Spontaneous behaviors drive multidimensional, brainw

Science 364, 255 DOI: 10.1126/science.aav7893

Citation Report

#	Article	IF	CITATIONS
1	Data-Driven Approaches to Understanding Visual Neuron Activity. Annual Review of Vision Science, 2019, 5, 451-477.	2.3	16
2	The quest for interpretable models of neural population activity. Current Opinion in Neurobiology, 2019, 58, 86-93.	2.0	24
3	The Cognitive Ecology of Stimulus Ambiguity: A Predator–Prey Perspective. Trends in Ecology and Evolution, 2019, 34, 1048-1060.	4.2	30
4	Cortical reliability amid noise and chaos. Nature Communications, 2019, 10, 3792.	5.8	34
5	Kilohertz frame-rate two-photon tomography. Nature Methods, 2019, 16, 778-786.	9.0	122
6	Neurorestorative interventions involving bioelectronic implants after spinal cord injury. Bioelectronic Medicine, 2019, 5, 10.	1.0	22
7	Neural correlates of sparse coding and dimensionality reduction. PLoS Computational Biology, 2019, 15, e1006908.	1.5	71
8	Cortical computations via metastable activity. Current Opinion in Neurobiology, 2019, 58, 37-45.	2.0	40
9	Stable Representations of Decision Variables for Flexible Behavior. Neuron, 2019, 103, 922-933.e7.	3.8	123
10	Computational Neuroethology: A Call to Action. Neuron, 2019, 104, 11-24.	3.8	271
11	Bayesian inference of neuronal assemblies. PLoS Computational Biology, 2019, 15, e1007481.	1.5	20
12	Distinct Waking States for Strong Evoked Responses in Primary Visual Cortex and Optimal Visual Detection Performance. Journal of Neuroscience, 2019, 39, 10044-10059.	1.7	46
13	Harnessing behavioral diversity to understand neural computations for cognition. Current Opinion in Neurobiology, 2019, 58, 229-238.	2.0	40
14	Space and Memory (Far) Beyond the Hippocampus: Many Subcortical Structures Also Support Cognitive Mapping and Mnemonic Processing. Frontiers in Neural Circuits, 2019, 13, 52.	1.4	37
15	Precision electronic medicine in the brain. Nature Biotechnology, 2019, 37, 1007-1012.	9.4	62
16	A Compact Quad-Shank CMOS Neural Probe With 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1625-1634.	2.7	46
17	Neuropixels Data-Acquisition System: A Scalable Platform for Parallel Recording of 10 000+ Electrophysiological Signals. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1635-1644.	2.7	43
18	Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions. Neuron, 2019, 104, 810-824.e9.	3.8	155

		LEPORT	
#	Article	IF	CITATIONS
19	Functional flexibility in cortical circuits. Current Opinion in Neurobiology, 2019, 58, 175-180.	2.0	30
20	New perspectives on dimensionality and variability from large-scale cortical dynamics. Current Opinion in Neurobiology, 2019, 58, 181-190.	2.0	36
21	Single-trial neural dynamics are dominated by richly varied movements. Nature Neuroscience, 2019, 22, 1677-1686.	7.1	681
22	A new spin on fidgets. Nature Neuroscience, 2019, 22, 1614-1616.	7.1	3
23	High-dimensional geometry of population responses in visual cortex. Nature, 2019, 571, 361-365.	13.7	370
24	Unraveling the Brain With High-Density CMOS Neural Probes: Tackling the Challenges of Neural Interfacing. IEEE Solid-State Circuits Magazine, 2019, 11, 43-50.	0.5	23
25	Unsupervised identification of the internal states that shape natural behavior. Nature Neuroscience, 2019, 22, 2040-2049.	7.1	136
26	Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice. Journal of Neuroscience, 2019, 39, 9818-9830.	1.7	25
27	Distributed coding of choice, action and engagement across the mouse brain. Nature, 2019, 576, 266-273.	13.7	452
28	Movement and Performance Explain Widespread Cortical Activity in a Visual Detection Task. Cerebral Cortex, 2020, 30, 421-437.	1.6	127
29	Cortical pattern generation during dexterous movement is input-driven. Nature, 2020, 577, 386-391.	13.7	196
30	Studying complex brain dynamics using <i>Drosophila</i> . Journal of Neurogenetics, 2020, 34, 171-177.	0.6	4
31	Understanding the circuit basis of cognitive functions using mouse models. Neuroscience Research, 2020, 152, 44-58.	1.0	12
32	Pupil-associated states modulate excitability but not stimulus selectivity in primary auditory cortex. Journal of Neurophysiology, 2020, 123, 191-208.	0.9	22
33	Mice Reach Higher Visual Sensitivity at Night by Using a More Efficient Behavioral Strategy. Current Biology, 2020, 30, 42-53.e4.	1.8	14
34	A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nature Neuroscience, 2020, 23, 138-151.	7.1	232
35	Parenting — a paradigm for investigating the neural circuit basis of behavior. Current Opinion in Neurobiology, 2020, 60, 84-91.	2.0	13
36	Deep learning tools for the measurement of animal behavior in neuroscience. Current Opinion in Neurobiology, 2020, 60, 1-11.	2.0	271

#	Article	IF	CITATIONS
37	Exploring internal state-coding across the rodent brain. Current Opinion in Neurobiology, 2020, 65, 20-26.	2.0	15
38	Circuit-Based Biomarkers for Mood and Anxiety Disorders. Trends in Neurosciences, 2020, 43, 902-915.	4.2	33
39	Inferring neural information flow from spiking data. Computational and Structural Biotechnology Journal, 2020, 18, 2699-2708.	1.9	5
40	Why Have Two When One Will Do? Comparing Task Representations across Amygdala and Prefrontal Cortex in Single Neurons and Neuronal Populations. Neuron, 2020, 107, 597-599.	3.8	2
41	From motor planning to execution: a sensorimotor loop perspective. Journal of Neurophysiology, 2020, 124, 1815-1823.	0.9	30
42	Complementary Ca2+ Activity of Sensory Activated and Suppressed Layer 6 Corticothalamic Neurons Reflects Behavioral State. Current Biology, 2020, 30, 3945-3960.e5.	1.8	27
43	Plasticity and Adaptation in Neuromorphic Biohybrid Systems. IScience, 2020, 23, 101589.	1.9	26
44	Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science, 2020, 370, .	6.0	104
45	Retinal Inputs to the Thalamus Are Selectively Gated by Arousal. Current Biology, 2020, 30, 3923-3934.e9.	1.8	36
46	Spontaneous travelling cortical waves gate perception in behaving primates. Nature, 2020, 587, 432-436.	13.7	133
47	Integrating XMALab and DeepLabCut for high-throughput XROMM. Journal of Experimental Biology, 2020, 223, .	0.8	14
48	Pupillary Dynamics Link Spontaneous and Task-Evoked Activations Recorded Directly from Human Insula. Journal of Neuroscience, 2020, 40, 6207-6218.	1.7	27
49	Whole-brain interactions underlying zebrafish behavior. Current Opinion in Neurobiology, 2020, 65, 88-99.	2.0	19
50	Approaches to inferring multi-regional interactions from simultaneous population recordings. Current Opinion in Neurobiology, 2020, 65, 108-119.	2.0	11
51	Theoretical principles for illuminating sensorimotor processing with brain-wide neuronal recordings. Current Opinion in Neurobiology, 2020, 65, 138-145.	2.0	1
52	Rethinking brain-wide interactions through multi-region â€~network of networks' models. Current Opinion in Neurobiology, 2020, 65, 146-151.	2.0	45
53	Brain connectomes come of age. Current Opinion in Neurobiology, 2020, 65, 152-161.	2.0	11
54	Low rank mechanisms underlying flexible visual representations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29321-29329.	3.3	15

#	Article	IF	CITATIONS
55	Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations. Current Biology, 2020, 30, 3811-3817.e6.	1.8	47
56	Encoding of 3D Head Orienting Movements in the Primary Visual Cortex. Neuron, 2020, 108, 512-525.e4.	3.8	56
57	Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron, 2020, 107, 782-804.	3.8	105
58	Neuronal Network Topology Indicates Distinct Recovery Processes after Stroke. Cerebral Cortex, 2020, 30, 6363-6375.	1.6	20
59	Functional interrogation of neural circuits with virally transmitted optogenetic tools. Journal of Neuroscience Methods, 2020, 345, 108905.	1.3	13
60	Single-trial cross-area neural population dynamics during long-term skill learning. Nature Communications, 2020, 11, 4057.	5.8	35
61	Cortical State Fluctuations during Sensory Decision Making. Current Biology, 2020, 30, 4944-4955.e7.	1.8	48
62	Group-Patch Based Classification and Asymptotic Predicting Imbalanced Neuron Spikes. , 2020, , .		Ο
63	Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking. Journal of Neurophysiology, 2020, 124, 1056-1071.	0.9	7
64	Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage, 2020, 222, 117254.	2.1	155
65	Multidimensional processing in the amygdala. Nature Reviews Neuroscience, 2020, 21, 565-575.	4.9	84
66	Unconscious reinforcement learning of hidden brain states supported by confidence. Nature Communications, 2020, 11, 4429.	5.8	25
67	A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Computational Biology, 2020, 16, e1008198.	1.5	102
68	Deep posteromedial cortical rhythm in dissociation. Nature, 2020, 586, 87-94.	13.7	145
69	Diverse coactive neurons encode stimulus-driven and stimulus-independent variables. Journal of Neurophysiology, 2020, 124, 1505-1517.	0.9	2
70	Quantifying behavior to understand the brain. Nature Neuroscience, 2020, 23, 1537-1549.	7.1	153
71	Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex. Neuron, 2020, 108, 551-567.e8.	3.8	82
72	Statistical methods for dissecting interactions between brain areas. Current Opinion in Neurobiology, 2020, 65, 59-69.	2.0	41

#	Article	IF	CITATIONS
73	Efficient Position Decoding Methods Based on Fluorescence Calcium Imaging in the Mouse Hippocampus. Neural Computation, 2020, 32, 1144-1167.	1.3	12
74	Physical reservoir computing—an introductory perspective. Japanese Journal of Applied Physics, 2020, 59, 060501.	0.8	195
75	Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation. Scientific Reports, 2020, 10, 7512.	1.6	22
76	Randomly connected networks generate emergent selectivity and predict decoding properties of large populations of neurons. PLoS Computational Biology, 2020, 16, e1007875.	1.5	8
77	Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nature Communications, 2020, 11, 2217.	5.8	54
78	Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures. Nature Protocols, 2020, 15, 1992-2023.	5.5	18
79	Low-Dimensional Spatiotemporal Dynamics Underlie Cortex-wide Neural Activity. Current Biology, 2020, 30, 2665-2680.e8.	1.8	57
80	Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13084-13093.	3.3	25
81	Dynamic representations in networked neural systems. Nature Neuroscience, 2020, 23, 908-917.	7.1	48
82	Movement-Related Signals in Sensory Areas: Roles in Natural Behavior. Trends in Neurosciences, 2020, 43, 581-595.	4.2	97
83	The Set of Priors Related Concepts Instrumental in Understanding Conscious Perception Begs Clarification. Frontiers in Psychology, 2020, 11, 1293.	1.1	0
84	Orbitofrontal control of visual cortex gain promotes visual associative learning. Nature Communications, 2020, 11, 2784.	5.8	39
85	Arousal Modulates Retinal Output. Neuron, 2020, 107, 487-495.e9.	3.8	90
86	Flexible Fiber Probe for Efficient Neural Stimulation and Detection. Advanced Science, 2020, 7, 2001410.	5.6	19
87	Reflections of action in sensory cortex. Current Opinion in Neurobiology, 2020, 64, 53-59.	2.0	38
88	Transient Delay-Period Activity of Agranular Insular Cortex Controls Working Memory Maintenance in Learning Novel Tasks. Neuron, 2020, 105, 934-946.e5.	3.8	29
89	Switchless Multiplexing of Graphene Active Sensor Arrays for Brain Mapping. Nano Letters, 2020, 20, 3528-3537.	4.5	42
90	Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Frontiers in Neurorobotics, 2020, 14, 7.	1.6	17

#	Article	IF	CITATIONS
91	64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology. Scientific Reports, 2020, 10, 3830.	1.6	34
92	Cell-Type-Specific Outcome Representation in the Primary Motor Cortex. Neuron, 2020, 107, 954-971.e9.	3.8	50
93	Characterization of Learning, Motivation, and Visual Perception in Five Transgenic Mouse Lines Expressing GCaMP in Distinct Cell Populations. Frontiers in Behavioral Neuroscience, 2020, 14, 104.	1.0	14
94	Computation Through Neural Population Dynamics. Annual Review of Neuroscience, 2020, 43, 249-275.	5.0	319
95	Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nature Reviews Neuroscience, 2020, 21, 169-178.	4.9	188
96	Recurrent interactions can explain the variance in single trial responses. PLoS Computational Biology, 2020, 16, e1007591.	1.5	9
97	How do we know how the brain works?—Analyzing whole brain activities with classic mathematical and machine learning methods. Japanese Journal of Applied Physics, 2020, 59, 030501.	0.8	1
98	Bioelectronics for Millimeter-Sized Model Organisms. IScience, 2020, 23, 100917.	1.9	5
99	A general method to generate artificial spike train populations matching recorded neurons. Journal of Computational Neuroscience, 2020, 48, 47-63.	0.6	4
100	Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. European Journal of Neuroscience, 2020, 51, 2236-2249.	1.2	7
101	Estimation of Current and Future Physiological States in Insular Cortex. Neuron, 2020, 105, 1094-1111.e10.	3.8	142
102	Potential factors influencing replay across CA1 during sharp-wave ripples. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190236.	1.8	20
103	Limitations to Estimating Mutual Information in Large Neural Populations. Entropy, 2020, 22, 490.	1.1	4
104	Endogenous and exogenous control of visuospatial selective attention in freely behaving mice. Nature Communications, 2020, 11, 1986.	5.8	26
105	Brain-wide representations of ongoing behavior: a universal principle?. Current Opinion in Neurobiology, 2020, 64, 60-69.	2.0	62
106	Spatiotemporal refinement of signal flow through association cortex during learning. Nature Communications, 2020, 11, 1744.	5.8	42
107	Action representation in the mouse parieto-frontal network. Scientific Reports, 2020, 10, 5559.	1.6	16
108	Basal Ganglia Circuits for Action Specification. Annual Review of Neuroscience, 2020, 43, 485-507.	5.0	55

		CITATION REPORT		
#	Article		IF	Citations
109	Neuromodulation of Brain State and Behavior. Annual Review of Neuroscience, 2020, 4	43, 391-415.	5.0	151
110	Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. Neurosci 184-201.	entist, 2021, 27,	2.6	38
111	Sensory and Behavioral Components of Neocortical Signal Flow in Discrimination Task Short-Term Memory. Neuron, 2021, 109, 135-148.e6.	s with	3.8	45
112	Modeling behaviorally relevant neural dynamics enabled by preferential subspace ident Nature Neuroscience, 2021, 24, 140-149.	ification.	7.1	77
113	The <scp>McGillâ€Mouseâ€Miniscope</scp> platform: A standardized approach for hi imaging of neuronal dynamics during behavior. Genes, Brain and Behavior, 2021, 20, e	ghâ€ŧhroughput 12686.	1.1	5
114	Growing evidence for separate neural mechanisms for attention and consciousness. At Perception, and Psychophysics, 2021, 83, 558-576.	tention,	0.7	15
115	Development of Natural Scene Representation in Primary Visual Cortex Requires Early Experience. Current Biology, 2021, 31, 369-380.e5.	Postnatal	1.8	9
116	Auditory activity is diverse and widespread throughout the central brain of Drosophila. Neuroscience, 2021, 24, 93-104.	Nature	7.1	37
117	Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatos Current Biology, 2021, 31, 473-485.e5.	ensory Cortex.	1.8	6
118	The sensory representation of causally controlled objects. Neuron, 2021, 109, 677-689	9.e4 .	3.8	18
119	Evolving schema representations in orbitofrontal ensembles during learning. Nature, 2 606-611.	021, 590,	13.7	66
120	Continuous decisions. Philosophical Transactions of the Royal Society B: Biological Sci 376, 20190664.	ences, 2021,	1.8	53
121	Lessons From Deep Neural Networks for Studying the Coding Principles of Biological N Networks. Frontiers in Systems Neuroscience, 2020, 14, 615129.	leural	1.2	7
124	AutoEncoder for Neuroimage. Lecture Notes in Computer Science, 2021, , 84-90.		1.0	1
125	Scaling Up to Meet New Challenges of Brain and Behaviour: Deep Brain Electrophysiolo Moving Sheep. SSRN Electronic Journal, 0, , .	ogy in Freely	0.4	0
126	Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Communications Biology, 2021, 4,	136.	2.0	28
127	Recording site placement on planar silicon-based probes affects signal quality in acute recordings. Scientific Reports, 2021, 11, 2028.	neuronal	1.6	16
129	A Closer Look at Corticothalamic "Loops― Frontiers in Neural Circuits, 2021, 15, 6	532668.	1.4	4

#	Article	IF	Citations
131	Real-Time Closed-Loop Feedback in Behavioral Time Scales Using DeepLabCut. ENeuro, 2021, 8, ENEURO.0415-20.2021.	0.9	18
133	Neuronal representations of reward-predicting cues and outcome history with movement in the frontal cortex. Cell Reports, 2021, 34, 108704.	2.9	15
137	Dissociation of task engagement and arousal effects in auditory cortex and midbrain. ELife, 2021, 10, .	2.8	19
141	Alternating sources of perisomatic inhibition during behavior. Neuron, 2021, 109, 997-1012.e9.	3.8	67
144	Exploring two-photon optogenetics beyond 1100Ânm for specific and effective all-optical physiology. IScience, 2021, 24, 102184.	1.9	10
145	Learning is shaped by abrupt changes in neural engagement. Nature Neuroscience, 2021, 24, 727-736.	7.1	39
146	Analysis of extracellular spike waveforms and associated receptive fields of neurons in cat primary visual cortex. Journal of Physiology, 2021, 599, 2211-2238.	1.3	25
147	Evaluating Visual Cues Modulates Their Representation in Mouse Visual and Cingulate Cortex. Journal of Neuroscience, 2021, 41, 3531-3544.	1.7	6
149	Acitretin reverses early functional network degradation in a mouse model of familial Alzheimer's disease. Scientific Reports, 2021, 11, 6649.	1.6	15
150	Cell-type-specific nicotinic input disinhibits mouse barrel cortex during active sensing. Neuron, 2021, 109, 778-787.e3.	3.8	52
153	Call for a more balanced approach to understanding orbital frontal cortex function Behavioral Neuroscience, 2021, 135, 255-266.	0.6	2
155	Spontaneous and evoked activity patterns diverge over development. ELife, 2021, 10, .	2.8	19
156	Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging. Journal of Neuroscience, 2021, 41, 4160-4168.	1.7	56
157	Corollary discharge promotes a sustained motor state in a neural circuit for navigation. ELife, 2021, 10, .	2.8	16
161	MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity. PLoS ONE, 2021, 16, e0249447.	1.1	12
164	Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 2021, 372, .	6.0	467
165	Spatial navigation signals in rodent visual cortex. Current Opinion in Neurobiology, 2021, 67, 163-173.	2.0	27
166	A devil's advocate view on â€~self-organized' brain criticality. Journal of Physics Complexity, 2021, 2, 031001.	0.9	10

#	Article	IF	CITATIONS
167	Changes in pairwise correlations during running reshape global network state in the main olfactory bulb. Journal of Neurophysiology, 2021, 125, 1612-1623.	0.9	6
170	Subthreshold basis for reward-predictive persistent activity in mouse prefrontal cortex. Cell Reports, 2021, 35, 109082.	2.9	4
173	Rapid Cortical Adaptation and the Role of Thalamic Synchrony during Wakefulness. Journal of Neuroscience, 2021, 41, 5421-5439.	1.7	20
175	Vagus nerve stimulation induces widespread cortical and behavioral activation. Current Biology, 2021, 31, 2088-2098.e3.	1.8	64
176	Segmentation of neurons from fluorescence calcium recordings beyond real time. Nature Machine Intelligence, 2021, 3, 590-600.	8.3	27
177	Sniff-synchronized, gradient-guided olfactory search by freely moving mice. ELife, 2021, 10, .	2.8	29
178	New methods for oscillation analyses push new theories of discrete cognition. Psychophysiology, 2021, , e13827.	1.2	11
179	Multidimensional population activity in an electrically coupled inhibitory circuit in the cerebellar cortex. Neuron, 2021, 109, 1739-1753.e8.	3.8	14
180	Multimodal patterns of inhibitory activity in cerebellar cortex. Neuron, 2021, 109, 1590-1592.	3.8	0
181	A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nature Communications, 2021, 12, 2727.	5.8	29
182	High-precision coding in visual cortex. Cell, 2021, 184, 2767-2778.e15.	13.5	91
183	Whole-brain functional ultrasound imaging in awake head-fixed mice. Nature Protocols, 2021, 16, 3547-3571.	5.5	52
184	Optogenetic fUSI for brain-wide mapping of neural activity mediating collicular-dependent behaviors. Neuron, 2021, 109, 1888-1905.e10.	3.8	39
185	Improving scalability in systems neuroscience. Neuron, 2021, 109, 1776-1790.	3.8	14
186	Body language signals for rodent social communication. Current Opinion in Neurobiology, 2021, 68, 91-106.	2.0	30
188	Cerebellar granule cell axons support high-dimensional representations. Nature Neuroscience, 2021, 24, 1142-1150.	7.1	47
189	Sensorimotor strategies and neuronal representations for shape discrimination. Neuron, 2021, 109, 2308-2325.e10.	3.8	28
190	Promises and challenges of human computational ethology. Neuron, 2021, 109, 2224-2238.	3.8	37

#	Article	IF	CITATIONS
191	Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making. Neuron, 2021, 109, 1861-1875.e10.	3.8	41
192	Multi-structure Cortical States Deduced From Intracellular Representations of Fixed Tactile Input Patterns. Frontiers in Cellular Neuroscience, 2021, 15, 677568.	1.8	8
195	Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Current Opinion in Neurobiology, 2021, 68, 124-136.	2.0	59
196	A suite of neurophotonic tools to underpin the contribution of internal brain states in fMRI. Current Opinion in Biomedical Engineering, 2021, 18, 100273.	1.8	6
197	Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas. Neuron, 2021, 109, 1810-1824.e9.	3.8	60
198	The mouse prefrontal cortex: Unity in diversity. Neuron, 2021, 109, 1925-1944.	3.8	84
199	Embedding optimization reveals long-lasting history dependence in neural spiking activity. PLoS Computational Biology, 2021, 17, e1008927.	1.5	7
202	Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model. Journal of Neural Engineering, 2021, 18, 045008.	1.8	3
203	Chronic, cortex-wide imaging of specific cell populations during behavior. Nature Protocols, 2021, 16, 3241-3263.	5.5	41
204	Complete representation of action space and value in all dorsal striatal pathways. Cell Reports, 2021, 36, 109437.	2.9	16
205	Delay tactics for action in the cortex. Neuron, 2021, 109, 2045-2046.	3.8	0
206	Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron, 2021, 109, 2183-2201.e9.	3.8	46
207	Sensory coding and the causal impact of mouse cortex in a visual decision. ELife, 2021, 10, .	2.8	63
208	Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. ELife, 2021, 10, .	2.8	28
209	Decoding locomotion from population neural activity in moving C. elegans. ELife, 2021, 10, .	2.8	48
210	Attention separates sensory and motor signals in the mouse visual cortex. Cell Reports, 2021, 36, 109377.	2.9	10
211	Disrupting cortico-cerebellar communication impairs dexterity. ELife, 2021, 10, .	2.8	37
212	Scalable and accurate method for neuronal ensemble detection in spiking neural networks. PLoS ONE, 2021, 16, e0251647.	1.1	3

#	Article	IF	CITATIONS
213	Long-term stability of cortical ensembles. ELife, 2021, 10, .	2.8	40
214	Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins. Communications Biology, 2021, 4, 924.	2.0	12
215	Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex. PLoS Biology, 2021, 19, e3001298.	2.6	15
216	Navigating for reward. Nature Reviews Neuroscience, 2021, 22, 472-487.	4.9	74
218	Modularity and robustness of frontal cortical networks. Cell, 2021, 184, 3717-3730.e24.	13.5	39
219	How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annual Review of Neuroscience, 2021, 44, 517-546.	5.0	51
221	Clustering and control for adaptation uncovers time-warped spike time patterns in cortical networks in vivo. Scientific Reports, 2021, 11, 15066.	1.6	5
223	Microcircuits for spatial coding in the medial entorhinal cortex. Physiological Reviews, 2022, 102, 653-688.	13.1	36
225	Global waves synchronize the brain's functional systems with fluctuating arousal. Science Advances, 2021, 7, .	4.7	110
226	Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse. Neuron, 2021, 109, 2457-2468.e12.	3.8	23
227	A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 2021, 109, 2404-2412.e5.	3.8	35
229	Representational drift in the mouse visual cortex. Current Biology, 2021, 31, 4327-4339.e6.	1.8	96
231	Multi-scale neural decoding and analysis. Journal of Neural Engineering, 2021, 18, 045013.	1.8	16
233	Imaging the temporal dynamics of brain states with highly sampled fMRI. Current Opinion in Behavioral Sciences, 2021, 40, 87-95.	2.0	13
234	High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nature Methods, 2021, 18, 1103-1111.	9.0	96
238	B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors. Nature Communications, 2021, 12, 5188.	5.8	113
239	Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
240	A distributed circuit for associating environmental context with motor choice in retrosplenial cortex. Science Advances, 2021, 7, .	4.7	23

#	Article	IF	CITATIONS
241	Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation. ELife, 2021, 10, .	2.8	11
242	Stable representation of a naturalistic movie emerges from episodic activity with gain variability. Nature Communications, 2021, 12, 5170.	5.8	18
244	A cortico-basal ganglia-thalamo-cortical channel underlying short-term memory. Neuron, 2021, 109, 3486-3499.e7.	3.8	32
245	Global, Low-Amplitude Cortical State Predicts Response Outcomes in a Selective Detection Task in Mice. Cerebral Cortex, 2022, 32, 2037-2053.	1.6	5
248	Uncovering structured responses of neural populations recorded from macaque monkeys with linear support vector machines. STAR Protocols, 2021, 2, 100746.	0.5	7
249	Neurophysiology of Remembering. Annual Review of Psychology, 2022, 73, 187-215.	9.9	25
250	Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron, 2021, 109, 3576-3593.	3.8	45
253	Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli. Current Biology, 2021, 31, 3861-3874.e3.	1.8	19
254	Electrode pooling can boost the yield of extracellular recordings with switchable silicon probes. Nature Communications, 2021, 12, 5245.	5.8	4
255	CellExplorer: A framework for visualizing and characterizing single neurons. Neuron, 2021, 109, 3594-3608.e2.	3.8	56
256	Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex. Cell Reports, 2021, 36, 109669.	2.9	40
257	Natural sensory context drives diverse brain-wide activity during C.Âelegans mating. Cell, 2021, 184, 5122-5137.e17.	13.5	39
258	The secret life of predictive brains: what's spontaneous activity for?. Trends in Cognitive Sciences, 2021, 25, 730-743.	4.0	94
261	Cell type-specific membrane potential changes in dorsolateral striatum accompanying reward-based sensorimotor learning. Function, 2021, 2, zqab049.	1.1	4
262	Urgent Decision Making: Resolving Visuomotor Interactions at High Temporal Resolution. Annual Review of Vision Science, 2021, 7, 323-348.	2.3	8
264	Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. PLoS Computational Biology, 2021, 17, e1009439.	1.5	21
269	Bridging neuronal correlations and dimensionality reduction. Neuron, 2021, 109, 2740-2754.e12.	3.8	24
270	Dynamic and reversible remapping of network representations in an unchanging environment. Neuron, 2021, 109, 2967-2980.e11.	3.8	25

#	Article	IF	CITATIONS
271	Measuring and modeling the motor system with machine learning. Current Opinion in Neurobiology, 2021, 70, 11-23.	2.0	44
272	Probing mechanisms of visual spatial attention in mice. Trends in Neurosciences, 2021, 44, 822-836.	4.2	11
273	Network neuroscience and the connectomics revolution. , 2022, , 25-58.		10
274	A Head-Mounted Multi-Camera System for Electrophysiology and Behavior in Freely-Moving Mice. Frontiers in Neuroscience, 2020, 14, 592417.	1.4	12
275	Survey of spiking in the mouse visual system reveals functional hierarchy. Nature, 2021, 592, 86-92.	13.7	284
276	How to Control Behavioral Studies for Rodents—Don't Project Human Thoughts onto Them. ENeuro, 2021, 8, ENEURO.0456-20.2021.	0.9	9
279	High-Frequency Visual Stimulation Primes Gamma Oscillations for Visually Evoked Phase Reset and Enhances Spatial Acuity. Cerebral Cortex Communications, 2021, 2, tgab016.	0.7	2
280	Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Structure and Function, 2020, 225, 467-480.	1.2	6
281	Experience-Dependent Development and Maintenance of Binocular Neurons in the Mouse Visual Cortex. Cell Reports, 2020, 30, 1982-1994.e4.	2.9	30
282	Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions. Neuron, 2020, 107, 351-367.e19.	3.8	56
283	Inside the mind of an animal. Nature, 2020, 584, 182-185.	13.7	10
284	The Argo: a high channel count recording system for neural recording in vivo. Journal of Neural Engineering, 2021, 18, 015002.	1.8	46
343	Parsing signal and noise in the brain. Science, 2019, 364, 236-237.	6.0	13
344	DeepCINAC: A Deep-Learning-Based Python Toolbox for Inferring Calcium Imaging Neuronal Activity Based on Movie Visualization. ENeuro, 2020, 7, ENEURO.0038-20.2020.	0.9	14
345	Fast, Flexible Closed-Loop Feedback: Tracking Movement in "Real-Millisecond-Time― ENeuro, 2019, 6, ENEURO.0147-19.2019.	0.9	20
346	The Future Is Open: Open-Source Tools for Behavioral Neuroscience Research. ENeuro, 2019, 6, ENEURO.0223-19.2019.	0.9	41
347	Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. ELife, 2019, 8,	2.8	64
348	An arbitrary-spectrum spatial visual stimulator for vision research. ELife, 2019, 8, .	2.8	51

#	Article	IF	CITATIONS
349	Automated task training and longitudinal monitoring of mouse mesoscale cortical circuits using home cages. ELife, 2020, 9, .	2.8	22
350	Learning-related population dynamics in the auditory thalamus. ELife, 2020, 9, .	2.8	10
351	How many neurons are sufficient for perception of cortical activity?. ELife, 2020, 9, .	2.8	82
352	nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. ELife, 2020, 9, .	2.8	45
353	Cannabinoids modulate associative cerebellar learning via alterations in behavioral state. ELife, 2020, 9, .	2.8	7
354	Neurovascular coupling and bilateral connectivity during NREM and REM sleep. ELife, 2020, 9, .	2.8	66
355	The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cerebral Cortex, 2022, 32, 3331-3346.	1.6	6
356	MouseVenue3D: A Markerless Three-Dimension Behavioral Tracking System for Matching Two-Photon Brain Imaging in Free-Moving Mice. Neuroscience Bulletin, 2022, 38, 303-317.	1.5	7
357	How learning unfolds in the brain: toward an optimization view. Neuron, 2021, 109, 3720-3735.	3.8	19
358	Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Current Biology, 2021, 31, 4608-4619.e3.	1.8	30
359	Contribution of animal models toward understanding resting state functional connectivity. NeuroImage, 2021, 245, 118630.	2.1	27
362	The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron, 2021, 109, 3135-3148.e7.	3.8	25
363	A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. ELife, 2021, 10, .	2.8	168
391	Detecting Neuronal Assemblies in Spontaneous Activity with Dictionary Learning. , 2020, , .		0
394	The diversity and specificity of functional connectivity across spatial and temporal scales. NeuroImage, 2021, 245, 118692.	2.1	15
395	Metastable attractors explain the variable timing of stable behavioral action sequences. Neuron, 2022, 110, 139-153.e9.	3.8	31
406	Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations. Neuron, 2022, 110, 120-138.e4.	3.8	43
407	Deconstructing scale-free neuronal avalanches: behavioral transitions and neuronal response. Journal of Physics Complexity, 2021, 2, 045010.	0.9	3

#	Article	IF	CITATIONS
408	Distributed and Localized Dynamics Emerge in the Mouse Neocortex during Reach-to-Grasp Behavior. Journal of Neuroscience, 2022, 42, 777-788.	1.7	15
409	Timescales of local and cross-area interactions during neuroprosthetic learning. Journal of Neuroscience, 2021, 41, JN-RM-1397-21.	1.7	1
421	Model-based decoupling of evoked and spontaneous neural activity in calcium imaging data. PLoS Computational Biology, 2020, 16, e1008330.	1.5	14
422	Statistical neuroscience in the single trial limit. Current Opinion in Neurobiology, 2021, 70, 193-205.	2.0	10
423	Sequential and efficient neural-population coding of complex task information. Neuron, 2022, 110, 328-349.e11.	3.8	37
425	Projections of the Mouse Primary Visual Cortex. Frontiers in Neural Circuits, 2021, 15, 751331.	1.4	5
426	Estimating the dimensionality of the manifold underlying multi-electrode neural recordings. PLoS Computational Biology, 2021, 17, e1008591.	1.5	32
427	Single-neuron firing cascades underlie global spontaneous brain events. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
430	Context-dependent persistency as a coding mechanism for robust and widely distributed value coding. Neuron, 2022, 110, 502-515.e11.	3.8	22
431	Three Water Restriction Schedules Used in Rodent Behavioral Tasks Transiently Impair Growth and Differentially Evoke a Stress Hormone Response without Causing Dehydration. ENeuro, 2021, 8, ENEURO.0424-21.2021.	0.9	7
433	Challenging Paradigms Through Ecological Neuroscience: Lessons From Visual Models. Frontiers in Neuroscience, 2021, 15, 758388.	1.4	1
434	Remote cortical perturbation dynamically changes the network solutions to given tactile inputs in neocortical neurons. IScience, 2022, 25, 103557.	1.9	8
435	Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron, 2022, 110, 486-501.e7.	3.8	33
436	Uncovering the effect of different brain regions on behavioral classification using recurrent neural networks. , 2021, 2021, 6602-6607.		2
438	Deep brain electrophysiology in freely moving sheep. Current Biology, 2022, 32, 763-774.e4.	1.8	4
439	Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. ELife, 2022, 11, .	2.8	35
440	Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Computational Biology, 2022, 18, e1009848.	1.5	9
441	The Importance of Accounting for Movement When Relating Neuronal Activity to Sensory and Cognitive Processes. Journal of Neuroscience, 2022, 42, 1375-1382.	1.7	42

#	Article	IF	CITATIONS
443	Topology of synaptic connectivity constrains neuronal stimulus representation, predicting two complementary coding strategies. PLoS ONE, 2022, 17, e0261702.	1.1	7
446	Decontaminate Traces From Fluorescence Calcium Imaging Videos Using Targeted Non-negative Matrix Factorization. Frontiers in Neuroscience, 2021, 15, 797421.	1.4	4
450	Large-scale neural recordings call for new insights to link brain and behavior. Nature Neuroscience, 2022, 25, 11-19.	7.1	134
451	Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles. Frontiers in Neural Circuits, 2021, 15, 815554.	1.4	14
453	Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. Neurophotonics, 2022, 9, .	1.7	7
455	Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships. PLoS Computational Biology, 2022, 18, e1009799.	1.5	2
456	Pupil diameter is not an accurate real-time readout of locus coeruleus activity. ELife, 2022, 11, .	2.8	52
457	Differential modulation of behavior by infraslow activities of different brain regions. PeerJ, 2022, 10, e12875.	0.9	4
462	Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Experimental Neurology, 2022, 351, 114008.	2.0	4
463	Multi-regional module-based signal transmission in mouse visual cortex. Neuron, 2022, 110, 1585-1598.e9.	3.8	27
464	The whole prefrontal cortex is premotor cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200524.	1.8	35
467	A Fast and Efficient Change-Point Detection Framework Based on Approximate \$k\$-Nearest Neighbor Graphs. IEEE Transactions on Signal Processing, 2022, 70, 1976-1986.	3.2	3
468	Look-Up and Look-Down Neurons in the Mouse Visual Thalamus During Freely Moving Exploration. SSRN Electronic Journal, 0, , .	0.4	0
469	Mechanisms of distributed working memory in a large-scale network of macaque neocortex. ELife, 2022, 11, .	2.8	48
471	Beyond Experiments. Perspectives on Psychological Science, 2022, 17, 1101-1119.	5.2	36
472	Telling functional networks apart using ranked network features stability. Scientific Reports, 2022, 12, 2562.	1.6	0
473	A 1.66Gb/s and 5.8pJ/b Transcutaneous IR-UWB Telemetry System with Hybrid Impulse Modulation for Intracortical Brain-Computer Interfaces. , 2022, , .		11
475	Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. ELife, 2022, 11, .	2.8	28

#	Article	IF	CITATIONS
477	The anterior cingulate cortex directly enhances auditory cortical responses in air-puffing-facilitated flight behavior. Cell Reports, 2022, 38, 110506.	2.9	13
479	The role of higher-order thalamus during learning and correct performance in goal-directed behavior. ELife, 2022, 11, .	2.8	5
482	Imaging whole-brain activity to understand behaviour. Nature Reviews Physics, 2022, 4, 292-305.	11.9	24
483	Motor-related signals support localization invariance for stable visual perception. PLoS Computational Biology, 2022, 18, e1009928.	1.5	7
484	Inference of Multiplicative Factors Underlying Neural Variability in Calcium Imaging Data. Neural Computation, 2022, , 1-27.	1.3	0
485	Neural Algorithms and Circuits for Motor Planning. Annual Review of Neuroscience, 2022, 45, 249-271.	5.0	28
486	Neural correlates of blood flow measured by ultrasound. Neuron, 2022, 110, 1631-1640.e4.	3.8	40
487	Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 854992.	1.4	12
488	Hybrid fiber optic-fMRI for multimodal cell-specific recording and manipulation of neural activity in rodents. Neurophotonics, 2022, 9, 032206.	1.7	6
489	Fast, cell-resolution, wide field-of-view two-photon microscopy to reveal functional network architectures across multi-modal cortical areas. , 2022, , .		0
490	Neuronal activity in sensory cortex predicts the specificity of learning in mice. Nature Communications, 2022, 13, 1167.	5.8	6
491	Neuromatch Academy: a 3-week, online summer school in computational neuroscience. The Journal of Open Source Education, 2022, 5, 118.	0.2	0
492	De novo inter-regional coactivations of preconfigured local ensembles support memory. Nature Communications, 2022, 13, 1272.	5.8	14
494	Task-related hemodynamic responses in human early visual cortex are modulated by task difficulty and behavioral performance. ELife, 2022, 11, .	2.8	8
495	Connecting the dots in ethology: applying network theory to understand neural and animal collectives. Current Opinion in Neurobiology, 2022, 73, 102532.	2.0	3
496	Breaking trade-offs: Development of fast, high-resolution, wide-field two-photon microscopes to reveal the computational principles of the brain. Neuroscience Research, 2022, 179, 3-14.	1.0	8
497	Arousal state affects perceptual decision-making by modulating hierarchical sensory processing in a large-scale visual system model. PLoS Computational Biology, 2022, 18, e1009976.	1.5	6
498	Implicit mechanisms of intention. Current Biology, 2022, 32, 2051-2060.e6.	1.8	15

#	Article	IF	CITATIONS
501	A dynamical systems view of neuroethology: Uncovering stateful computation in natural behaviors. Current Opinion in Neurobiology, 2022, 73, 102517.	2.0	6
505	Parallel processing by distinct classes of principal neurons in the olfactory cortex. ELife, 2021, 10, .	2.8	7
507	Nonlinear computations in spiking neural networks through multiplicative synapses. , 0, 1, .		2
508	Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice. Cell Reports, 2021, 37, 110081.	2.9	8
509	A novel theoretical framework for simultaneous measurement of excitatory and inhibitory conductances. PLoS Computational Biology, 2021, 17, e1009725.	1.5	0
511	Noradrenergic terminal short-term potentiation enables modality-selective integration of sensory input and vigilance state. Science Advances, 2021, 7, eabk1378.	4.7	15
512	Distinct Progressions of Neuronal Activity Changes Underlie the Formation and Consolidation of a Gustatory Associative Memory. Journal of Neuroscience, 2022, 42, 909-921.	1.7	5
515	Distributed coding of duration in rodent prefrontal cortex during time reproduction. ELife, 2021, 10, .	2.8	12
516	Leaving flatland: Advances in 3D behavioral measurement. Current Opinion in Neurobiology, 2022, 73, 102522.	2.0	20
521	Alpha blocking and 1/fl² spectral scaling in resting EEG can be accounted for by a sum of damped alpha band oscillatory processes. PLoS Computational Biology, 2022, 18, e1010012.	1.5	7
522	HectoSTAR μLED Optoelectrodes for Largeâ€Scale, Highâ€Precision In Vivo Optoâ€Electrophysiology. Advanced Science, 2022, 9, e2105414.	5.6	20
523	Task engagement turns on spatial maps. Nature Neuroscience, 2022, 25, 534-535.	7.1	1
524	Cortex-Wide Spontaneous Activity Steers Propagating Sensory-Evoked Activity in Awake Mice. SSRN Electronic Journal, 0, , .	0.4	0
526	Mobile Brain/Body Imaging: Challenges and opportunities for the implementation of research programs based on the 4E perspective to cognition. Adaptive Behavior, 2023, 31, 423-448.	1.1	3
527	Dynamic Distortion of Orientation Representation after Learning in the Mouse Primary Visual Cortex. Journal of Neuroscience, 2022, 42, 4311-4325.	1.7	3
528	Estimating How Sounds Modulate Orientation Representation in the Primary Visual Cortex Using Shallow Neural Networks. Frontiers in Systems Neuroscience, 2022, 16, .	1.2	3
530	Preserved cortical somatotopic and motor representations in tetraplegic humans. Current Opinion in Neurobiology, 2022, 74, 102547.	2.0	7
531	Peripheral NOD-like receptor deficient inflammatory macrophages trigger neutrophil infiltration into the brain disrupting daytime locomotion. Communications Biology, 2022, 5, 464.	2.0	2

#	Article	IF	Citations
532	Emergent reliability in sensory cortical coding and inter-area communication. Nature, 2022, 605, 713-721.	13.7	31
533	Recording Pain-Related Brain Activity in Behaving Animals Using Calcium Imaging and Miniature Microscopes. Neuromethods, 2022, , 217-276.	0.2	1
537	Learning, fast and slow. Current Opinion in Neurobiology, 2022, 75, 102555.	2.0	13
539	Multisensory task demands temporally extend the causal requirement for visual cortex in perception. Nature Communications, 2022, 13, .	5.8	12
540	3D pose estimation enables virtual head fixation in freely moving rats. Neuron, 2022, 110, 2080-2093.e10.	3.8	13
543	Natural behavior is the language of the brain. Current Biology, 2022, 32, R482-R493.	1.8	53
544	EEG Signals Index a Global Signature of Arousal Embedded in Neuronal Population Recordings. ENeuro, 2022, 9, ENEURO.0012-22.2022.	0.9	5
545	Sequential transmission of task-relevant information in cortical neuronal networks. Cell Reports, 2022, 39, 110878.	2.9	23
546	Internally generated population activity in cortical networks hinders information transmission. Science Advances, 2022, 8, .	4.7	4
547	Slow or sudden: Re-interpreting the learning curve for modern systems neuroscience. IBRO Neuroscience Reports, 2022, 13, 9-14.	0.7	8
548	Functional (ir)Relevance of Posterior Parietal Cortex during Audiovisual Change Detection. Journal of Neuroscience, 2022, 42, 5229-5245.	1.7	10
549	Dendritic Compartmentalization of Learning-Related Plasticity. ENeuro, 2022, 9, ENEURO.0060-22.2022.	0.9	6
551	Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data. PLoS Computational Biology, 2022, 18, e1010214.	1.5	1
554	Stable choice coding in rat frontal orienting fields across model-predicted changes of mind. Nature Communications, 2022, 13, .	5.8	5
555	GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron, 2022, 110, 2438-2454.e8.	3.8	20
556	Different Excitation–Inhibition Correlations Between Spontaneous and Tone-evoked Activity in Primary Auditory Cortex Neurons. Neuroscience, 2022, 496, 205-218.	1.1	0
557	Tyraminergic corollary discharge filters reafferent perception in a chemosensory neuron. Current Biology, 2022, , .	1.8	4
561	The structures and functions of correlations in neural population codes. Nature Reviews Neuroscience, 2022, 23, 551-567.	4.9	63

#	Article	IF	CITATIONS
562	From calcium imaging to graph topology. Network Neuroscience, 2022, 6, 1125-1147.	1.4	6
563	Fast and accurate neuron segmentation and unmixing based on shallow U-Net. , 2022, , .		0
566	Shared and specialized coding across posterior cortical areas for dynamic navigation decisions. Neuron, 2022, 110, 2484-2502.e16.	3.8	22
568	Cortical-subcortical interactions in goal-directed behavior. Physiological Reviews, 2023, 103, 347-389.	13.1	13
569	A narrative review of cortical visual prosthesis systems: the latest progress and significance of nanotechnology for the future. Annals of Translational Medicine, 2022, 10, 716-716.	0.7	6
570	Functional imaging of brain organoids using high-density microelectrode arrays. MRS Bulletin, 2022, 47, 530-544.	1.7	6
575	Increased Reliability of Visually-Evoked Activity in Area V1 of the MECP2-Duplication Mouse Model of Autism. Journal of Neuroscience, 2022, 42, 6469-6482.	1.7	3
576	Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation. Nature Communications, 2022, 13, .	5.8	4
577	A transcriptomic axis predicts state modulation of cortical interneurons. Nature, 2022, 607, 330-338.	13.7	56
579	Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition. Annual Review of Neuroscience, 2022, 45, 533-560.	5.0	30
583	Decoding defensive systems. Current Opinion in Neurobiology, 2022, 76, 102600.	2.0	2
584	Targeted dimensionality reduction enables reliable estimation of neural population coding accuracy from trial-limited data. PLoS ONE, 2022, 17, e0271136.	1.1	1
585	Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations. Nature Communications, 2022, 13, .	5.8	12
587	Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron, 2022, 110, 3064-3075.	3.8	39
588	A Goldilocks theory of cognitive control: Balancing precision and efficiency with low-dimensional control states. Current Opinion in Neurobiology, 2022, 76, 102606.	2.0	10
591	SmaRT2P: a software for generating and processing smart line recording trajectories for population two-photon calcium imaging. Brain Informatics, 2022, 9, .	1.8	0
593	A cognitive process occurring during sleep is revealed by rapid eye movements. Science, 2022, 377, 999-1004.	6.0	28
595	Task specificity in mouse parietal cortex. Neuron, 2022, 110, 2961-2969.e5.	3.8	17

#	Article	IF	CITATIONS
596	Coordination between Eye Movement and Whisking in Head-Fixed Mice Navigating a Plus Maze. ENeuro, 2022, 9, ENEURO.0089-22.2022.	0.9	8
597	Neurovascular coupling: motive unknown. Trends in Neurosciences, 2022, 45, 809-819.	4.2	44
598	Spatiotemporal dynamics of human high gamma discriminate naturalistic behavioral states. PLoS Computational Biology, 2022, 18, e1010401.	1.5	1
599	Editorial: Decision making from the perspective of neural thermodynamics and molecular information processing. Frontiers in Neuroscience, 0, 16, .	1.4	0
600	Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest. Nature Communications, 2022, 13, .	5.8	17
602	Visual-area-specific tonic modulation of GABA release by endocannabinoids sets the activity and coordination of neocortical principal neurons. Cell Reports, 2022, 40, 111202.	2.9	3
603	Look-up and look-down neurons in the mouse visual thalamus during freely moving exploration. Current Biology, 2022, 32, 3987-3999.e4.	1.8	5
604	Lateralization of short-term memory in the frontal cortex. Cell Reports, 2022, 40, 111190.	2.9	9
606	Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology. Frontiers in Systems Neuroscience, 0, 16, .	1.2	3
607	Representational drift: Emerging theories for continual learning and experimental future directions. Current Opinion in Neurobiology, 2022, 76, 102609.	2.0	42
608	Reduced variability of bursting activity during working memory. Scientific Reports, 2022, 12, .	1.6	6
609	Refinements to rodent head fixation and fluid/food control for neuroscience. Journal of Neuroscience Methods, 2022, 381, 109705.	1.3	6
610	Spatiotemporal dynamics in large-scale cortical networks. Current Opinion in Neurobiology, 2022, 77, 102627.	2.0	3
611	Memory Consolidation: Neural Data Analysis and Mathematical Modeling. , 2022, , 1-37.		0
612	Internal Feedback in Biological Control: Locality and System Level Synthesis. , 2022, , .		0
613	Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions. Frontiers in Computational Neuroscience, 0, 16, .	1.2	9
614	Behaviorally relevant decision coding in primary somatosensory cortex neurons. Nature Neuroscience, 2022, 25, 1225-1236.	7.1	21
615	Contribution of behavioural variability to representational drift. ELife, 0, 11, .	2.8	21

		CITATION REPORT	
#	Article	IF	Citations
617	Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology, 2023, 38, 73	-81. 1.6	2
618	Subcortical-cortical dynamical states of the human brain and their breakdown in stroke. Nature Communications, 2022, 13, .	5.8	24
619	How to incorporate biological insights into network models and why it matters. Journal of Physiology, 2023, 601, 3037-3053.	1.3	3
621	A Standardized Nonvisual Behavioral Event Is Broadcasted Homogeneously across Cortical Visu Areas without Modulating Visual Responses. ENeuro, 2022, 9, ENEURO.0491-21.2022.	al 0.9	2
624	Independent response modulation of visual cortical neurons by attentional and behavioral state Neuron, 2022, 110, 3907-3918.e6.	25. 3.8	9
625	Thalamus-driven functional populations in frontal cortex support decision-making. Nature Neuroscience, 2022, 25, 1339-1352.	7.1	21
627	Joint coding of visual input and eye/head position in V1 of freely moving mice. Neuron, 2022, 1 3897-3906.e5.	10, 3.8	20
628	Active neural coordination of motor behaviors with internal states. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
629	Formation and computational implications of assemblies in neural circuits. Journal of Physiolog 2023, 601, 3071-3090.	y, 1.3	9
631	Neural coding: Looking up and down the visual thalamus. Current Biology, 2022, 32, R941-R94	3. 1.8	0
632	Awake perception is associated with dedicated neuronal assemblies in the cerebral cortex. Natu Neuroscience, 2022, 25, 1327-1338.	ire 7.1	14
633	Behavior is movement only but how to interpret it? Problems and pitfalls in translational neuroscience—a 40-year experience. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	3
635	Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nature Biomedical Engineering, 2023, 7, 520-532.	11.6	45
637	Multiscale imaging informs translational mouse modeling of neurological disease. Neuron, 202 3688-3710.	2, 110, 3.8	3
638	Multiregion neuronal activity: the forest and the trees. Nature Reviews Neuroscience, 2022, 23 683-704.	, 4.9	21
639	Memory Consolidation: Neural Data Analysis and Mathematical Modeling. , 2022, , 973-1009.		0
641	Explaining integration of evidence separated by temporal gaps with frontoparietal circuit mode Neuroscience, 2022, , .	ls. 1.1	1
642	Transition of distinct context-dependent ensembles from secondary to primary motor cortex in skilled motor performance. Cell Reports, 2022, 41, 111494.	2.9	11

#	Article	IF	CITATIONS
643	How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions?. Entropy, 2022, 24, 1498.	1.1	1
644	The Dangers of Cortical Brain Maps. Journal of Cognitive Neuroscience, 0, , 1-4.	1.1	2
646	A 0.00426 mm2 77.6-dB Dynamic Range VCO-Based CTDSM for Multi-Channel Neural Recording. Electronics (Switzerland), 2022, 11, 3477.	1.8	0
648	Hemisphere-specific spatial representation by hippocampal granule cells. Nature Communications, 2022, 13, .	5.8	6
651	Learning shapes cortical dynamics to enhance integration of relevant sensory input. Neuron, 2022, , .	3.8	5
652	Precise movement-based predictions in the mouse auditory cortex. Current Biology, 2022, 32, 4925-4940.e6.	1.8	20
653	The visual representation of space in the primate brain. Neuroforum, 2022, .	0.2	0
654	Tropical support vector machines: Evaluations and extension to function spaces. Neural Networks, 2023, 157, 77-89.	3.3	3
655	Integrating Statistical and Machine Learning Approaches for Neural Classification. IEEE Access, 2022, , 1-1.	2.6	0
656	A closed-loop automated craniotomy system with real-time bio-impedance feedback. IEEE Sensors Journal, 2022, , 1-1.	2.4	0
657	An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces. IEEE Journal of Solid-State Circuits, 2022, 57, 3656-3668.	3.5	6
658	Neural Mechanisms That Make Perceptual Decisions Flexible. Annual Review of Physiology, 2023, 85, 191-215.	5.6	7
660	Neural basis of anticipation and premature impulsive action in the frontal cortex. Nature Neuroscience, 2022, 25, 1683-1692.	7.1	2
661	Geometry of spiking patterns in early visual cortex: a topological data analytic approach. Journal of the Royal Society Interface, 2022, 19, .	1.5	4
664	Recent Advances at the Interface of Neuroscience and Artificial Neural Networks. Journal of Neuroscience, 2022, 42, 8514-8523.	1.7	3
665	Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. Cell Reports, 2022, 41, 111646.	2.9	10
668	REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex. Nature Communications, 2022, 13, .	5.8	13
671	Somatosensory cortical signature of facial nociception and vibrotactile touch–induced analgesia. Science Advances, 2022, 8, .	4.7	4

ARTICLE IF CITATIONS # Multimaterial Glass Fiber Probe for Deep Neural Stimulation and Detection. Advanced Optical 673 3.6 3 Materials, 2023, 11, . Cortex-wide response mode of VIP-expressing inhibitory neurons by reward and punishment. ELife, 0, 11, 2.8 Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nature 676 7.1 38 Neuroscience, 2022, 25, 1706-1713. In Vivo Penetrating Microelectrodes for Brain Electrophysiology. Sensors, 2022, 22, 9085. Overcoming the Domain Gap in Neural Action Representations. International Journal of Computer 678 10.9 0 Vision, 0, , . Neural cognitive signals during spontaneous movements in the macaque. Nature Neuroscience, 2023, 26, 295-305. 679 7.1 A deep learning framework for inference of single-trial neural population dynamics from calcium 680 7.1 6 imaging with subframe temporal resolution. Nature Neuroscience, 2022, 25, 1724-1734. One-year-later spontaneous EEG features predict visual exploratory human phenotypes. 2.0 Communication's Biology, 2022, 5, . Beyond noise to function: reframing the global brain activity and its dynamic topography. 682 2.0 15 Communications Biology, 2022, 5, . Cortex-wide spontaneous activity non-linearly steers propagating sensory-evoked activity in awake mice. Cell Reports, 2022, 41, 111740. Improved visualization of high-dimensional data using the distance-of-distance transformation. PLoS 685 3 1.5 Computational Biology, 2022, 18, e1010764. Acute head-fixed recordings in awake mice with multiple Neuropixels probes. Nature Protocols, 2023, 688 5.5 18, 424-457. Walking humans and running mice: perception and neural encoding of optic flow during self-motion. 691 1.8 3 Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, . Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States. Journal of Neuroscience, 2023, 43, 949-964. 1.7 Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs. 693 2.8 3 ELife, 0, 11, . Behavioral origin of sound-evoked activity in mouse visual cortex. Nature Neuroscience, 2023, 26, 39 251-258. Neural assemblies uncovered by generative modeling explain whole-brain activity statistics and 703 2.8 9 reflect structural connectivity. ELife, 0, 12, . Differential processing of decision information in subregions of rodent medial prefrontal cortex. 704 2.8 ELife, 0, 12, .

#	Article	IF	CITATIONS
705	Distributed context-dependent choice information in mouse posterior cortex. Nature Communications, 2023, 14, .	5.8	6
707	Precise Spiking Motifs in Neurobiological and Neuromorphic Data. Brain Sciences, 2023, 13, 68.	1.1	3
708	Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers, 2023, 15, 84.	2.0	3
709	Chronic multiscale resolution of mouse brain networks using combined mesoscale cortical imaging and subcortical fiber photometry. Neurophotonics, 2023, 10, .	1.7	1
712	A striatal circuit balances learned fear in the presence and absence of sensory cues. ELife, 0, 12, .	2.8	4
713	Cortical glutamatergic projection neuron types contribute to distinct functional subnetworks. Nature Neuroscience, 0, , .	7.1	7
715	Scale-free behavioral dynamics directly linked with scale-free cortical dynamics. ELife, 0, 12, .	2.8	9
717	Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nature Neuroscience, 0, , .	7.1	13
718	The Future of Holistic Neural Interfaces: 2D Materials, Neuromorphic Computing, and Computational Co-Design. , 2022, , .		0
721	Motor cortex gates distractor stimulus encoding in sensory cortex. Nature Communications, 2023, 14,	5.8	2
722	Edge computing on TPU for brain implant signal analysis. Neural Networks, 2023, 162, 212-224.	3.3	1
724	Crossmodal plasticity in hearing loss. Trends in Neurosciences, 2023, 46, 377-393.	4.2	7
725	High-frequency neuronal signal better explains multi-phase BOLD response. NeuroImage, 2023, 268, 119887.	2.1	2
726	Improving the study of brain-behavior relationships by revisiting basic assumptions. Trends in Cognitive Sciences, 2023, 27, 246-257.	4.0	30
729	Granger causality analysis for calcium transients in neuronal networks, challenges and improvements. ELife, 0, 12, .	2.8	5
730	Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in mice. ELife, 0, 12,	2.8	1
732	Sensory and Choice Responses in MT Distinct from Motion Encoding. Journal of Neuroscience, 2023, 43, 2090-2103.	1.7	1
733	Cocaine regulates sensory filtering in cortical pyramidal neurons. Cell Reports, 2023, 42, 112122.	2.9	Ο

#	Article	IF	Citations
734	Transcranial cortex-wide Ca2+ imaging for the functional mapping of cortical dynamics. Frontiers in Neuroscience, 0, 17, .	1.4	2
736	Development of top-down cortical propagations in youth. Neuron, 2023, 111, 1316-1330.e5.	3.8	10
738	Mood Disorders and Creativity. Current Clinical Neurology, 2023, , 91-111.	0.1	0
739	Fast-local and slow-global neural ensembles in the mouse brain. Network Neuroscience, 0, , 1-12.	1.4	0
742	Influence of vigilance-related arousal on brain dynamics: Potentials of new approaches. NeuroImage, 2023, 270, 119963.	2.1	0
743	Mesoscale volumetric light-field (MesoLF) imaging of neuroactivity across cortical areas at 18 Hz. Nature Methods, 2023, 20, 600-609.	9.0	7
745	Quasiuniversal scaling in mouse-brain neuronal activity stems from edge-of-instability critical dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
746	A stable, distributed code for cue value in mouse cortex during reward learning. ELife, 0, 12, .	2.8	10
748	Saccadic modulation of neural excitability in auditory areas of the neocortex. Current Biology, 2023, 33, 1185-1195.e6.	1.8	9
750	Graph-Based Change-Point Analysis. Annual Review of Statistics and Its Application, 2023, 10, 475-499.	4.1	1
753	A survey of neurophysiological differentiation across mouse visual brain areas and timescales. Frontiers in Computational Neuroscience, 0, 17, .	1.2	1
754	Bistability of prefrontal states gates access to consciousness. Neuron, 2023, 111, 1666-1683.e4.	3.8	4
758	Effects of Stimulus Timing on the Acquisition of an Olfactory Working Memory Task in Head-Fixed Mice. Journal of Neuroscience, 2023, 43, 3120-3130.	1.7	4
759	Sound Improves Neuronal Encoding of Visual Stimuli in Mouse Primary Visual Cortex. Journal of Neuroscience, 2023, 43, 2885-2906.	1.7	6
760	Hippocampal conjunctive and complementary CA1 populations relate sensory events to movement. IScience, 2023, 26, 106481.	1.9	2
762	Open-source tools for behavioral video analysis: Setup, methods, and best practices. ELife, 0, 12, .	2.8	24
763	Interhemispheric competition during sleep. Nature, 2023, 616, 312-318.	13.7	11
764	Ascending neurons convey behavioral state to integrative sensory and action selection brain regions. Nature Neuroscience, 2023, 26, 682-695.	7.1	13

ARTICLE IF CITATIONS # A deep generative adversarial network capturing complex spiral waves in disinhibited circuits of the 765 0.8 2 cerebral cortex. BMC Neuroscience, 2023, 24, . Leptin deficiency-caused behavioral change – A comparative analysis using EthoVision and DeepLabCut. 1.4 Frontiers in Neuroscience, 0, 17, . Working memory control dynamics follow principles of spatial computing. Nature Communications, 768 5.8 9 2023, 14, . Coherent mapping of position and head direction across auditory and visual cortex. Cerebral Cortex, 2023, 33, 7369-7385. Imaging Somatosensory Cortex in Rodents. Neuromethods, 2023, , 373-396. 770 0.2 0 771 Electronic Neurons for a New Learning Paradigm. Advanced Healthcare Materials, 0, , . Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral 772 2.9 6 transitions in a mouse model of autism. Cell Reports, 2023, 42, 112258. Fundamental law underlying predictive remapping. Physical Review Research, 2023, 5, . 1.3 How the conception of control influences our understanding of actions. Nature Reviews 774 4.9 4 Neuroscience, 2023, 24, 313-329. Rapid detection of neurons in widefield calcium imaging datasets after training with synthetic data. Nature Methods, 2023, 20, 747-754. Neural dynamics underlying associative learning in the dorsal and ventral hippocampus. Nature 776 21 7.1 Neuroscience, 2023, 26, 798-809. Norepinephrine links astrocytic activity to regulation of cortical state. Nature Neuroscience, 2023, 778 7.1 26, 579-593. NeuroSeg-II: A deep learning approach for generalized neuron segmentation in two-photon Ca2+ 780 1.8 0 imaging. Frontiers in Cellular Neuroscience, 0, 17, . Schema formation in a neural population subspace underlies learning-to-learn in flexible 7.1 sensorimotor problem-solving. Nature Neuroscience, 2023, 26, 879-890. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Frontiers in Human 782 1.0 1 Neuroscience, 0, 17, . Dynamic synchronization between hippocampal representations and stepping. Nature, 2023, 617, 125-131. Mobile cognition: imaging the human brain in the â€real world'. Nature Reviews Neuroscience, 2023, 24, 784 4.9 29 347-362. A distributed and efficient population code of mixed selectivity neurons for flexible navigation 5.8 decisions. Nature Communications, 2023, 14, .

0

#	Article	IF	CITATIONS
788	Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes. ELife, 0, 12, .	2.8	8
791	Editorial: Deciphering population neuronal dynamics: from theories to experiments. Frontiers in Systems Neuroscience, 0, 17, .	1.2	0
792	A novel task to investigate vibrotactile detection in mice. PLoS ONE, 2023, 18, e0284735.	1.1	0
879	How Can Laminar Microelectrodes Contribute to Human Neurophysiology?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 739-760.	0.1	0
880	How Can We Use Simultaneous Microwire Recordings from Multiple Areas to Investigate Inter-Areal Interactions?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 719-737.	0.1	0
882	Modeling and Inference of Sparse Neural Dynamic Functional Connectivity Networks Underlying Functional Ultrasound Data. , 2023, , .		0
971	Sensory and behavioral modulation of thalamic head-direction cells. Nature Neuroscience, 2024, 27, 28-33.	7.1	0
974	Comparing Spike Sorting Algorithms on Simulated Extracellular Multi-Electrode Array Recordings. , 2023, , .		Ο

976 Neural Crystals. , 2023, , .