Deep Learning for Diagnosis of Chronic Myocardial Infa Cine MRI

Radiology 291, 606-617 DOI: 10.1148/radiol.2019182304

Citation Report

#	Article	IF	CITATIONS
1	A Deep Learning Segmentation Approach in Free-Breathing Real-Time Cardiac Magnetic Resonance Imaging. BioMed Research International, 2019, 2019, 1-12.	0.9	22
2	Utilization of Artificial Intelligence in Echocardiography. Circulation Journal, 2019, 83, 1623-1629.	0.7	64
3	Machine learning in cardiovascular magnetic resonance: basic concepts and applications. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 61.	1.6	157
4	Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. Journal of the American Heart Association, 2019, 8, e012788.	1.6	104
5	Deep Learning for Detection of Myocardial Scar Tissue: Goodbye to Gadolinium?. Radiology, 2019, 291, 618-619.	3.6	6
6	The use of the intensityâ€curvature measurement approaches: Applications in magnetic resonance imaging of the human brain. Engineering Reports, 2019, 1, e12063.	0.9	1
7	The transjugular approach is a safe and effective alternative for performing portal vein embolization. Medicine (United States), 2019, 98, e17851.	0.4	1
8	Using Artificial Intelligence to Manage Thrombosis Research, Diagnosis, and Clinical Management. Seminars in Thrombosis and Hemostasis, 2020, 46, 410-418.	1.5	9
9	CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. European Radiology, 2020, 30, 976-986.	2.3	108
10	Deep Learning for Quantitative Cardiac MRI. American Journal of Roentgenology, 2020, 214, 529-535.	1.0	20
11	A Practical Guide to Artificial Intelligence–Based Image Analysis in Radiology. Investigative Radiology, 2020, 55, 1-7.	3.5	38
12	Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging. European Radiology, 2021, 31, 4960-4971.	2.3	35
14	A descriptive framework for the field of deep learning applications in medical images. Knowledge-Based Systems, 2020, 210, 106445.	4.0	23
15	CMR in the diagnosis of ischemic heart disease. Radiologia Medica, 2020, 125, 1114-1123.	4.7	13
16	Detection and Severity Assessment of Peripheral Occlusive Artery Disease via Deep Learning Analysis of Arterial Pulse Waveforms: Proof-of-Concept and Potential Challenges. Frontiers in Bioengineering and Biotechnology, 2020, 8, 720.	2.0	13
17	Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. Journal of Magnetic Resonance Imaging, 2020, 52, 1745-1752.	1.9	35
18	Strain maps of the left atrium imaged with a novel high-resolution CINE MRI protocol. , 2020, 2020, 1178-1181.		2
19	Applying Artificial Intelligence to Mitigate Effects of Patient Motion or Other Complicating Factors on Image Quality, Topics in Magnetic Resonance Imaging, 2020, 29, 175-180	0.7	19

#	Article	IF	CITATIONS
20	Artificial intelligence in cardiac radiology. Radiologia Medica, 2020, 125, 1186-1199.	4.7	54
21	Artificial Intelligence and Texture Analysis in Cardiac Imaging. Current Cardiology Reports, 2020, 22, 131.	1.3	20
22	Artificial intelligence in the pharmaceutical sector: current scene and future prospect. , 2020, , 73-107.		16
23	Cardiac MRI—Update 2020. Der Radiologe, 2020, 60, 33-40.	1.7	22
24	CMR publications from China of the last more than 30 years. International Journal of Cardiovascular Imaging, 2020, 36, 1737-1747.	0.7	2
25	Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Radiology, 2020, 296, 216-224.	3.6	82
26	Machine Learning-Based Segmentation of Left Ventricular Myocardial Fibrosis from Magnetic Resonance Imaging. Current Cardiology Reports, 2020, 22, 65.	1.3	8
27	Contrast agent-free synthesis and segmentation of ischemic heart disease images using progressive sequential causal GANs. Medical Image Analysis, 2020, 62, 101668.	7.0	39
28	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	3.6	473
29	Prevalence and associated factors of influenza vaccination coverage in Korean adults with cardiovascular disease. Medicine (United States), 2020, 99, e18540.	0.4	6
30	Development and application of artificial intelligence in cardiac imaging. British Journal of Radiology, 2020, 93, 20190812.	1.0	35
31	Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, 2021, , .	0.7	13
33	Big data and new information technology: what cardiologists need to know. Revista Espanola De Cardiologia (English Ed), 2021, 74, 81-89.	0.4	6
34	Integration of artificial intelligence into clinical patient management: focus on cardiac imaging. Revista Espanola De Cardiologia (English Ed), 2021, 74, 72-80.	0.4	7
35	Steps to use artificial intelligence in echocardiography. Journal of Echocardiography, 2021, 19, 21-27.	0.4	35
36	Improving cardiotoxicity prediction in cancer treatment: integration of conventional circulating biomarkers and novel exploratory tools. Archives of Toxicology, 2021, 95, 791-805.	1.9	4
37	Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. European Radiology, 2021, 31, 3931-3940.	2.3	24
38	Multimodality cardiac imaging in the 21st century: evolution, advances and future opportunities for innovation. British Journal of Radiology, 2021, 94, 20200780.	1.0	14

#	Article	IF	CITATIONS
39	Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network. European Radiology, 2021, 31, 3815-3825.	2.3	27
40	A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images. Mathematical Biosciences and Engineering, 2021, 18, 6978-3994.	1.0	11
42	La integración de la inteligencia artificial en elÂabordaje clÃnico del paciente: enfoque en la imagen cardiaca. Revista Espanola De Cardiologia, 2021, 74, 72-80.	0.6	13
43	Applications of artificial intelligence in cardiovascular imaging. Nature Reviews Cardiology, 2021, 18, 600-609.	6.1	74
44	Potential Role of Artificial Intelligence in Cardiac Magnetic Resonance Imaging. Journal of Thoracic Imaging, 2021, 36, 142-148.	0.8	21
45	SAUN: Stack attention Uâ€Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. Medical Physics, 2021, 48, 1750-1763.	1.6	15
46	Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence. European Radiology Experimental, 2021, 5, 12.	1.7	13
47	Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability. Computers in Biology and Medicine, 2021, 130, 104200.	3.9	22
49	Validation of a deep-learning semantic segmentation approach to fully automate MRI-based left-ventricular deformation analysis in cardiotoxicity. British Journal of Radiology, 2021, 94, 20201101.	1.0	2
50	Recent advances in medical image processing for the evaluation of chronic kidney disease. Medical Image Analysis, 2021, 69, 101960.	7.0	52
51	Parametric-based feature selection via spherical harmonic coefficients for the left ventricle myocardial infarction screening. Medical and Biological Engineering and Computing, 2021, 59, 1261-1283.	1.6	5
52	A deep-learning semantic segmentation approach to fully automated MRI-based left-ventricular deformation analysis in cardiotoxicity. Magnetic Resonance Imaging, 2021, 78, 127-139.	1.0	13
53	Weakly-Supervised teacher-Student network for liver tumor segmentation from non-enhanced images. Medical Image Analysis, 2021, 70, 102005.	7.0	28
54	Segmental strain analysis for the detection of chronic ischemic scars in non-contrast cardiac MRI cine images. Scientific Reports, 2021, 11, 12376.	1.6	13
55	Recent advances in artificial intelligence for cardiac imaging. Computerized Medical Imaging and Graphics, 2021, 90, 101928.	3.5	5
56	How to standardize the measurement of left ventricular ejection fraction. Journal of Medical Ultrasonics (2001), 2022, 49, 35-43.	0.6	10
58	Myocardial area at risk and salvage in reperfused acute MI measured by texture analysis of cardiac T2 mapping and its prediction value of functional recovery in the convalescent stage. International Journal of Cardiovascular Imaging, 2021, 37, 3549-3560.	0.7	3
59	Myocardial Infarction Quantification from Late Gadolinium Enhancement MRI Using Top-Hat Transforms and Neural Networks. Algorithms, 2021, 14, 249.	1.2	9

#	Article	IF	CITATIONS
60	Recent Advances in Fibrosis and Scar Segmentation From Cardiac MRI: A State-of-the-Art Review and Future Perspectives. Frontiers in Physiology, 2021, 12, 709230.	1.3	28
61	Artificial Intelligence in Computer Vision: Cardiac MRI and Multimodality Imaging Segmentation. Current Cardiovascular Risk Reports, 2021, 15, 1.	0.8	7
62	Use of Longitudinal Strain Bull's-Eye Plot by Speckle Tracking Echocardiography for Evaluation of Homozygous Familial Hypercholesterolemia with Myocardial Ischemia. Journal of Medical Imaging and Health Informatics, 2021, 11, 2274-2279.	0.2	0
63	Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction. European Journal of Radiology, 2021, 141, 109817.	1.2	10
64	DeepStrain: A Deep Learning Workflow for the Automated Characterization of Cardiac Mechanics. Frontiers in Cardiovascular Medicine, 2021, 8, 730316.	1.1	15
65	Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management. Frontiers in Cardiovascular Medicine, 2021, 8, 736223.	1.1	8
66	Deep learning for diagnosing osteonecrosis of the femoral head based on magnetic resonance imaging. Computer Methods and Programs in Biomedicine, 2021, 208, 106229.	2.6	18
67	Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information Fusion, 2022, 77, 29-52.	11.7	280
68	Magnetic resonance imaging and artificial intelligence. , 2021, , 241-253.		0
69	Direct Quantification for Coronary Artery Stenosis Using Multiview Learning. Lecture Notes in Computer Science, 2019, , 449-457.	1.0	9
70	Discriminative Consistent Domain Generation for Semi-supervised Learning. Lecture Notes in Computer Science, 2019, , 595-604.	1.0	9
71	Image-Based Cardiac Diagnosis With Machine Learning: A Review. Frontiers in Cardiovascular Medicine, 2020, 7, 1.	1.1	143
72	The Evolving Role of Artificial Intelligence in Cardiac Image Analysis. Canadian Journal of Cardiology, 2022, 38, 214-224.	0.8	8
73	Recurrent Aggregation Learning for Multi-view Echocardiographic Sequences Segmentation. Lecture Notes in Computer Science, 2019, , 678-686.	1.0	10
74	A Practical Method for Early Diagnosis of Heart Diseases via Deep Neural Network. Studies in Computational Intelligence, 2021, , 95-106.	0.7	0
75	A Novel Approach Based on Spatio-temporal Features and Random Forest for Scar Detection using Cine Cardiac Magnetic Resonance Images. , 0, , .		0
76	Identification of Enlargement of the Ventricular System of the Brain Using Machine Learning. Bio-Medical Engineering, 2021, 55, 297-301.	0.3	0
77	Comprehensive enhanced methodology of an MRI-based automated left-ventricular chamber quantification algorithm and validation in chemotherapy-related cardiotoxicity. Journal of Medical Imaging, 2020, 7, 064002.	0.8	0

#	Article	IF	CITATIONS
78	Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network. Journal of Biomechanics, 2022, 130, 110878.	0.9	4
79	A digital cardiac disease biomarker from a generative progressive cardiac cine-MRI representation. Biomedical Engineering Letters, 2022, 12, 75-84.	2.1	0
80	Prospects for cardiovascular medicine using artificial intelligence. Journal of Cardiology, 2022, 79, 319-325.	0.8	6
81	Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Computers in Biology and Medicine, 2022, 141, 105145.	3.9	35
82	Myocardial Infarction Segmentation in Late Gadolinium Enhanced MRI Images using Data Augmentation and Chaining Multiple U-Net. , 2020, , .		3
83	Artificial Intelligence Advances in the World of Cardiovascular Imaging. Healthcare (Switzerland), 2022, 10, 154.	1.0	11
84	Radiomics in Cardiovascular Disease Imaging: from Pixels to the Heart of the Problem. Current Cardiovascular Imaging Reports, 2022, 15, 11-21.	0.4	12
85	Generative Adversarial Network Powered Fast Magnetic Resonance Imaging—Comparative Study and New Perspectives. Intelligent Systems Reference Library, 2022, , 305-339.	1.0	5
86	Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network. Diagnostics, 2022, 12, 414.	1.3	9
87	Automated detection scheme for acute myocardial infarction using convolutional neural network and long short-term memory. PLoS ONE, 2022, 17, e0264002.	1.1	9
88	Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease. Scientific Reports, 2022, 12, 3551.	1.6	31
89	Development of deep learning pipeline for direct observation of wall motion abnormality from 4DCT. , 2022, , .		0
90	Cardiac Disease Representation Conditioned by Spatio-temporal Priors in Cine-MRI Sequences Using Generative Embedding Vectors. , 2021, 2021, 5570-5573.		0
91	Radiogenomics and Artificial Intelligence Approaches Applied to Cardiac Computed Tomography Angiography and Cardiac Magnetic Resonance for Precision Medicine in Coronary Heart Disease: A Systematic Review. Circulation: Cardiovascular Imaging, 2021, 14, 1133-1146.	1.3	21
94	Segmental strain for scar detection in acute myocardial infarcts and in follow-up exams using non-contrast CMR cine sequences. BMC Cardiovascular Disorders, 2022, 22, 226.	0.7	6
95	The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance—A Comprehensive Review. Journal of Clinical Medicine, 2022, 11, 2866.	1.0	9
96	Should AI-Enabled Medical Devices be Explainable?. SSRN Electronic Journal, 0, , .	0.4	0
97	Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2022, 24, .	1.6	9

#	Article	IF	Citations
98	Predicting post-contrast information from contrast agent free cardiac MRI using machine learning: Challenges and methods. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
99	Artificial Intelligence and Cardiovascular Magnetic Resonance Imaging in Myocardial Infarction Patients. Current Problems in Cardiology, 2022, 47, 101330.	1.1	1
100	Detection of left ventricular wall motion abnormalities from volume rendering of 4DCT cardiac angiograms using deep learning. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
102	Detection of Left Ventricular Cavity from Cardiac MRI Images Using Faster R-CNN. Computers, Materials and Continua, 2023, 74, 1819-1835.	1.5	0
103	Cardiovascular Imaging in China. Journal of Thoracic Imaging, 0, Publish Ahead of Print, .	0.8	2
104	Cardiac biomarkers and detection methods for myocardial infarction. Molecular and Cellular Toxicology, 2022, 18, 443-455.	0.8	7
105	Application of Al in cardiovascular multimodality imaging. Heliyon, 2022, 8, e10872.	1.4	11
106	Using artificial intelligence in the development of diagnostic models of coronary artery disease with imaging markers: A scoping review. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
107	Cardiothoracic Imaging in China. Journal of Thoracic Imaging, 2022, 37, 353-354.	0.8	0
108	BMAnet: Boundary Mining With Adversarial Learning for Semi-Supervised 2D Myocardial Infarction Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 87-96.	3.9	14
109	Multi-Objective Butterfly Optimization for Feature and classifier parameter's selection in Diagnosis of Heart Failure types Using CMR images. , 2022, , .		1
110	Identification of fibrosis in hypertrophic cardiomyopathy: a radiomic study on cardiac magnetic resonance cine imaging. European Radiology, 2023, 33, 2301-2311.	2.3	5
111	Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	5
112	Deep learning-based age estimation from chest X-rays indicates cardiovascular prognosis. Communications Medicine, 2022, 2, .	1.9	11
114	Artificial Intelligence in Cardiovascular CT and MR Imaging. Life, 2023, 13, 507.	1.1	6
115	Cardiovascular Imaging using Machine Learning: A Review. International Journal of Recent Technology and Engineering, 2023, 11, 39-49.	0.2	0
116	Cardiac MRI: State of the Art. Radiology, 2023, 307, .	3.6	15
128	Artificial intelligence in cardiac MRI. , 2024, , 191-199.		1

#	Article	IF	CITATIONS
129	Gadolinium-Free Cardiac MRI Myocardial Scar Detection byÂ4D Convolution Factorization. Lecture Notes in Computer Science, 2023, , 639-648.	1.0	0
130	Multi-objective Point Cloud Autoencoders forÂExplainable Myocardial Infarction Prediction. Lecture Notes in Computer Science, 2023, , 532-542.	1.0	1
134	3D Shape-Based Myocardial Infarction Prediction Using Point Cloud Classification Networks. , 2023, , .		2
142	Detection Myocardial Infarction with Deep Learning Algorithms Using MRI Data. , 2023, , .		0