Electrocaloric Cooling Materials and Devices for Zero-G High-Efficiency Refrigeration

Joule

3, 1200-1225

DOI: 10.1016/j.joule.2019.03.021

Citation Report

#	Article	IF	CITATIONS
1	Sm-doping induced large enhancement of antiferroelectric and energy storage performances of (111) oriented PbZrO3 thin films. Ceramics International, 2019, 45, 23586-23591.	2.3	26
2	Structural Design and Kinematics Analysis of a Multi-legged Wall-climbing Robot. , 2019, , .		0
3	Electrocaloric Effect with Variations of Diffusivity in Relaxor Ferroelectric Materials. Journal of Electronic Materials, 2019, 48, 7595-7602.	1.0	5
4	The Fabrication and Electrocaloric Effect of Bimodal-Grain Structure (Ba0.60Sr0.40)TiO3 Using the Induced Abnormal Grain Growth Method. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012138.	0.3	4
5	Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. Journal of Materials Chemistry A, 2019, 7, 25526-25536.	5.2	63
6	Large electrocaloric response over a broad temperature range near room temperature in BaxSr1â^'xTiO3 single crystals. Journal of Applied Physics, 2019, 126, .	1.1	10
7	Thermal control elements for caloric energy conversion. Renewable and Sustainable Energy Reviews, 2020, 118, 109571.	8.2	55
8	Tuning the electrocaloric effect in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by relaxor phase blending. Ceramics International, 2020, 46, 4454-4461.	2.3	7
9	High fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy. Nano Energy, 2020, 67, 104203.	8.2	30
10	Selfâ€Healing of Electrical Damage in Polymers. Advanced Science, 2020, 7, 2002131.	5.6	46
11	Electrocaloric effect in relaxor ferroelectric polymer nanocomposites for solid-state cooling. Journal of Materials Chemistry A, 2020, 8, 16814-16830.	5.2	20
12	The strong electrocaloric effect in molecular ferroelectric ImClO ₄ with ultrahigh electrocaloric strength. Journal of Materials Chemistry A, 2020, 8, 16189-16194.	5.2	23
13	Pb(Fe _{0.5} Nb _{0.5})O ₃ –BiFeO ₃ -based multicalorics with room-temperature ferroic anomalies. Journal of Materials Chemistry C, 2020, 8, 11282-11291.	2.7	5
14	Soft Perovskite-Type Antiferroelectric with Giant Electrocaloric Strength near Room Temperature. Journal of the American Chemical Society, 2020, 142, 20744-20751.	6.6	37
15	Electrocaloric devices part II: All-solid heat pump without moving parts. Journal of Advanced Dielectrics, 2020, 10, 2050029.	1.5	8
16	Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InformaÄnÃ-Materiály, 2020, 2, 1163-1190.	8.5	112
17	A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5, 996-1002.	19.8	103
18	Electrocaloric properties of Sr and Sn doped BCZT lead-free ceramics. EPJ Applied Physics, 2020, 91, 20905.	0.3	4

ITATION REDO

#	Article	IF	CITATIONS
19	Comprehensive evaluation of electrocaloric effect and fatigue behavior in the 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 bulk relaxor ferroelectric ceramic. Journal of Applied Physics, 2020, 128, .	1.1	11
20	Electrocaloric Cooling: A Review of the Thermodynamic Cycles, Materials, Models, and Devices. Magnetochemistry, 2020, 6, 67.	1.0	28
21	Interfaceâ€Strengthened Polymer Nanocomposites with Reduced Dielectric Relaxation Exhibit High Energy Density at Elevated Temperatures Utilizing a Facile Dual Crosslinked Network. Small, 2020, 16, e2000714.	5.2	64
22	High electrocaloric effect in barium titanate-sodium niobate ceramics with core-shell grain assembly. Journal of Materiomics, 2020, 6, 618-627.	2.8	13
23	Ferroelectric nanocomposites: Influence of nanoparticle size distribution on electrocaloric conversion parameters. , 2020, , .		1
24	Toward a solid-state thermal diode for room-temperature magnetocaloric energy conversion. Journal of Applied Physics, 2020, 127, .	1.1	17
25	High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic. Ceramics International, 2020, 46, 23867-23876.	2.3	47
26	The Influence of the Distribution Function of Ferroelectric Nanoparticles Sizes on Their Electrocaloric and Pyroelectric Properties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2445-2453.	1.7	1
27	Large Electrocaloric Effect in (Bi _{0.5} Na _{0.5})TiO ₃ -Based Relaxor Ferroelectrics. ACS Applied Materials & Interfaces, 2020, 12, 33934-33940.	4.0	58
28	Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate. International Journal of Refrigeration, 2020, 115, 117-125.	1.8	32
29	Selfâ€Actuating Electrocaloric Cooling Fibers. Advanced Energy Materials, 2020, 10, 1903902.	10.2	19
30	Toward Multifunctional Electronics: Flexible NBT-Based Film with a Large Electrocaloric Effect and High Energy Storage Property. ACS Applied Materials & Interfaces, 2020, 12, 6082-6089.	4.0	42
31	Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure. Scripta Materialia, 2021, 193, 97-102.	2.6	16
32	Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics. Ceramics International, 2021, 47, 1101-1108.	2.3	24
33	Performance evaluation of secondary loop low-temperature heat pump system for frost prevention in electric vehicles. Applied Thermal Engineering, 2021, 182, 115615.	3.0	15
34	Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via Oneâ€6tep Molecular Engineering. Advanced Functional Materials, 2021, 31, .	7.8	21
35	Impact of hysteresis on caloric cooling performance. International Journal of Refrigeration, 2021, 121, 302-312.	1.8	15
36	Fabry–Perot resonance assisted dual-layer coating with enhanced wavelength-selective refection and emission for daytime radiative cooling. Optics Communications, 2021, 483, 126673.	1.0	8

#	Article	IF	CITATIONS
37	Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. Nano Energy, 2021, 81, 105611.	8.2	36
38	Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2021, 121, 279-288.	1.8	13
39	A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies. Energies, 2021, 14, 502.	1.6	19
40	Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Applied Physics Letters, 2021, 118, .	1.5	20
41	Large electrocaloric response with superior temperature stability in NaNbO ₃ -based relaxor ferroelectrics benefiting from the crossover region. Journal of Materials Chemistry A, 2021, 9, 2806-2814.	5.2	32
42	Fluxionality by quantum tunnelling: nonclassical 21-homododecahedryl cation rearrangement re-revisited. Chemical Communications, 2021, 57, 10735-10738.	2.2	1
43	Electrostatic Actuating Doubleâ€Unit Electrocaloric Cooling Device with High Efficiency. Advanced Energy Materials, 2021, 11, 2003771.	10.2	16
44	Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability, 2021, 8, 3.	1.3	21
45	Thermodynamic cycles and electrical charge recovery in high-efficiency electrocaloric cooling systems. International Journal of Refrigeration, 2021, 131, 970-979.	1.8	9
46	Multifunctional Cantilevers as Working Elements in Solid-State Cooling Devices. Actuators, 2021, 10, 58.	1.2	6
47	Electrocaloric effects in multiferroics. Physical Review B, 2021, 103, .	1.1	4
48	Advanced Thermoelectric Materials for Flexible Cooling Application. Advanced Functional Materials, 2021, 31, 2010695.	7.8	47
49	Electric-field-driven coexistence of positive and negative electrocaloric effects near room temperature for high-efficiency two-stage cooling. Applied Physics Letters, 2021, 118, .	1.5	12
50	Heat recovery design and test for the secondary loop heat pump MAC system. International Journal of Refrigeration, 2021, 123, 45-51.	1.8	3
51	Maxwell relation, giant (negative) electrocaloric effect, and polarization hysteresis. Applied Physics Letters, 2021, 118, .	1.5	18
52	Strain engineering on electrocaloric effect in PbTiO3 and BaTiO3. Advanced Composites and Hybrid Materials, 2021, 4, 1239-1247.	9.9	6
53	Electrocaloric cooling over high device temperature span. Joule, 2021, 5, 780-793.	11.7	32
54	A Review of a Good Binary Ferroelectric Ceramic: BaTiO ₃ –BiFeO ₃ . ACS Applied Electronic Materials, 2022, 4, 2109-2145.	2.0	40

#	Article	IF	CITATIONS
55	Ti-doping induced antiferroelectric to ferroelectric phase transition and electrical properties in Sm-PbZrO3 thin films. Current Applied Physics, 2021, 24, 12-18.	1.1	4
56	Thermo-hydraulic evaluation of oscillating-flow shell-and-tube-like regenerators for (elasto)caloric cooling. Applied Thermal Engineering, 2021, 190, 116842.	3.0	19
57	Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190, 116806.	3.0	12
58	Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications. Journal of the American Ceramic Society, 2021, 104, 3775-3810.	1.9	83
59	Electric field induced phase transitions and electrocaloric effect of La3+ doped Pb(Zr,Sn,Ti)O3 ceramics. Ceramics International, 2021, 47, 13939-13947.	2.3	8
60	Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration. Renewable and Sustainable Energy Reviews, 2021, 143, 110933.	8.2	23
61	Designed Giant Roomâ€Temperature Electrocaloric Effects in Metalâ€Free Organic Perovskite [MDABCO](NH ₄)I ₃ by Phase–Field Simulations. Advanced Functional Materials, 2021, 31, 2104393.	7.8	27
63	Roomâ€Temperature Symmetric Ciant Positive and Negative Electrocaloric Effect in PbMg _{0.5} W _{0.5} O ₃ Antiferroelectric Ceramic. Advanced Functional Materials, 2021, 31, 2101176.	7.8	22
64	Thermoelectric response as a tool to observe electrocaloric effect in a thin conducting ferroelectric SnSe flake. Physical Review B, 2021, 104, .	1.1	5
65	Polymerâ€∤Ceramicâ€based Dielectric Composites for Energy Storage and Conversion. Energy and Environmental Materials, 2022, 5, 486-514.	7.3	66
66	A Metal-Free Molecular Antiferroelectric Material Showing High Phase Transition Temperatures and Large Electrocaloric Effects. Journal of the American Chemical Society, 2021, 143, 14379-14385.	6.6	33
67	Electrocaloric effect in ferroelectric materials: From phase field to first-principles based effective Hamiltonian modeling. Materials Reports Energy, 2021, 1, 100050.	1.7	3
68	Electrocaloric Performance of Multilayer Ceramic Chips: Effect of Geometric Structure Induced Internal Stress. ACS Applied Materials & Interfaces, 2021, 13, 38508-38516.	4.0	2
69	Enhanced electrocaloric strengths at room temperature in (SrxBa1â^'x)(Sn0.05Ti0.95)O3 lead-free ceramics. Journal of Alloys and Compounds, 2021, 871, 159519.	2.8	27
70	Modelling of elastocaloric regenerators with enhanced heat transfer structures. International Journal of Heat and Mass Transfer, 2021, 176, 121372.	2.5	18
71	Coexistence of giant positive and large negative electrocaloric effects in lead-free ferroelectric thin film for continuous solid-state refrigeration. Nano Energy, 2021, 88, 106222.	8.2	13
72	Electrostatic Assembly of Laminated Transparent Piezoelectrets for Epidermal and Implantable Electronics. Nano Energy, 2021, 89, 106450.	8.2	28
73	Design of selectively multilayered periodic gratings by PSO algorithm for radiative cooling. Optics Communications, 2021, 500, 127323.	1.0	4

#	Article	IF	CITATIONS
74	Giant energy storage density in Ba, La co-doped PbHfO3-based antiferroelectric ceramics by a rolling process. Journal of Alloys and Compounds, 2021, 888, 161539.	2.8	17
75	Large electrocaloric strength in Bi(Mg0.5Ti0.5)O3-modified tetragonal-structured Bi0.5Na0.5TiO3–12.5BaTiO3 ceramics. Journal of Alloys and Compounds, 2021, 889, 161601.	2.8	2
76	Large electrocaloric and pyroelectric energy harvesting effect over a broad temperature range <i>via</i> modulating the relaxor behavior in non-relaxor ferroelectrics. Journal of Materials Chemistry A, 2021, 9, 22015-22024.	5.2	6
77	Electrocaloric refrigeration capacity in BNT-based ferroelectrics benefiting from low depolarization temperature and high breakdown electric field. Journal of Materials Chemistry A, 2021, 9, 12772-12781.	5.2	11
78	Decoding the relationship between the electrocaloric strength and phase structure in perovskite ferroelectrics towards high performance. Journal of Materials Chemistry C, 2021, 9, 2063-2072.	2.7	11
79	Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic. RSC Advances, 2021, 11, 9459-9468.	1.7	33
80	Energy Applications of Magnetocaloric Materials. Advanced Energy Materials, 2020, 10, 1903741.	10.2	291
81	A high-performance solid-state electrocaloric cooling system. Science, 2020, 370, 129-133.	6.0	130
82	Electrocaloric devices part I: Analytical solution of one-dimensional transient heat conduction in a multilayer electrocaloric system. Journal of Advanced Dielectrics, 2020, 10, 2050028.	1.5	9
83	Emergent Enhanced Electrocaloric Effect within Wide Temperature Span in Laminated Composite Ceramics. Advanced Functional Materials, 2022, 32, 2108182.	7.8	25
84	Negative Electrocaloric Effects in Antiferroelectric Materials: a Review. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 376.	0.6	2
85	Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 217801.	0.2	8
86	Broad Distribution of Local Polar States Generates Large Electrothermal Properties in Pb-Free Relaxor Ferroelectrics. Chemistry of Materials, 0, , .	3.2	2
87	Achieving synergistic electromechanical and electrocaloric responses by local structural evolution in lead-free BNT-based relaxor ferroelectrics. Chemical Engineering Journal, 2022, 431, 133386.	6.6	13
88	Gate-tunable charge carrier electrocaloric effect in trilayer graphene. Scientific Reports, 2021, 11, 22000.	1.6	2
89	Improved Non-Piezoelectric Electric Properties Based on La Modulated Ferroelectric-Ergodic Relaxor Transition in (Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3 Ceramics. Materials, 2021, 14, 6666.	1.3	4
90	Electrocaloric Enhancement Induced by Cocrystallization of Vinylidene Difluoride-Based Polymer Blends. ACS Macro Letters, 2021, 10, 1555-1562.	2.3	5
91	High comprehensive electrocaloric performance in barium titanate-based ceramics via integrating diffuse phase transition near room temperature and a high applied electric field. Ceramics International, 2022, 48, 6842-6849.	2.3	4

#	ARTICLE	IF	CITATIONS
92	Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6, 258-268.	11.7	18
93	A compact elastocaloric refrigerator. Innovation(China), 2022, 3, 100205.	5.2	27
94	Enhancement of the electrocaloric effect in PbZr0.7Ti0.3O3 ceramics via La doping: Driven by phase co-existence or defect effects?. Acta Materialia, 2022, 225, 117559.	3.8	3
95	Eco-friendly cooling materials with synergistic behavior of electromechanical and electrocaloric effects based on constructing B-site defect field. Applied Materials Today, 2022, 26, 101332.	2.3	2
96	Electrocaloric Coolers: A Review. Advanced Electronic Materials, 2022, 8, .	2.6	39
97	Electrocaloric effects in ferroelectric polymers. , 2022, , 535-570.		3
98	Understanding electrocaloric cooling of ferroelectrics guided by phaseâ€field modeling. Journal of the American Ceramic Society, 2022, 105, 3689-3714.	1.9	17
99	Understanding the enhanced electrocaloric effect in BaTiO3-based ferroelectrics at critical state. Acta Materialia, 2022, 227, 117735.	3.8	16
100	Intelligent self-actuating lead-free cooling ceramics based on A-site defect engineering. Acta Materialia, 2022, 227, 117750.	3.8	17
101	Harmonic Analysis of Temperature Profiles of Active Caloric Regenerato. SSRN Electronic Journal, 0, ,	0.4	0
102	Double bond with a licence to chill. Joule, 2022, 6, 289-290.	11.7	3
103	Large electrocaloric response via percolation of polar nanoregions. Physical Review B, 2022, 105, .	1.1	2
104	Large Room-Temperature Electrocaloric Response Realized in Potassium-Sodium Niobate by a Relaxor Enhancement Effect and Multilayer Ceramic Construct. ACS Applied Materials & Interfaces, 2022, 14, 11626-11635.	4.0	13
105	Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration. Frontiers in Energy, 2022, 16, 19-22.	1.2	6
106	Materials, physics and systems for multicaloric cooling. Nature Reviews Materials, 2022, 7, 633-652.	23.3	89
107	Electric field dependence of electrocaloric performances in KTa0.57Nb0.43O3 single crystal. Journal of Materials Science: Materials in Electronics, 2022, 33, 10939-10954.	1.1	2
108	The electrocaloric effect of Ba1-La Ti0.9Sn0.1O3 ceramics with excellent temperature stability near room temperature. Ceramics International, 2022, 48, 16956-16966.	2.3	4
109	Performance optimization on the irreversible regenerative Ericsson refrigeration cycle using electrocaloric materials as the working medium. International Journal of Refrigeration, 2022, , .	1.8	0

#	Article	IF	CITATIONS
110	Driving Barocaloric Effects in a Molecular Spin-Crossover Complex at Low Pressures. Journal of the American Chemical Society, 2022, 144, 6493-6503.	6.6	23
111	Enhanced Electrocaloric Effect Induced by the Electric-Field-Generated Like-Multiphase Coexistence in Anisotropic KTa _{1–<i>x</i>} Nb _{<i>x</i>} O ₃ Single Crystals. Crystal Growth and Design, 2022, 22, 3485-3492.	1.4	3
112	Pure negative electrocaloric effect achieved by SiN/p-GaN composite substrate. Nano Energy, 2022, 97, 107195.	8.2	6
113	Pressure-induced room temperature electrocaloric effect in BiFeO3-PbTiO3 solid solution based on Landau-Devonshire theory. Materials Today Communications, 2022, 31, 103396.	0.9	2
114	Harmonic analysis of temperature profiles of active caloric regenerators. International Journal of Heat and Mass Transfer, 2022, 190, 122694.	2.5	2
115	High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600, 664-669.	13.7	121
116	Phase transitions and electrocaloric effects of (111)-oriented K _{0.5} Na _{0.5} NbO ₃ epitaxial films: effect of external stress and misfit strains. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
117	Novel Fluorite‣tructured Materials for Solid‣tate Refrigeration. Small, 2022, 18, e2200133.	5.2	2
118	Enhancing Electrocaloric Heat Pump Performance by Over 99% Efficient Power Converters and Offset Fields. IEEE Access, 2022, 10, 46571-46588.	2.6	7
119	Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nature Communications, 2022, 13, 2293.	5.8	23
120	Tuning the electrocaloric effect by tailoring phase fraction in BaTiO3-based ferroelectrics. Journal of the European Ceramic Society, 2022, 42, 5172-5178.	2.8	8
121	Lattice disorder effect on the structural, ferroelectric and electrocaloric properties of (Ba, Sr,) Tj ETQq1 1 0.78431	.4.rgBT /O	verlock 10 T
122	Electric hysteresis and validity of indirect electrocaloric characterization in antiferroelectric ceramics. Scripta Materialia, 2022, 216, 114763.	2.6	5
123	High radiation tolerance of electrocaloric (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3. Journal of the European Ceramic Society, 2022, 42, 5575-5583.	2.8	4
124	Enhanced electrocaloric effect and energy storage response in lead-free (1-x)K0.5Na0.5NbO3 - xBaTiO3 ferroelectric ceramics. Ceramics International, 2022, 48, 27018-27026.	2.3	5
125	Electrocaloric response modulated by misfit strain in different oriented epitaxial ferroelectric thin films. International Journal of Solids and Structures, 2022, 252, 111808.	1.3	5
126	Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. Nano-Micro Letters, 2022, 14, .	14.4	47
127	Ferroelectric Smectic Liquid Crystals as Electrocaloric Materials. Crystals, 2022, 12, 809.	1.0	1

#	Article	IF	CITATIONS
128	Influence of voltage amplitude parameters on the electrocaloric response in ferroelectric materials. Ferroelectrics, 2022, 591, 43-50.	0.3	0
129	Designing Ultrafast Cooling Rate for Room Temperature Electrocaloric Effects by Phaseâ€Field Simulations. Advanced Theory and Simulations, 2022, 5, .	1.3	4
130	Fully self-powered electrocaloric cooling/heating with triboelectric nanogenerator. Nano Energy, 2022, 101, 107623.	8.2	4
131	Stabilization of the ferrielectric phase in NaNbO ₃ -based lead-free ceramics for a wide-temperature large electrocaloric effect. Journal of Materials Chemistry A, 2022, 10, 18070-18077.	5.2	8
132	Giant Room-Temperature Electrocaloric Effect of Polymer-Ceramic Composites with Orientated BaSrTiO ₃ Nanofibers. Nano Letters, 2022, 22, 6560-6566.	4.5	13
133	Bimodal-Structured 0.9KNbO3-0.1BaTiO3 Solid Solutions with Highly Enhanced Electrocaloric Effect at Room Temperature. Nanomaterials, 2022, 12, 2674.	1.9	0
134	Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nature Communications, 2022, 13, .	5.8	49
135	Microâ€Nano Porous Structure for Efficient Daytime Radiative Sky Cooling. Advanced Functional Materials, 2022, 32, .	7.8	37
136	Electrocaloric Heat Pumps Using Two Independently-Controlled Layers to Achieve High Cooling Power. SSRN Electronic Journal, 0, , .	0.4	0
137	Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
138	High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule, 2022, 6, 2338-2357.	11.7	33
139	Giant room-temperature electrocaloric effect within wide temperature span in Sn-doped Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free thin films. Ceramics International, 2023, 49, 1846-1854.	2.3	5
140	Enhanced electrocaloric performance within wide temperature span in Al-doped BaZr0.2Ti0.8O3 ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 24986-24994.	1.1	3
141	Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nature Communications, 2022, 13, .	5.8	36
142	Sustainability performance of space-cooling technologies and approaches. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 9017-9042.	1.2	7
143	Polymer nanocomposite dielectrics with high electrocaloric effect for flexible solid-state cooling devices. Journal of Central South University, 2022, 29, 2857-2872.	1.2	0
144	Analysis of the electric field dependence on the electrocaloric properties on BaHf0.11Ti0.89O3 ferroelectric ceramics. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
145	Electrocaloric Effect in Different Oriented BaZr0.15Ti0.85O3 Single Crystals. Materials, 2022, 15, 7018.	1.3	0

#	Article	IF	CITATIONS
146	Emerging materials and engineering strategies for performance advance of radiative sky cooling technology. Chemical Engineering Journal, 2023, 453, 139739.	6.6	17
147	The impact of oxygen partial pressure during sintering on the electrocaloric effect of Ba _{0.7} Sr _{0.3} TiO ₃ ceramics. Journal of Materials Chemistry C, 2022, 10, 16847-16856.	2.7	1
148	Field-driven merging of polarizations and enhanced electrocaloric effect in BaTiO3-based lead-free ceramics. Journal of Advanced Ceramics, 2022, 11, 1777-1788.	8.9	10
149	Polymer elastomer near plastic-to-rubber critical transition produces enhanced elastocaloric effects. Cell Reports Physical Science, 2022, 3, 101147.	2.8	2
150	Electrocaloric heat pumps using two independently-controlled layers to achieve high cooling power. Nano Energy, 2022, 104, 107984.	8.2	2
151	Electrocaloric effect at special points in the composition-temperature-electric field phase diagram of barium zirconate-titanate (BZT). Journal of the European Ceramic Society, 2023, 43, 1952-1963.	2.8	5
152	Inverse electrocaloric effect in ferroelectrics and antiferroelectrics: A phenomenological approach. Physica B: Condensed Matter, 2023, 651, 414598.	1.3	0
153	GaN Power Converter Applied to Electrocaloric Heat Pump Prototype and Carnot Cycle. , 2022, , .		2
154	Phase transformation and growth mechanism of RF sputtered ferroelectric lead scandium tantalate (PbSc _{0.5} Ta _{0.5} O ₃) films. Journal of the American Ceramic Society, 0, , .	1.9	1
155	Origin of negative electrocaloric effect in <i>Pnma</i> -type antiferroelectric perovskites. Physical Review B, 2022, 106, .	1.1	2
156	Simulation study on superposition expansion of belt electrocaloric refrigeration structure. Applied Thermal Engineering, 2023, 221, 119855.	3.0	1
157	Simultaneous enhancement of the electrocaloric effect and electrostrain via exploiting the reversible polarization rotation. Ceramics International, 2023, 49, 7094-7098.	2.3	1
158	A hot future for cool materials. Frontiers in Energy, 0, , .	1.2	1
159	Developing a prototype of a Not in Kind Heat Pump based on elastocaloric effect. , 2022, , .		0
160	Polymeric nanocomposites for electrocaloric refrigeration. Frontiers in Energy, 0, , .	1.2	1
161	Electrocaloric cooling—From materials to devices. Journal of Applied Physics, 2022, 132, .	1.1	5
162	An Active Pixelâ€Matrix Electrocaloric Device for Targeted and Differential Thermal Management. Advanced Materials, 0, , 2209181.	11.1	9
163	New horizons in magnetic refrigeration using artificial intelligence. Applied Energy, 2023, 335, 120773.	5.1	4

#	Article	lF	CITATIONS
164	Electrocaloric polymers and related materials. , 2023, , 245-263.		0
165	Effect of MgO doping on energy storage and electrocaloric properties of ferroelectric 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics. Materials Today Communications, 2023, 35, 105754.	0.9	3
166	A micro solid-state refrigeration prototype device based on the electrocaloric effect. Materials Letters, 2023, 341, 134263.	1.3	0
167	Correlation between multi-factor phase diagrams and complex electrocaloric behaviors in PNZST antiferroelectric ceramic system. Journal of Advanced Ceramics, 2023, 12, 463-473.	8.9	3
168	Direct measurement of electrocaloric effect based on multi-harmonic lock-in thermography. Applied Physics Letters, 2023, 122, 082903.	1.5	1
169	Antiferroelectric orthorhombic <i>P</i> -to- <i>R</i> phase transition induced exotic electrocaloric effect in NaNbO3-based lead-free ceramics. Applied Physics Letters, 2023, 122, .	1.5	4
170	Electrocaloric devices using cantilever structures. , 2023, , 379-405.		0
171	Electrocaloric effects in thin film structures. , 2023, , 225-244.		0
172	Analytical calculations of the electrocaloric response of ferroelectric nanoparticles. , 2023, , 37-62.		0
173	Flexible Pb(Zr0.52,Ti0.48)O3 thin film acoustic emission sensor for monitoring partial discharge in power cable. AIP Advances, 2023, 13, .	0.6	2
174	Multi-element B-site substituted perovskite ferroelectrics exhibit enhanced electrocaloric effect. Science China Technological Sciences, 0, , .	2.0	0
175	A self-actuated electrocaloric polymer heat pump design exploiting the synergy of electrocaloric effect and electrostriction. JPhys Energy, 2023, 5, 024009.	2.3	3
176	Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis, 2023, 66, 338-374.	1.3	6
177	High-entropy design for dielectric materials: Status, challenges, and beyond. Journal of Applied Physics, 2023, 133, .	1.1	5
178	Electrocaloric effect in BaTiO ₃ multilayer capacitors with first-order phase transitions. JPhys Energy, 2023, 5, 024017.	2.3	4
179	Thermodynamic Analysis on the Performance of Barocaloric Refrigeration Systems Using Neopentyl Glycol as the Refrigerant. Journal of Thermal Science, 2023, 32, 1063-1073.	0.9	5
187	Statistical Mechanical Model of the Giant Electrocaloric Effect in Ferroelectric Polymers. ACS Macro Letters, 0, , 848-853.	2.3	0
191	Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science, 2023, 380, .	6.0	30

#	Article	IF	CITATIONS
195	A review on different theoretical models of electrocaloric effect for refrigeration. Frontiers in Energy, 2023, 17, 478-503.	1.2	4
203	Real Time Control System for Installation and Maintenance of Refrigeration Equipment Based on Adaptive PID Algorithm. , 2023, , .		0
205	Low-pressure-induced large barocaloric effect in MnAs0.94Sb0.06 alloy around room temperature. Rare Metals, 2023, 42, 3977-3984.	3.6	2