computational and Theoretical Chemistry, 2023, 1220, 113998.	1.1	3
369	Controlled synthesis of NiCoM (M=P, S, Se, O)–Ni3S2–MoS2 hybrid material as environmentally friendly water splitting catalyst. International Journal of Hydrogen Energy, 2023, 48, 9260-9272.	3.8	5
370	Computational screening toward transition metal doped vanadium carbides in different crystal planes for efficient hydrogen evolution: a first-principles study. Physical Chemistry Chemical Physics, 2023, 25, 4724-4731.	1.3	3
371	Mechanisms of Oxygen Evolution Reaction in Metal Oxides: Adsorbate Evolution Mechanism versus Lattice Oxygen Mechanism. , 0, 2, .		0
372	Room-temperature sensing performance of binary Co–Zn doped MoS ₂ /graphite composites toward ppb-level NO ₂ . Journal of Materials Chemistry C, 2023, 11, 2364-2374.	2.7	13
373	Adenosine triphosphate induced transition-metal phosphide nanostructures encapsulated with N, P-codoped carbon toward electrochemical water splitting. Fuel, 2023, 339, 127303.	3.4	18
374	Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting. Applied Catalysis B: Environmental, 2023, 325, 122355.	10.8	57
377	Engineering Pt Coordination Environment with Atomically Dispersed Transition Metal Sites Toward Superior Hydrogen Evolution. Advanced Energy Materials, 2023, 13, .	10.2	43
378	Construction of CoS/NiS@CuS with dandelion flower-like heterostructures as efficient catalysts for overall urea splitting. International Journal of Hydrogen Energy, 2023, 48, 24342-24355.	3.8	4
379	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9
380	Pathways towards Achieving High Current Density Water Electrolysis: from Material Perspective to System Configuration. ChemSusChem, 2023, 16, .	3.6	6
381	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
382	S and N coordinated single-atom catalysts for electrochemical CO2 reduction with superior activity and selectivity. Applied Surface Science, 2023, 619, 156747.	3.1	8
383	Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coordination Chemistry Reviews, 2023, 482, 215058.	9.5	44

#	Article	IF	CITATIONS
384	A win-win strategy of wastewater recycling and treatment: synchronous hydrogen production and norfloxacin degradation. Materials Today Sustainability, 2023, 22, 100346.	1.9	3
385	Facile synthesis of CeO2-decorated Co4N nanoparticles as a highly active and durable electrocatalyst for the oxygen evolution reaction. Applied Surface Science, 2023, 624, 157117.	3.1	4
386	F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Applied Catalysis B: Environmental, 2023, 328, 122487.	10.8	41
387	Electrocatalytic hydrogen evolution on the MoS2/C60 heterostructure: Reaction mechanism and activity improvement. Applied Surface Science, 2023, 624, 157163.	3.1	1
388	First row transition metal doped B12P12 and Al12P12 nanocages as excellent single atom catalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 16663-16677.	3.8	19
389	Robust and Promising Electrocatalytic Oxygen Evolution Reaction by Activated Cu–Co–B Amorphous Nanosheets. ACS Sustainable Chemistry and Engineering, 2023, 11, 2541-2553.	3.2	15
391	Microwave Synthesis of Pt Clusters on Black TiO ₂ with Abundant Oxygen Vacancies for Efficient Acidic Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	1.6	22
392	Microwave Synthesis of Pt Clusters on Black TiO ₂ with Abundant Oxygen Vacancies for Efficient Acidic Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	72
393	First-principles study of the effect of the local coordination environment on the electrochemical activity of Pd1-CxNy single atom catalysts. Chemical Engineering Science, 2023, 270, 118551.	1.9	2
394	Facile, Controllable, and Ultrathin NiFe-LDH In Situ Grown on a Ni Foam by Ultrasonic Self-Etching for Highly Efficient Urine Conversion. Environmental Science & Technology, 2023, 57, 2939-2948.	4.6	11
395	Electron Delocalization of Au Nanoclusters Triggered by Fe Single Atoms Boosts Alkaline Overall Water Splitting. ACS Applied Materials & Interfaces, 2023, 15, 10696-10708.	4.0	8
396	In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical Engineering Journal, 2023, 461, 141939.	6.6	26
397	Highâ€Performing Atomic Electrocatalyst for Chlorine Evolution Reaction. Small, 2023, 19, .	5.2	8
398	Ambient Electrosynthesis toward Singleâ€Atom Sites for Electrocatalytic Green Hydrogen Cycling. Advanced Materials, 2023, 35, .	11.1	26
399	W-doped FeNi2S4/Ni3S2/NF with interfacial effect as efficient bifunctional electrocatalyst for overall water splitting. Nano Research, 2023, 16, 12116-12125.	5.8	9
400	Synthesis and characterization of metal-free nanosheets of carbo-catalysts for bifunctional electrocatalyst towards HER and OER application. Molecular Catalysis, 2023, 539, 113043.	1.0	1
401	Remarkably Enhanced Lattice Oxygen Participation in Perovskites to Boost Oxygen Evolution Reaction. Nanomaterials, 2023, 13, 905.	1.9	3
402	<i>In situ</i> space-confined growth of Co ₃ O ₄ nanoparticles inside N-doped hollow porous carbon nanospheres as bifunctional oxygen electrocatalysts for high-performance rechargeable zinc–air batteries. Dalton Transactions, 2023, 52, 4371-4381.	1.6	3

#	Article	IF	CITATIONS
403	A Mini Review: Recent Advances in Asymmetrically Coordinated Atom Sites for High-Efficiency Hydrogen Evolution Reaction. Energies, 2023, 16, 2664.	1.6	4
404	Interface engineering of CeO ₂ nanoparticle/Bi ₂ WO ₆ nanosheet nanohybrids with oxygen vacancies for oxygen evolution reactions under alkaline conditions. RSC Advances, 2023, 13, 8873-8881.	1.7	0
405	Synthesis of FeOOH scaly hollow tubes based on Cu2O wire templates toward high-efficiency oxygen evolution reaction. Rare Metals, 2023, 42, 1836-1846.	3.6	6
406	A Direct Formaldehyde Fuel Cell for CO ₂ â€Emission Free Coâ€generation of Electrical Energy and Valuable Chemical/Hydrogen. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
407	A Direct Formaldehyde Fuel Cell for CO ₂ â€Emission Free Coâ€generation of Electrical Energy and Valuable Chemical/Hydrogen. Angewandte Chemie, 2023, 135, .	1.6	0
408	Litchiâ€derived platinum group metalâ€free electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction in alkaline media. SusMat, 2023, 3, 248-262.	7.8	8
410	Fe-doped Co3O4 nanostructures prepared via hard-template method and used for the oxygen evolution reaction in alkaline media. Journal of Industrial and Engineering Chemistry, 2023, 123, 436-446.	2.9	2
411	纳米åᢏ"µæœºåº"ç":自驱动系统. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, , .	0.3	0
412	Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Research, 2023, 16, 12186-12195.	5.8	5
413	Structure phase engineering strategy through acetic acid coupling to boost hydrogen evolution reaction performance of 2H phase MoS2 at wide pH range. Fuel, 2023, 347, 128428.	3.4	8
414	Fabrication of Ni/NiFe-LDH Core–Shell Schottky Heterojunction as Ultrastable Bifunctional Electrocatalyst for Ampere-Level Current Density Water Splitting. ACS Applied Energy Materials, 2023, 6, 4683-4692.	2.5	5
415	Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Materials Horizons, 2023, 10, 2312-2342.	6.4	13
417	Photovoltaic Electrocatalytic Seawater Splitting. , 2023, , 225-294.		0
446	Shining light on layered metal phosphosulphide catalysts for efficient water electrolysis: preparation, promotion strategies, and perspectives. Green Chemistry, 2023, 25, 6170-6187.	4.6	2
448	Recent advances in proton exchange membrane water electrolysis. Chemical Society Reviews, 2023, 52, 5652-5683.	18.7	27
453	Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Advances, 2023, 13, 24393-24411.	1.7	2
460	Recent advances in single-atom catalysts for electrochemical water splitting. , 2023, , 199-231.		0
464	Catalytic Potential and Utility of High Entropy Alloys. , 0, , .		0

#	Article	IF	CITATIONS
478	Recent research progress on ruthenium-based catalysts at full pH conditions for the hydrogen evolution reaction. Ionics, 2023, 29, 4987-5001.	1.2	1
498	Single-atom catalysts supported on a hybrid structure of boron nitride/graphene for efficient nitrogen fixation <i>via</i> synergistic interfacial interactions. Nanoscale, 0, , .	2.8	0
509	Decade Milestone Advancement of Defect-Engineered g-C3N4 for Solar Catalytic Applications. Nano-Micro Letters, 2024, 16, .	14.4	0