Daily and annual courses of natural atmospheric radioa

Journal of Geophysical Research 64, 521-526 DOI: 10.1029/jz064i005p00521

Citation Report

#	Article	IF	CITATIONS
1	Atmospheric diffusion and natural radon. Journal of Geophysical Research, 1959, 64, 2468-2468.	3.3	11
2	The effect of meteorological variables upon the vertical and temporal distributions of atmospheric radon. Journal of Geophysical Research, 1960, 65, 1223-1238.	3.3	91
3	Radon flux at the Earth-air interface. Journal of Geophysical Research, 1960, 65, 3367-3370.	3.3	39
4	Atmospheric radioactivity in South America and Antarctica. Journal of Geophysical Research, 1960, 65, 3999-4005.	3.3	17
5	3 Atmospheric radioactivity. International Geophysics, 1963, 4, 209-288.	0.6	1
6	Radon Concentration in Different Environments and the Factors Influencing it. Physics in Medicine and Biology, 1965, 10, 505-514.	3.0	7
7	The diurnal oscillations of radon and thoron and their decay products. Journal of Geophysical Research, 1966, 71, 3357-3367.	3.3	23
8	Meteorological influences on the thoron (Rn220) content of the atmosphere. Tellus, 2022, 18, 633.	0.8	6
9	Results of continuous measurements of radon and its decay products in the lower atmosphere. Tellus, 2022, 18, 639.	0.8	3
10	Meteorological influences on the thoron (Rn ²²⁰) content of the atmosphere. Tellus, 1966, 18, 633-637.	0.8	7
11	Results of continuous measurements of radon and its decay products in the lower atmosphere. Tellus, 1966, 18, 638-642.	0.8	23
12	Temporal and spatial variations of the concentration of the short-lived decay products of radon in the lower atmosphere. Tellus, 1966, 18, 663-671.	0.8	16
13	Urban-rural climatology of atmospheric radon concentrations. Journal of Geophysical Research, 1968, 73, 1155-1166.	3.3	21
14	Natural and artificial radioactivity of the air in Ghent (Belgium). Atmospheric Environment, 1969, 3, 633-641.	1.0	0
15	Simultaneous measurements of radon (Rn ²²²) and thoron (Rn ²²⁰) in the atmospheric surface layer. Tellus, 1973, 25, 281-290.	0.8	12
16	On the natural β-activity of the air in the atmospheric surface layer. Atmospheric Environment, 1973, 7, 1127-1137.	1.0	13
17	Diurnal variations of radon and meteorological variables near the ground. Boundary-Layer Meteorology, 1974, 7, 185-198.	2.3	16
18	Measurements of the natural β-activity and the atmospheric polar conductivity in the atmospheric surface layer. Atmospheric Environment, 1975, 9, 121-129.	1.0	4

ATION REPO

CITATION REPORT

#	Article	IF	CITATIONS
19	Absolute estimation of radon daughter concentrations in air by α-spectrometry. Nuclear Instruments & Methods, 1978, 148, 187-194.	1.2	3
20	Radon: Characteristics, natural occurrence, technological enhancement, and health effects. Progress in Nuclear Energy, 1979, 4, 1-24.	2.9	13
21	Variations in radon 222 daughter concentrations in surface air with atmospheric stability. Journal of Geophysical Research, 1987, 92, 1041-1043.	3.3	28
22	Chapter 6 Radon in the A Tmosphere. Studies in Environmental Science, 1990, 40, 59-70.	0.0	0
23	Radon-222 as a test of convective transport in a general circulation model. Tellus, Series B: Chemical and Physical Meteorology, 1990, 42, 118-134.	1.6	68
24	Seasonal variation of radon daughters in outdoor air in Montreal. Water, Air, and Soil Pollution, 1990, 51, 133-138.	2.4	4
25	Diurnal variation in the undisturbed continental aerosol: Results from a measurement program in Arizona. Atmospheric Research, 1990, 25, 351-362.	4.1	14
26	Airborne measurements of atmospheric electrical conductivities. Pure and Applied Geophysics, 1994, 143, 713-727.	1.9	2
27	Properties and behaviour of radon and thoron and their decay products in the air. Journal of Aerosol Science, 1994, 25, 219-263.	3.8	409
28	Atmospheric electrical conductivity variations over different environments. Geophysical Journal International, 1995, 122, 89-96.	2.4	8
29	Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm. Journal of Geophysical Research, 1996, 101, 6871-6881.	3.3	100
30	The spatial and temporal variations of atmospheric 212Pb concentrations. Environment International, 1996, 22, 215-220.	10.0	6
31	Average daily and annual courses of222Rn concentration in some natural medium. Journal of Radioanalytical and Nuclear Chemistry, 1996, 209, 315-323.	1.5	8
32	A tropospheric chemical-transport model: Development and validation of the model transport schemes. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 1747-1783.	2.7	82
33	Temporal dynamics of airborne lead-210 in Missouri (USA): implications for geochronological methods. Environmental Geology, 1999, 38, 343-348.	1.2	11
34	Comparative temporal behavior of radon- and thoron-progeny in surface air over the midwestern U.S Journal of Radioanalytical and Nuclear Chemistry, 1999, 242, 761-767.	1.5	11
35	Analysis of Gamma-Ray Dose Rate Measured Continuously with an Nal (Tl) Scintillation Counter Japanese Journal of Health Physics, 2000, 35, 187-192.	0.1	2
36	Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 250.	1.6	14

CITATION REPORT

#	ARTICLE	IF	CITATIONS
37	ATTILA: atmospheric tracer transport in a Lagrangian model. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 278-299.	1.6	60
38	Radon global simulations with the multiscale chemistry and transport model MOCAGE. Tellus, Series B: Chemical and Physical Meteorology, 2022, 56, 339.	1.6	109
39	Radon Effects in Ground Gamma-ray Spectrometric Surveys. Exploration Geophysics, 2004, 35, 312-318.	1.1	9
40	Evaluation of archived and off-line diagnosed vertical diffusion coefficients from ERA-40 with ²²² Rn simulations. Atmospheric Chemistry and Physics, 2004, 4, 2313-2336.	4.9	18
41	Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions. Atmospheric Chemistry and Physics, 2011, 11, 7817-7838.	4.9	73
42	Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection. Atmospheric Chemistry and Physics, 2013, 13, 1093-1114.	4.9	27
43	Diurnal and seasonal variations of radon (222Rn) and their dependence on soil moisture and vertical stability of the lower atmosphere at Pune, India. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 195, 105118.	1.6	18
44	Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport. Atmospheric Chemistry and Physics, 2021, 21, 1861-1887.	4.9	25
45	Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 250-268.	1.6	37
46	Radon global simulations with the multiscale chemistry and transport model MOCAGE. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 339-356.	1.6	92
47	Temporal and spatial variations of the concentration of the short-lived decay products of radon in the lower atmosphere. Tellus, 2022, 18, 663.	0.8	19
48	Simultaneous measurements of radon (Rn222) and thoron (Rn220) in the atmospheric surface layer. Tellus, 1973, 25, 281-290.	0.8	7
49	ATTILA: atmospheric tracer transport in a Lagrangian model. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 278.	1.6	44
52	History of Radon Research. Japanese Journal of Health Physics, 2023, 57, 161-171.	0.1	ο