Porous Crystalline Olefin-Linked Covalent Organic Fran

Journal of the American Chemical Society 141, 6848-6852 DOI: 10.1021/jacs.9b02848

Citation Report

#	Article	IF	CITATIONS
1	Semiconducting 2D Triazine-Cored Covalent Organic Frameworks with Unsubstituted Olefin Linkages. Journal of the American Chemical Society, 2019, 141, 14272-14279.	6.6	362
2	2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine. Angewandte Chemie, 2019, 131, 13891-13895.	1.6	24
3	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie - International Edition, 2019, 58, 14865-14870.	7.2	205
4	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie, 2019, 131, 15007-15012.	1.6	39
5	2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine. Angewandte Chemie - International Edition, 2019, 58, 13753-13757.	7.2	137
6	Microwave-assisted synthesis of porous organic cages CC3 and CC2. CrystEngComm, 2019, 21, 4534-4537.	1.3	17
7	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie, 2019, 131, 12193-12197.	1.6	78
8	Controlled Fabrication of Silica@Covalent Triazine Polymer Core–Shell Spheres as a Reversed-Phase/Hydrophilic Interaction Mixed-Mode Chromatographic Stationary Phase. ACS Applied Materials & Interfaces, 2019, 11, 46149-46156.	4.0	40
9	Coming up for Air: Breathing Air with Metal for Energy Storage. Batteries and Supercaps, 2019, 2, 897-898.	2.4	0
10	Constructing Robust Covalent Organic Frameworks via Multicomponent Reactions. Journal of the American Chemical Society, 2019, 141, 18004-18008.	6.6	183
11	Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale, 2019, 11, 21679-21708.	2.8	82
12	Aminal-Linked Covalent Organic Frameworks through Condensation of Secondary Amine with Aldehyde. Journal of the American Chemical Society, 2019, 141, 14981-14986.	6.6	114
13	Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 2019, 400, 213046.	9.5	387
14	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 12065-12069.	7.2	226
15	Unique supramolecular complex of diclofenac: structural robustness, crystal-to-crystal solvent exchange, and mechanochemical synthesis. Chemical Communications, 2019, 55, 7639-7642.	2.2	7
16	Side-chain-tuned π-extended porous polymers for visible light-activated hydrogen evolution. Polymer Chemistry, 2019, 10, 3758-3763.	1.9	26
17	Light Hydrocarbon Separations Using Porous Organic Framework Materials. Chemistry - A European Journal, 2020, 26, 3205-3221.	1.7	57
18	An unsymmetrical covalent organic polymer for catalytic amide synthesis. Dalton Transactions, 2020, 49, 179-186.	1.6	38

ARTICLE IF CITATIONS # Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric 19 3.7 116 photocatalysis. Chemical Science, 2020, 11, 1494-1502. Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chemistry - A European Journal, 2020, 1.7 26, 5583-5591. A Pd NP-confined novel covalent organic polymer for catalytic applications. New Journal of 21 1.4 42 Chemistry, 2020, 44, 1320-1325. Recent Advances in Covalent Organic Frameworks for Catalysis. Chemistry - an Asian Journal, 2020, 15, 103 338-351. Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of 23 Photosensitizers and Catalysts for the Reduction of Protons to H₂. ACS Applied Materials 4.0 58 & Interfaces, 2020, 12, 1404-1411. Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241. 5.8 Covalent Organic Frameworks: An Amazing Chemistry Platform for Designing Polymers. CheM, 2020, 6, 25 5.8 98 2461-2483. Much ado about nothing $\hat{a} \in$ a decade of porous materials research. Nature Communications, 2020, 11, 5.8 26 26 4985. Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile: Combining 27 Cyclotrimerization and Aldol Condensation in One Pot. Journal of the American Chemical Society, 6.6 68 2020, 142, 14033-14038. Pyrimidazole-Based Covalent Organic Frameworks: Integrating Functionality and Ultrastability via 6.6 Isocyanide Chemistry. Journal of the American Chemical Society, 2020, 142, 20956-20961. Chiral covalent organic frameworks: design, synthesis and property. Chemical Society Reviews, 2020, 29 18.7 211 49, 6248-6272. Ester-Linked Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 6.6 2020, 142, 14450-14454. Covalent organic frameworks: Polymer chemistry and functional design. Progress in Polymer Science, $\mathbf{31}$ 11.8 78 2020, 108, 101288. Crystallinity and stability of covalent organic frameworks. Science China Chemistry, 2020, 63, 4.2 1367-1390 Vinyleneâ€Linked Covalent Organic Frameworks (COFs) with Symmetryâ€Tuned Polarity and Photocatalytic 33 39 1.6 Activity. Angewandte Chemie, 2020, 132, 24053-24061. Vinyleneâ€Linked Covalent Organic Frameworks (COFs) with Symmetryâ€Tuned Polarity and Photocatalytic 7.2 197 Activity. Angewandte Chemie - International Edition, 2020, 59, 2384<u>5-23853.</u> Reticular Synthesis of tbo Topology Covalent Organic Frameworks. Journal of the American Chemical 35 6.6 120 Society, 2020, 142, 16346-16356. A Ni/Fe complex incorporated into a covalent organic framework as a single-site heterogeneous catalyst for efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 3925-3931.

#	Article	IF	CITATIONS
37	Recent Advances of Solid‧tate NMR Spectroscopy for Microporous Materials. Advanced Materials, 2020, 32, e2002879.	11.1	50
38	High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with <i>p</i> -Type Doping. Journal of the American Chemical Society, 2020, 142, 21622-21627.	6.6	113
39	Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 9747-9752.	3.2	68
40	Resistive Switching Memory Performance of Two-Dimensional Polyimide Covalent Organic Framework Films. ACS Applied Materials & Interfaces, 2020, 12, 51837-51845.	4.0	57
41	Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.	5.0	94
42	Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, 2020, 49, 4135-4165.	18.7	649
43	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie, 2020, 132, 19801-19806.	1.6	13
44	Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Science Bulletin, 2020, 65, 1659-1666.	4.3	57
45	Core-Shell and Yolk-Shell Covalent Organic Framework Nanostructures with Size-Selective Permeability. Cell Reports Physical Science, 2020, 1, 100062.	2.8	28
46	Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. Journal of the American Chemical Society, 2020, 142, 11893-11900.	6.6	180
47	Waste to MOFs: sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications. Green Chemistry, 2020, 22, 4082-4104.	4.6	101
48	Emerging applications of porous organic polymers in visible-light photocatalysis. Journal of Materials Chemistry A, 2020, 8, 7003-7034.	5.2	215
49	Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41, 1288-1297.	6.9	54
50	Construction of Fully Conjugated Covalent Organic Frameworks via Facile Linkage Conversion for Efficient Photoenzymatic Catalysis. Journal of the American Chemical Society, 2020, 142, 5958-5963.	6.6	177
51	Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 6957-6983.	5.2	190
52	Applications of Dynamic Covalent Chemistry Concept toward Tailored Covalent Organic Framework Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6239-6269.	2.4	96
53	Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework. Chemical Science, 2020, 11, 12647-12654.	3.7	80
54	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	6.6	21

#	Article	IF	CITATIONS
55	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	5.5	200
56	Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications. Journal of the American Chemical Society, 2020, 142, 12903-12915.	6.6	154
57	A Vinyleneâ€Bridged Conjugated Covalent Triazine Polymer as a Visibleâ€Lightâ€Active Photocatalyst for Degradation of Methylene Blue. Macromolecular Rapid Communications, 2020, 41, e2000006.	2.0	15
58	Stable sp carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. Journal of Hazardous Materials, 2020, 392, 122333.	6.5	136
59	Bromineâ€Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. Chemistry - A European Journal, 2020, 26, 5784-5788.	1.7	40
60	Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Applied Catalysis B: Environmental, 2020, 269, 118799.	10.8	117
61	Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 2020, 120, 8814-8933.	23.0	1,968
62	A Two-Dimensional Poly(azatriangulene) Covalent Organic Framework with Semiconducting and Paramagnetic States. Journal of the American Chemical Society, 2020, 142, 2155-2160.	6.6	72
63	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	4.6	138
64	The luminescent and photophysical properties of covalent organic frameworks. Chemical Society Reviews, 2020, 49, 839-864.	18.7	234
65	Gear Alignments Due to Hydrogen-Bonded Networks in a Crystal Structure of Resorcyltriptycene Hydrate and Its Transformation to a Nongearing Anhydrate Crystal by Heating. Crystal Growth and Design, 2020, 20, 1097-1102.	1.4	6
66	Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps. Nature Communications, 2020, 11, 261.	5.8	52
67	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	7.8	172
68	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie, 2020, 132, 19655-19661.	1.6	1
69	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie - International Edition, 2020, 59, 19487-19493.	7.2	38
70	Unravelling Crystal Structures of Covalent Organic Frameworks by Electron Diffraction Tomography. Chinese Journal of Chemistry, 2020, 38, 1153-1166.	2.6	31
71	Topologyâ€Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 12162-12169.	7.2	66
72	2D Porous Polymers with sp ² â€Carbon Connections and Sole sp ² â€Carbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	7.8	42

#	Article	IF	CITATIONS
73	Topologyâ€Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 12260-12267.	1.6	20
74	Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition. Journal of the American Chemical Society, 2020, 142, 8862-8870.	6.6	101
75	Green synthesis of covalent organic frameworks based on reaction media. Materials Chemistry Frontiers, 2021, 5, 1253-1267.	3.2	36
76	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	23.3	361
77	Covalent organic framework-based materials for energy applications. Energy and Environmental Science, 2021, 14, 688-728.	15.6	209
78	Thioether-terminated triazole-bridged covalent organic framework for dual-sensitive drug delivery application. Materials Science and Engineering C, 2021, 120, 111704.	3.8	25
79	Facile synthesis of highly porous hyperâ€crossâ€linked polymer for light hydrocarbon separation. Polymer Engineering and Science, 2021, 61, 662-668.	1.5	5
80	High-Efficiency Photoenhanced Extraction of Uranium from Natural Seawater by Olefin-Linked Covalent Organic Frameworks. ACS ES&T Water, 2021, 1, 440-448.	2.3	57
81	Covalent Organic Frameworks in Catalytic Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 144-193.	2.1	49
82	Crystalline C—C and Câ•C Bond-Linked Chiral Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 369-381.	6.6	117
83	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	3.7	73
84	Optoelectronic processes in covalent organic frameworks. Chemical Society Reviews, 2021, 50, 1813-1845.	18.7	264
85	Singleâ€Pore versus Dualâ€Pore Bipyridineâ€Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Catalytic Activity for Selective CH Functionalization. Small, 2021, 17, e2003970.	5.2	25
86	Imaging and analysis of covalent organic framework crystallites on a carbon surface: a nanocrystalline scaly COF/nanotube hybrid. Nanoscale, 2021, 13, 6834-6845.	2.8	5
87	Electrically conductive covalent organic frameworks: bridging the fields of organic metals and 2D materials. Journal of Materials Chemistry C, 2021, 9, 10668-10676.	2.7	38
88	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	18.7	129
89	sp ² carbon-conjugated covalent organic frameworks: synthesis, properties, and applications. Materials Chemistry Frontiers, 2021, 5, 2931-2949.	3.2	58
90	Covalent Organic Frameworks as Electrode Materials for Rechargeable Batteries. Organic Materials, 2021, 03, 067-089.	1.0	4

ARTICLE IF CITATIONS An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative 2.1 32 91 alkylations under highly acidic conditions. Catalysis Science and Technology, 2021, 11, 4272-4279. Tunable linear donor–π–acceptor conjugated polymers with a vinylene linkage for visible-light driven 2.1 hydrogen evolution. Catalysis Science and Technology, 2021, 11, 4021-4025. Reticular design and crystal structure determination of covalent organic frameworks. Chemical 93 3.7 41 Science, 2021, 12, 8632-8647. Efficient synthesis of vinylene-linked conjugated porous networks <i>via</i> the Horner–Wadsworth–Emmons reaction for photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 7557-7560. 94 Design and application of covalent organic frameworks for ionic conduction. Polymer Chemistry, 95 1.9 27 2021, 12, 4874-4894. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chemical Society Reviews, 2021, 50, 120-242. 18.7 Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted 97 6.6 40 Cycloaddition. Journal of the American Chemical Society, 2021, 143, 649-656. Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced 10.2 Energy Materials, 2021, 11, 2003054. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. 99 5.8 147 Nature Communications, 2021, 12, 1982. Vinylene-Linked Two-Dimensional Covalent Organic Frameworks: Synthesis and Functions. Accounts of Materials Research, 2021, 2, 252-265. A carbazole-grafted covalent organic framework as turn-on fluorescence chemosensor for recognition and detection of Pb2+ ions with high selectivity and sensitivity. Journal of Materials 101 1.7 25 Science, 2021, 56, 11789-11800. Covalent Organic Frameworks: A Molecular Platform for Designer Polymeric Architectures and 2.0 Functional Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 1215-1231. Synthesis of Ionic Vinyleneâ€Linked Covalent Organic Frameworks through Quaternizationâ€Activated 103 1.6 14 Knoevenagel Condensation. Angewandte Chemie, 2021, 133, 13726-13732. Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications. Energies, 104 1.6 2021, 14, 3197. Synthesis of Ionic Vinyleneâ€Linked Covalent Organic Frameworks through Quaternizationâ€Activated 105 7.2 87 Knoevenagel Condensation. Angewandte Chemie - International Edition, 2021, 60, 13614-13620. All sp2 carbon covalent organic frameworks. Trends in Chemistry, 2021, 3, 431-444. 4.4 Catalyst―and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) 107 1.6 4 Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie, 2021, 133, 17328-17334. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 142 2021, 6, 100054.

\sim					
СП	τάτ	101	V K	'FP	ORT
\sim	17.11	101	N 1N		

#	Article	IF	CITATIONS
109	Catalyst―and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17191-17197.	7.2	16
110	Donorâ€Acceptor Type Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10781-10797.	1.7	90
111	Have Covalent Organic Framework Films Revealed Their Full Potential?. Crystals, 2021, 11, 762.	1.0	2
112	25 Jahre retikulÃre Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
113	Covalent Organic Frameworks as Emerging Platforms for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 9809-9824.	5.5	89
114	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
115	Band Gap Engineering in Vinylene-Linked Covalent Organic Frameworks for Enhanced Photocatalytic Degradation of Organic Contaminants and Disinfection of Bacteria. ACS Applied Bio Materials, 2021, 4, 6502-6511.	2.3	23
116	Arylamineâ€Linked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie, 2021, 133, 20922-20927.	1.6	13
117	Covalent Organic Framework Membranes for Efficient Chemicals Separation. Small Structures, 2021, 2, 2100061.	6.9	48
118	Arylamine‣inked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20754-20759.	7.2	107
119	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	5.6	24
120	Crystalline Covalent Organic Frameworks with Tailored Linkages for Photocatalytic H ₂ Evolution. ChemSusChem, 2021, 14, 4958-4972.	3.6	56
121	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie, 2021, 133, 25527-25531.	1.6	0
122	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie - International Edition, 2021, 60, 25323-25327.	7.2	8
123	Olefin-linked covalent organic frameworks with twisted tertiary amine knots for enhanced ultraviolet detection. Chinese Chemical Letters, 2022, 33, 2621-2624.	4.8	7
124	A Three-Dimensional sp ² Carbon-Conjugated Covalent Organic Framework. Journal of the American Chemical Society, 2021, 143, 15562-15566.	6.6	80
125	Synthesis of Two-Dimensional C–C Bonded Truxene-Based Covalent Organic Frameworks by Irreversible BrÃ,nsted Acid-Catalyzed Aldol Cyclotrimerization. Research, 2021, 2021, 9790705.	2.8	4
126	Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms. Applied Catalysis B: Environmental, 2021, 294, 120250.	10.8	77

#	Article	IF	Citations
127	In situ room-temperature rapidly fabricated imine-linked covalent organic framework coated fibers for efficient solid-phase microextraction of pyrethroids. Analytica Chimica Acta, 2021, 1181, 338886.	2.6	20
128	Construction of 2D porphyrin-based covalent organic framework as adsorbent for organic dyes removal and carbon dioxide adsorption. Journal of Solid State Chemistry, 2021, 304, 122577.	1.4	22
129	rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chemical Engineering Journal, 2022, 428, 131178.	6.6	24
130	Conquering the crystallinity conundrum: efforts to increase quality of covalent organic frameworks. Materials Advances, 2021, 2, 2811-2845.	2.6	29
131	Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chemical Society Reviews, 2021, 50, 11559-11576.	18.7	25
132	Presenting porous–organic–polymers as next-generation invigorating materials for nanoreactors. Chemical Communications, 2021, 57, 8550-8567.	2.2	37
133	Macroscopic covalent organic framework architectures for water remediation. Environmental Science: Water Research and Technology, 2021, 7, 1895-1927.	1.2	18
134	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie - International Edition, 2020, 59, 19633-19638.	7.2	49
135	2D covalent organic framework thin films <i>via</i> interfacial self-polycondensation of an A ₂ B ₂ type monomer. Chemical Communications, 2020, 56, 3253-3256.	2.2	43
136	Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11448-11459.	5.2	88
137	Nitrogen-rich covalent organic frameworks: a promising class of sensory materials. Materials Advances, 2022, 3, 19-124.	2.6	39
138	Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2021, 16, 3833-3850.	1.7	14
139	Arousing Electrochemiluminescence Out of Non-Electroluminescent Monomers within Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 47921-47931.	4.0	24
140	Conjugated Microporous Polymers via Solvent-Free Ionothermal Cyclotrimerization of Methyl Ketones. Chemistry of Materials, 2021, 33, 8334-8342.	3.2	12
141	Triazine covalent organic polymer coated stir bar sorptive extraction coupled with high performance liquid chromatography for the analysis of trace phthalate esters in mineral water and liquor samples. Journal of Chromatography A, 2021, 1660, 462665.	1.8	13
142	Construction of Nanoscale Covalent Organic Frameworks via Photocatalysisâ€Involved Cascade Reactions for Tumorâ€Selective Treatment. Advanced Therapeutics, 2022, 5, .	1.6	13
143	Heteroatomâ€Embedded Approach to Vinyleneâ€Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angewandte Chemie, 2022, 134, e202111627.	1.6	10
144	Constructing novel hyper-crosslinked conjugated polymers through molecular expansion for enhanced gas adsorption performance. Journal of Hazardous Materials, 2022, 426, 127850.	6.5	16

#	Article	IF	CITATIONS
145	<scp>Oneâ€Pot</scp> Synthesis of <scp>Fullyâ€Conjugated</scp> Chemically Stable <scp>Twoâ€Đimensional</scp> Covalent Organic Framework. Chinese Journal of Chemistry, 2022, 40, 699-704.	2.6	14
146	Heteroatomâ€Embedded Approach to Vinylene‣inked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
147	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	23.0	128
148	Pd Nanoparticles Anchored on Carbon Nanotubes/Covalent Organic Frameworks for Catalytic Ethanol Electrooxidation. ACS Applied Nano Materials, 2022, 5, 597-604.	2.4	10
149	Olefin-linked covalent organic framework nanotubes based on triazine for selective oxidation of sulfides with O2 powered by blue light. Applied Catalysis B: Environmental, 2022, 305, 121027.	10.8	40
150	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
151	Constructing Polyimide Aerogels with Carboxyl for CO2 Adsorption. Polymers, 2022, 14, 359.	2.0	11
152	Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nature Communications, 2022, 13, 100.	5.8	107
153	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
154	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	1.6	7
155	Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations. Applied Catalysis B: Environmental, 2022, 306, 121110.	10.8	48
156	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	6.6	106
157	Preparation of COFs Supported Pd as an Efficient Catalyst for the Hydrogenation of Aromatic Nitro. Catalysis Letters, 0, , 1.	1.4	4
158	Porous organic polymers as a platform for sensing applications. Chemical Society Reviews, 2022, 51, 2031-2080.	18.7	140
159	Hydrogen-bonded organic frameworks: design, applications, and prospects. Materials Advances, 2022, 3, 3680-3708.	2.6	64
160	Covalent Organic Framework Modified Carbon Nanotubes for Removal of Uranium (Vi) from Mining Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
162	Recent Advances of Covalent Organic Frameworks in Chemical Sensing. Chemical Research in Chinese Universities, 2022, 38, 339-349.	1.3	19
163	Synthesis of Vinylene-Linked Covalent Organic Frameworks by Monomer Self-Catalyzed Activation of Knoevenagel Condensation. Journal of the American Chemical Society, 2022, 144, 3653-3659.	6.6	81

ARTICLE IF CITATIONS # Control of Crystallinity of Vinyleneâ€Linked Twoâ€Dimensional Conjugated Polymers by Rational 1.7 5 164 Monomer Design. Chemistry - A European Journal, 2022, 28, . Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michael $\hat{a} \in Addition \hat{a} \in Elimination for the Synthesis of Vinylene \hat{a} \in Linked 2D Covalent Organic Frameworks.$ 7.2 23 Angewandte Chemie - International Edition, 2022, 61, Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michael $\hat{a} \in A$ ddition $\hat{a} \in E$ limination for the Synthesis of Vinylene $\hat{a} \in L$ inked 2D Covalent Organic Frameworks. 166 4 1.6 Angewandte Chemie, 2022, 134, . Fused-Ring-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 6594-6603. On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible 168 34 Katritzky reaction. , 2022, 1, 69-76. A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, . A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient 170 1.6 2 Photocatalyst. Angewandte Chemie, 2022, 134, . Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as 171 4.2 high-efficiency separators. Science China Chemistry, 2022, 65, 1173-1184. Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic 172 Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 2.2 2 337, 111914. Quinacridone based 2D covalent organic frameworks as efficient photocatalysts for aerobic 10.8 14 oxidative Povarov reaction. Applied Catalysis B: Environmental, 2022, 312, 121406. Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N 174 102 6.6 Cross-Coupling Reactions. Journal of the American Chemical Society, 2022, 144, 7822-7833. Redox-Active Covalent Organic Frameworks with Nickel–Bis(dithiolene) Units as Guiding Layers for High-Performance Lithium Metal Batteries. Journal of the American Chemical Society, 2022, 144, 6.6 8267-8277. Lewis Acid Catalyzed Synthesis of Vinylene Linked Two Dimensional Covalent Organic Frameworks. 176 2.6 4 Chinese Journal of Chemistry, 0, , . 2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108. Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 178 6.6 71 9101-9112. Separation of anilines by a covalent triazine-triphenyl polymer as a stationary phase for their normal-phase and reverse-phase determination by high-performance liquid chromatography (HPLC). 179 Analytical Letters, 0, , 1-12. Surfactantâ€Modulated a Highly Sensitive Fluorescent Probe of Fully Conjugated Covalent Organic 180 5.218 Nanosheets for Detecting Copper Ions in Aqueous Solution. Small, 2022, 18, e2200388. Constructing ambivalent imidazopyridinium-linked covalent organic frameworks., 2022, 1, 382-392. 38

#	Article	IF	CITATIONS
182	Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nature Communications, 2022, 13, 2615.	5.8	42
183	Dibenzylidene- <i>s</i> -indacenetetraone Linked <i>n</i> -Type Semiconducting Covalent Organic Framework via Aldol Condensation. , 2022, 4, 1154-1159.		4
184	Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chemical Research in Chinese Universities, 2022, 38, 382-395.	1.3	8
185	Constructing Synergistic Triazine and Acetylene Cores in Fully Conjugated Covalent Organic Frameworks for Cascade Photocatalytic H ₂ O ₂ Production. Chemistry of Materials, 2022, 34, 5232-5240.	3.2	90
186	Construction of a Hollow Spherical Covalent Organic Framework with Olefin and Imine Dual Linkages Based on Orthogonal Reactions. Chemistry of Materials, 2022, 34, 5249-5257.	3.2	20
187	Covalent organic frameworks for applications in lithium batteries. Journal of Polymer Science, 2022, 60, 2225-2238.	2.0	13
188	<scp>Threeâ€Dimensional</scp> sp ² <scp>Carbonâ€Linked</scp> Covalent Organic Frameworks as a Drug Carrier Combined with Fluorescence Imaging. Chinese Journal of Chemistry, 2022, 40, 2081-2088.	2.6	26
189	Improving Lithium–Sulfur Batteries' Performance via Inverse Vulcanization of Vinylene-Linked Covalent Organic Frameworks. Energy & Fuels, 2022, 36, 5998-6004.	2.5	12
190	Evolving Trends for Câ^'C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect, 2022, 7, .	0.7	6
191	Selective Detection of Nucleotides in Infant Formula Using an N-Rich Covalent Triazine Porous Polymer. Nanomaterials, 2022, 12, 2213.	1.9	3
192	CoN ₅ Sites Constructed by Anchoring Co Porphyrins on Vinylene‣inked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. Small, 2022, 18, .	5.2	23
193	Covalent Organic Frameworks for Carbon Dioxide Capture from Air. Journal of the American Chemical Society, 2022, 144, 12989-12995.	6.6	118
194	Covalent organic framework modified carbon nanotubes for removal of uranium (VI) from mining wastewater. Chemical Engineering Journal, 2022, 450, 138062.	6.6	10
195	Direct Construction of Isomeric Benzobisoxazole–Vinylene-Linked Covalent Organic Frameworks with Distinct Photocatalytic Properties. Journal of the American Chemical Society, 2022, 144, 13953-13960.	6.6	76
196	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
197	Controlling the Nucleation Process to Prepare a Family of Crystalline Tribenzimidazole-Based Covalent Organic Frameworks. Chemistry of Materials, 2022, 34, 6977-6984.	3.2	7
198	Cyano Substituent on the Olefin Linkage: Promoting Rather than Inhibiting the Performance of Covalent Organic Frameworks. ACS Catalysis, 2022, 12, 10718-10726.	5.5	29
199	Nanoarchitectured Conjugated Microporous Polymers: State of the Art Synthetic Strategies and Opportunities for Adsorption Science. Chemistry of Materials, 2022, 34, 7598-7619.	3.2	23

#	Article	IF	CITATIONS
200	Inserting acetylene into an olefin-linked covalent organic framework for boosting the selective photocatalytic aerobic oxidation of sulfides. Chemical Engineering Journal, 2023, 451, 138802.	6.6	21
201	Vinyleneâ€Linked 2D Conjugated Covalent Organic Frameworks by Wittig Reactions. Angewandte Chemie, 2022, 134, .	1.6	1
202	Vinylene‣inked 2D Conjugated Covalent Organic Frameworks by Wittig Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
203	Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 34323-34375.	3.8	13
204	2,4,6â€Trimethylpyridineâ€Derived Vinyleneâ€Linked Covalent Organic Frameworks for Confined Catalytic Esterification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
205	Pd(II) functionalized vinylene-linked covalent organic frameworks for acidic electrocatalytic hydrogen evolution reaction. Microporous and Mesoporous Materials, 2022, 344, 112169.	2.2	9
206	Synthesis of Vinyleneâ€Linked Thiopyryliumâ€, Pyryliumâ€, and Pyridiniumâ€Based Covalent Organic Frameworks by Acidâ€Catalyzed Aldol Condensation. Chemistry - A European Journal, 2023, 29, .	1.7	8
207	2,4,6â€Trimethylpyridineâ€Derived Vinyleneâ€Linked Covalent Organic Frameworks for Confined Catalytic Esterification. Angewandte Chemie, 2022, 134, .	1.6	0
208	Conductive Covalent Organic Frameworks Meet Micro-Electrical Energy Storage: Mechanism, Synthesis and Applications—A Review. Crystals, 2022, 12, 1405.	1.0	4
209	Synthesis of cationic polymer decorated with halogen for highly efficient trapping 99TcO4-/ReO4 Journal of Hazardous Materials, 2023, 443, 130325.	6.5	12
210	Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2022, 6, 881-898.	13.8	79
211	Comprehensive Review for an Efficient Charge Transfer in Single Atomic Site Catalyst/Organic Polymers toward Photocatalytic CO ₂ Reduction. Advanced Materials Interfaces, 2023, 10, .	1.9	8
212	Understanding solar fuel photocatalysis using covalent organic frameworks. Photochemistry, 2022, , 403-427.	0.2	0
213	Defect Engineering in CuS <i>_x</i> /COF Hybridized Heterostructures: Synergistic Facilitation of the Charge Migration for an Efficacious Photocatalytic Conversion of CO ₂ into CO. Inorganic Chemistry, 2022, 61, 20064-20072.	1.9	8
214	Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks. Nature Communications, 2022, 13, .	5.8	31
215	Olefin-linked cationic covalent organic frameworks for efficient extraction of ReO4â^'/99TcO4â^'. Journal of Hazardous Materials, 2023, 446, 130603.	6.5	15
216	An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4â^' or 99TcO4â^'. Nature Communications, 2022, 13, .	5.8	25
217	Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. Advanced Materials, 2023, 35, .	11.1	42

#	Article	IF	CITATIONS
218	Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry - A European Journal, 2023, 29, .	1.7	11
219	Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect, 2022, 7, .	0.7	8
220	Covalent organic frameworks. Nature Reviews Methods Primers, 2023, 3, .	11.8	99
221	Freestanding Hydrophilic/Hydrophobic Janus Covalent Organic Framework Membranes for Highly Efficient Solar Steam Generation. , 2023, 5, 458-465.		19
222	Two-Dimensional Benzobisthiazole-Vinylene-Linked Covalent Organic Frameworks Outperform One-Dimensional Counterparts in Photocatalysis. ACS Catalysis, 2023, 13, 1089-1096.	5.5	26
223	Application of fully conjugated covalent organic frameworks in photocatalytic carbon dioxide reduction performance. Dalton Transactions, 2023, 52, 1761-1767.	1.6	6
224	Supramolecular Engineering of Cathode Materials for Aqueous Zincâ€ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Twoâ€Dimensional Olefinâ€Linked COFs. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
225	Recent advances in metal-free covalent organic frameworks for photocatalytic applications in energy and environmental fields. Journal of Materials Chemistry A, 2023, 11, 3245-3261.	5.2	19
226	Supramolecular Engineering of Cathode Materials for Aqueous Zincâ€ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Twoâ€Dimensional Olefinâ€Linked COFs. Angewandte Chemie, 2023, 135, .	1.6	3
227	Phenanthroimidazole-Based Covalent Organic Frameworks with Enhanced Activity for the Photocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 1126-1133.	2.5	5
228	Recent advances in membrane-based materials for desalination and gas separation. Journal of Cleaner Production, 2023, 387, 135845.	4.6	19
229	Customizable <scp>2D</scp> Covalent Organic Frameworks for Optoelectronic Applications. Chinese Journal of Chemistry, 2023, 41, 1260-1285.	2.6	4
230	Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. Journal of the American Chemical Society, 2023, 145, 1022-1030.	6.6	42
231	Post-synthetic Fully π-Conjugated Three-Dimensional Covalent Organic Frameworks for High-Performance Lithium Storage. ACS Applied Materials & Interfaces, 2023, 15, 830-837.	4.0	12
232	Integrating Bifunctionality and Chemical Stability in Covalent Organic Frameworks via One-Pot Multicomponent Reactions for Solar-Driven H ₂ O ₂ Production. Journal of the American Chemical Society, 2023, 145, 2975-2984.	6.6	71
233	Carbon–Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
234	2D Covalent Organic Frameworks Based on Heteroacene Units. Small, 2023, 19, .	5.2	11
235	Enhancement of Visibleâ€Lightâ€Driven Hydrogen Evolution Activity of 2D Ï€â€Conjugated Bipyridineâ€Based Covalent Organic Frameworks via Postâ€Protonation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32

#	Article	IF	CITATIONS
236	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	14.8	5
237	A fluorescence biosensor based on DNA aptamers-COF for highly selective detection of ATP and thrombin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 295, 122615.	2.0	8
238	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. , 2023, 2, e9120052.		30
239	SnS2-covalent organic framework Z-scheme van der Waals heterojunction for enhanced photocatalytic reduction of uranium (VI) in rare earth tailings wastewater. Chemical Engineering Journal, 2023, 460, 141756.	6.6	18
240	Enhancement of Visibleâ€Lightâ€Driven Hydrogen Evolution Activity of 2D Ï€â€Conjugated Bipyridineâ€Based Covalent Organic Frameworks via Postâ€Protonation. Angewandte Chemie, 2023, 135, .	1.6	7
241	Nature-Inspired Pyrylium Cation-Based Vinylene-Linked Two-Dimensional Covalent Organic Framework for Efficient Sunlight-Driven Water Purification. Chemistry of Materials, 2023, 35, 1594-1600.	3.2	10
242	Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp ² Carbon-Conjugated Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 2023, 145, 5203-5210.	6.6	22
243	Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. Biosensors, 2023, 13, 291.	2.3	7
244	Postâ€Nickelation of a Crystalline Trinuclear Copper Organic Framework for Synergistic Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
245	Postâ€Nickelation of a Crystalline Trinuclear Copper Organic Framework for Synergistic Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie, 2023, 135, .	1.6	0
246	Vinylene-linked covalent organic frameworks with manipulated electronic structures for efficient solar-driven photocatalytic hydrogen production. Chinese Journal of Catalysis, 2023, 47, 171-180.	6.9	34
247	Regulating Ï€â€Conjugation in sp ² â€Carbonâ€Linked Covalent Organic Frameworks for Efficient Metalâ€Free CO ₂ Photoreduction with H ₂ O. Small, 2023, 19, .	5.2	5
248	Nitric Oxide (NO) as a Reagent for Topochemical Framework Transformation and Controlled NO Release in Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 7800-7809.	6.6	6
249	Efficient proton conduction in porous and crystalline covalent-organic frameworks (COFs). Journal of Energy Chemistry, 2023, 82, 198-218.	7.1	13
250	Covalent organic frameworks in heterogeneous catalysis: recent advances and future perspective. Materials Chemistry Frontiers, 2023, 7, 3298-3331.	3.2	16
270	Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Transactions, 2023, 52, 15178-15192.	1.6	6
271	Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023, 10, 4083-4138.	6.4	13
280	Carbon–Carbon Linked Covalent Organic Frameworks. , 2023, , 242-286.		0

#	Article	IF	CITATIONS
283	Fabricating <i>s</i> -collidine-derived vinylene-linked covalent organic frameworks for photocatalysis. Chemical Communications, 2023, 59, 11728-11731.	2.2	0
284	Synthesis of covalent organic framework materials and their application in the field of sensing. Nano Research, 2024, 17, 162-195.	5.8	1
317	Recent progress on covalent organic frameworks for photocatalytic hydrogen generation <i>via</i> water splitting. Materials Chemistry Frontiers, 2024, 8, 1513-1535.	3.2	0