Assessment of Coastal Aquaculture for India from Senti

Remote Sensing 11, 357 DOI: 10.3390/rs11030357

Citation Report

#	Article	IF	CITATIONS
1	Sea Surface-Visible Aquaculture Spatial-Temporal Distribution Remote Sensing: A Case Study in Liaoning Province, China from 2000 to 2018. Sustainability, 2019, 11, 7186.	3.2	24
2	Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture, 2020, 520, 734666.	3.5	76
3	Nation-Scale Mapping of Coastal Aquaculture Ponds with Sentinel-1 SAR Data Using Google Earth Engine. Remote Sensing, 2020, 12, 3086.	4.0	41
4	Contribution of Remote Sensing Technologies to a Holistic Coastal and Marine Environmental Management Framework: A Review. Remote Sensing, 2020, 12, 2313.	4.0	67
5	Fishpond Mapping by Spectral and Spatial-Based Filtering on Google Earth Engine: A Case Study in Singra Upazila of Bangladesh. Remote Sensing, 2020, 12, 2692.	4.0	17
6	Remote sensing of fish-processing in the Sundarbans Reserve Forest, Bangladesh: an insight into the modern slavery-environment nexus in the coastal fringe. Maritime Studies, 2020, 19, 429-444.	2.2	8
7	Pen Culture Detection Using Filter Tensor Analysis with Multi-Temporal Landsat Imagery. Remote Sensing, 2020, 12, 1018.	4.0	4
8	Satellite-based monitoring and statistics for raft and cage aquaculture in China's offshore waters. International Journal of Applied Earth Observation and Geoinformation, 2020, 91, 102118.	2.8	25
9	National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 11-25.	11.1	197
10	Hardware accelerated range Doppler algorithm for SAR data processing using Zynq processor. Circuit World, 2021, 47, 184-193.	0.9	0
11	Monitoring and predicting regional land use and land cover changes in an estuarine landscape of India. Environmental Monitoring and Assessment, 2021, 193, 124.	2.7	14
12	Urban objects detection from C-band synthetic aperture radar (SAR) satellite images through simulating filter properties. Scientific Reports, 2021, 11, 6241.	3.3	20
13	Tracking changes in aquaculture ponds on the China coast using 30Âyears of Landsat images. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102383.	2.8	23
14	Land-use dynamics associated with mangrove deforestation for aquaculture and the subsequent abandonment of ponds. Science of the Total Environment, 2021, 791, 148320.	8.0	16
15	Characterizing the Drivers of the Productivity and Greenhouse Gas Fluxes from the Aquaculture Ponds of Indian Sundarbans. Water Science and Technology Library, 2022, , 163-199.	0.3	1
16	Spatial Distribution of Ponds in the Indian Sundarbans Biosphere Reserve: Special Emphasis on Size-Class. Water Science and Technology Library, 2022, , 21-43.	0.3	0
17	Mapping Aquaculture Areas with Multi-Source Spectral and Texture Features: A Case Study in the Pearl River Basin (Guangdong), China. Remote Sensing, 2021, 13, 4320.	4.0	18
18	RCSANet: A Full Convolutional Network for Extracting Inland Aquaculture Ponds from High-Spatial-Resolution Images. Remote Sensing, 2021, 13, 92.	4.0	14

#	Article	IF	CITATIONS
19	Monitoring and Quantitative Human Risk Assessment of Municipal Solid Waste Landfill Using Integrated Satellite–UAV–Ground Survey Approach. Remote Sensing, 2021, 13, 4496.	4.0	5
20	Multitemporal Spatial Analysis of Land Use and Land Cover Changes in the Lower Jaguaribe Hydrographic Sub-Basin, CearÃį, Northeast Brazil. Land, 2022, 11, 103.	2.9	2
21	Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China. Remote Sensing, 2022, 14, 732.	4.0	9
22	From rice fields to brackish water farms: changing livelihoods in agrarian coastal Bengal, India. Asia-Pacific Journal of Regional Science, 2022, 6, 453-484.	2.1	1
24	Mapping of Greek Marine Finfish Farms and Their Potential Impact on the Marine Environment. Journal of Marine Science and Engineering, 2022, 10, 286.	2.6	3
25	A Multi-Data Geospatial Approach for Understanding Flood Risk in the Coastal Plains of Tamil Nadu, India. Earth, 2022, 3, 383-400.	2.2	11
26	Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google earth engine – the case study of Kolleru Lake, South India. Geocarto International, 2022, 37, 11173-11189.	3.5	12
27	Harnessing Machine Learning Techniques for Mapping Aquaculture Waterbodies in Bangladesh. Remote Sensing, 2021, 13, 4890.	4.0	7
28	Managing Flood Hazard in a Complex Cross-Border Region Using Sentinel-1 SAR and Sentinel-2 Optical Data: A Case Study from Prut River Basin (NE Romania). Remote Sensing, 2021, 13, 4934.	4.0	2
29	Mapping Aquaculture Ponds for the Coastal Zone of Asia with Sentinel-1 and Sentinel-2 Time Series. Remote Sensing, 2022, 14, 153.	4.0	27
30	Monitoring of Coastal Aquaculture Sites in the Philippines through Automated Time Series Analysis of Sentinel-1 SAR Images. Remote Sensing, 2022, 14, 2862.	4.0	9
31	Statistical analysis for determination of homogeneous reflectance regions in a coastal lagoon using satellite imagery and bathymetry survey. Journal of Applied Remote Sensing, 2022, 16, .	1.3	1
32	Research on Expansion Characteristics of Aquaculture Ponds and Variations in Ecosystem Service Value from the Perspective of Protecting Cultivated Lands: A Case Study of Liyang City, China. International Journal of Environmental Research and Public Health, 2022, 19, 8774.	2.6	2
33	Centennial-scale study on the spatial-temporal evolution of riparian wetlands in the Yangtze River of China. International Journal of Applied Earth Observation and Geoinformation, 2022, 113, 102874.	1.9	0
34	Application of deep learning models to detect coastlines and shorelines. Journal of Environmental Management, 2022, 320, 115732.	7.8	15
35	Performance of Sentinel-1 and 2 imagery in detecting aquaculture waterbodies in Bangladesh. Environmental Modelling and Software, 2022, 157, 105534.	4.5	0
36	Large-Scale Extraction and Mapping of Small Surface Water Bodies Based on Very High-Spatial-Resolution Satellite Images: A Case Study in Beijing, China. Water (Switzerland), 2022, 14, 2889.	2.7	4
37	Mapping Coastal Aquaculture Ponds of China Using Sentinel SAR Images in 2020 and Google Earth Engine. Remote Sensing, 2022, 14, 5372.	4.0	6

CITATION REPORT

#	Article	IF	CITATIONS
38	Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sensing of Environment, 2023, 284, 113347.	11.0	33
39	Precise Wetland Mapping in Southeast Asia for the Ramsar Strategic Plan 2016–24. Remote Sensing, 2022, 14, 5730.	4.0	0
40	Global mapping of the landside clustering of aquaculture ponds from dense time-series 10Âm Sentinel-2 images on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 2022, 115, 103100.	1.9	4
41	Coastal Aquaculture Area Extraction Based on Self-Attention Mechanism and Auxiliary Loss. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2250-2261.	4.9	2
42	Quantifying spatio-temporal variation in aquaculture production areas in Satkhira, Bangladesh using geospatial and social survey. PLoS ONE, 2022, 17, e0278042.	2.5	0
43	Coastal landscape classification using convolutional neural network and remote sensing data in Vietnam. Journal of Environmental Management, 2023, 335, 117537.	7.8	6
44	Policy-driven opposite changes of coastal aquaculture ponds between China and Vietnam: Evidence from Sentinel-1 images. Aquaculture, 2023, 571, 739474.	3.5	1
45	Tracking changes in coastal land cover in the Yellow Sea, East Asia, using Sentinel-1 and Sentinel-2 time-series images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196, 429-444.	11.1	8
46	Dynamic Mapping of Inland Freshwater Aquaculture Areas in Jianghan Plain, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 4349-4361.	4.9	1
47	Evaluation of a synbiotic formulation for water remediation in a shrimp pond. Environmental Science and Pollution Research, 2023, 30, 65990-66001.	5.3	0
49	Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environmental Pollution, 2023, 331, 121924.	7.5	15
50	Mapping Shrimp Pond Dynamics: A Spatiotemporal Study Using Remote Sensing Data and Machine Learning. AgriEngineering, 2023, 5, 1432-1447.	3.2	1
51	Multi-temporal SAR Interferometry (MTInSAR)-based study of surface subsidence and its impact on Krishna Godavari (KG) basin in India: a support vector approach. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
52	Mapping large-scale aquaculture ponds in Jiangsu Province, China: An automatic extraction framework based on Sentinel-1 time-series imagery. Aquaculture, 2024, 581, 740441.	3.5	0
53	Monitoring Spatio-Temporal Variations of Ponds in Typical Rural Area in the Huai River Basin of China. Remote Sensing, 2024, 16, 39.	4.0	0
54	HROF: a high-resolution remote sensing dataset for segmentation of offshore farms. , 2024, , .		0

CITATION REPORT