Kasha's rule: a reappraisal

Physical Chemistry Chemical Physics 21, 10061-10069

DOI: 10.1039/c9cp00739c

Citation Report

#	Article	IF	CITATIONS
1	Multiple Anti-Kasha Emissions in Transition-Metal Complexes. Journal of Physical Chemistry Letters, 2019, 10, 5798-5804.	2.1	28
2	Light activated synthesis of the atomically precise fluorescent silver cluster Ag18(Capt)14. Nanoscale, 2019, 11, 20522-20526.	2.8	11
3	Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. Journal of Physical Chemistry Letters, 2020, 11, 210-216.	2.1	14
4	Directed Energy Transfer from Monolayer WS ₂ to Near-Infrared Emitting PbS–CdS Quantum Dots. ACS Nano, 2020, 14, 15374-15384.	7.3	28
5	Luminescent Symmetrically and Unsymmetrically Substituted Diboranes(4). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 816-827.	0.6	0
6	Nonadiabatic Dynamics Simulation of the Wavelength-Dependent Photochemistry of Azobenzene Excited to the nπ* and ππ* Excited States. Journal of the American Chemical Society, 2020, 142, 20680-20690.	6.6	46
7	Dual Emission: Classes, Mechanisms, and Conditions. Angewandte Chemie - International Edition, 2021, 60, 22624-22638.	7.2	158
8	Exploring ground and low-lying excited states for diquat, paraquat, and dipyridyl isomers. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112817.	2.0	9
9	Photoinduced degradation of indigo carmine: insights from a computational investigation. Journal of Molecular Modeling, 2020, 26, 309.	0.8	13
10	Impact of ligand substituents on the crystal structures, optical and conducting properties of phenylmercury(II) β-oxodithioester complexes. Journal of Organometallic Chemistry, 2020, 928, 121532.	0.8	O
11	Hot carriers perspective on the nature of traps in perovskites. Nature Communications, 2020, 11, 2712.	5.8	65
12	Perylene derivative films: Emission from higher singlet excited state. Journal of Luminescence, 2020, 226, 117478.	1.5	1
13	Computational Protocol To Predict Anti-Kasha Emissions: The Case of Azulene Derivatives. Journal of Physical Chemistry A, 2020, 124, 7228-7237.	1.1	35
14	Understanding the effects of the co-sensitizing ratio on the surface potential, electron injection efficiency, and FA¶rster resonance energy transfer. Physical Chemistry Chemical Physics, 2020, 22, 5568-5576.	1.3	5
15	Mouse S100G protein exhibits properties characteristic of a calcium sensor. Cell Calcium, 2020, 87, 102185.	1.1	2
16	Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene. Journal of Chemical Theory and Computation, 2020, 16, 2617-2626.	2.3	29
17	Erbium complexes as pioneers for implementing linear light-upconversion in molecules. Materials Horizons, 2020, 7, 1279-1296.	6.4	56
18	Insight into structure-property relationships of aryl-substituted 2,2′:6′,2″-terpyridines. Dyes and	2.0	12

#	Article	IF	CITATIONS
19	Synthesis and photophysics of benzazole based triazoles with amino acid-derived pendant units. Multiparametric optical sensors for BSA and CT-DNA in solution. Journal of Molecular Liquids, 2020, 309, 113092.	2.3	16
20	Duale Emission: Klassen, Mechanismen und Bedingungen. Angewandte Chemie, 2021, 133, 22804-22820.	1.6	10
21	Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics. Symmetry, 2021, 13, 199.	1.1	3
22	Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chemical Society Reviews, 2021, 50, 9540-9685.	18.7	205
23	Restriction of Intramolecular Motion(RIM): Investigating AIE Mechanism from Experimental and Theoretical Studies. Chemical Research in Chinese Universities, 2021, 37, 1-15.	1.3	81
24	Enhanced Two-Photon Absorption in Two Triphenylamine-Based All-Organic Compounds. Journal of Physical Chemistry A, 2021, 125, 1870-1879.	1.1	4
25	Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules, 2021, 26, 1475.	1.7	101
26	Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Advanced Optical Materials, 2021, 9, 2002251.	3.6	146
27	Optical properties of 2,6-di(pyrazin-2-yl)pyridines substituted with extended aryl groups. Dyes and Pigments, 2021, 188, 109168.	2.0	6
28	Tuning the emission color of a quantum emitter by using photonic local density of states. Optics Letters, 2021, 46, 2750.	1.7	4
29	Construction of Heptagonâ€Containing Molecular Nanocarbons. Angewandte Chemie, 2021, 133, 23700-23724.	1.6	31
30	Construction of Heptagonâ€Containing Molecular Nanocarbons. Angewandte Chemie - International Edition, 2021, 60, 23508-23532.	7.2	118
31	Synthesis and Halochromic Properties of 1,2,6â€Tri―and 1,2,3,6â€Tetraâ€aryl Azulenes. ChemPlusChem, 2021, 86, 1116-1122.	1.3	2
32	Synthesis and Spectroscopic Characterization of Thienopyrazine-Based Fluorophores for Application in Luminescent Solar Concentrators (LSCs). Molecules, 2021, 26, 5428.	1.7	7
33	Bola-type PAH-based fluorophores/chemosensors: Synthesis via an unusual clemmensen reduction and photophysical studies. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 420, 113466.	2.0	5
34	Solvent-free C–H alkynylation of azulenes. Organic Chemistry Frontiers, 2021, 8, 5674-5680.	2.3	3
35	A single isomer rotary switch demonstrating anti-Kasha behaviour: Does acidity function matter?. Physical Chemistry Chemical Physics, 2021, 23, 13760-13767.	1.3	9
36	Performance evaluation of optimized leaf-shaped two-dimension (2D) potassium doped CuO nanostructures with enhanced structural, optical and electronic properties. Ceramics International, 2020, 46, 20404-20414.	2.3	22

#	Article	IF	CITATIONS
37	Revealing the tunability of electronic structures and optical properties of novel SWCNT derivatives, phenine nanotubes. Physical Chemistry Chemical Physics, 2021, 23, 24239-24248.	1.3	4
38	Photorealistic Visualization of Fluorescence Materials with Dual Surface Scattering., 2019, , .		O
39	Zn(II) complexes based on functional organic ligands: Two-photon activity, theoretical calculation and bioimaging. Dyes and Pigments, 2022, 197, 109878.	2.0	1
40	Prompt and Long-Lived Anti-Kasha Emission from Organic Dyes. Molecules, 2021, 26, 6999.	1.7	22
41	N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment. ACS Omega, 2022, 7, 4052-4061.	1.6	22
42	Gas-Phase Fluorescence of Proflavine Reveals Two Close-Lying, Brightly Emitting States. Journal of Physical Chemistry Letters, 2022, 13, 2187-2192.	2.1	2
43	Conjugated Oligoelectrolytes for Longâ€Term Tumor Tracking with Incremental NIRâ€II Emission. Advanced Materials, 2022, 34, e2201989.	11.1	22
44	Femtosecond dynamics of stepwise two-photon ionization in solutions as revealed by pump–repump–probe detection with a burst mode of photoexcitation. Physical Chemistry Chemical Physics, 2022, 24, 14187-14197.	1.3	1
45	Triple optically modulated and enzymatically responsive organic afterglow materials for dynamic anti-counterfeiting. Materials Chemistry Frontiers, 2022, 6, 1824-1834.	3.2	12
46	New Raman spectroscopic methods' application in forensic science. Talanta Open, 2022, 6, 100124.	1.7	5
47	Photophysics of Zinc 2,11,20,29-Tetra- <i>tert</i> -butyl-2,3-Naphthalocyanine: Aggregation-Induced S ₂ Emission and Rapid Intersystem Crossing in the Solid State. Journal of Physical Chemistry C, 2022, 126, 11680-11689.	1.5	1
48	High-Performance Organic Laser Semiconductor Enabling Efficient Light-Emitting Transistors and Low-Threshold Microcavity Lasers. Nano Letters, 2022, 22, 5803-5809.	4.5	15
49	Excitation Energy-Dependent, Excited-State Intramolecular Proton Transfer-Based Dual Emission in Poor Hydrogen-Bonding Solvents. Journal of Physical Chemistry A, 2022, 126, 5711-5720.	1.1	7
50	Unusually high energy barriers for internal conversion in a {Ru(bpy)} chromophore. Physical Chemistry Chemical Physics, 0, , .	1.3	1
51	Anti-Kasha Fluorescence in Molecular Entities: Central Role of Electron–Vibrational Coupling. Accounts of Chemical Research, 2022, 55, 2698-2707.	7.6	21
52	Dynamic Selfâ€Assembly of Photoâ€Reduced Perylene Diimide: Singleâ€Component White Light Emission from Organic Radicals. Advanced Optical Materials, 2022, 10, .	3.6	10
53	Polarityâ€ŧriggered antiâ€Kasha system for highâ€contrast cell imaging and classification. Aggregate, 2023, 4, .	5.2	1
54	Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states. Journal of Chemical Physics, 2022, 157, .	1.2	11

#	Article	IF	CITATIONS
55	The excited states of azulene: A study of the vibrational energy levels for the lower ππ*-valence states by configuration interaction and density functional calculations, and theoretical studies of the Rydberg states. Journal of Chemical Physics, 2022, 157, .	1.2	2
56	Revisiting the Fluorescence of Benzothiadiazole Derivatives: Antiâ€Kasha Emission or Not?. ChemPhotoChem, 0, , .	1.5	0
57	Dual-function artificial molecular motors performing rotation and photoluminescence. Science Advances, 2022, 8, .	4.7	5
58	Lanthanide(III) lons and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules. Nanomaterials, 2022, 12, 3977.	1.9	2
59	A nonalternant azulene-embedded carbon nanohoop featuring anti-Kasha emission and tunable properties upon pH stimuli-responsiveness. Journal of Materials Chemistry C, 2023, 11, 1429-1434.	2.7	11
60	Bola-type PEG-linked polyaromatic hydrocarbon-based chemosensors for the "turn-off―excimer fluorescence detection of nitro-analytes/explosives in aqueous solutions. Dyes and Pigments, 2023, 210, 111014.	2.0	3
61	Robust single molecular white fluorescence facilitated by blocking aggregate growth in Densely-Woven solid polymeric network. Chemical Engineering Journal, 2023, 457, 140974.	6.6	2
62	Fluorescence Detecting of Paraquat and Diquat Using Host–Guest Chemistry with a Fluorophore-Pendant Calix[6]arene. Sensors, 2023, 23, 1120.	2.1	1
63	Effective enantioselective recognition by steady-state fluorescence spectroscopy: Towards a paradigm shift to optical sensors with unusual chemical architecture. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122526.	2.0	2
64	Critical Crystallographic Transition in Violation of Kasha's Rule of Size-Specific ZnO Quantum Dots. Crystal Growth and Design, 2023, 23, 1941-1950.	1.4	1
65	NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophysical Journal, 2023, 122, 1240-1253.	0.2	4
66	Experimental-Theoretical Approach for the Chemical Detection of Glyphosate and Its Potential Interferents Using a Copper Complex Fluorescent Probe. Chemosensors, 2023, 11, 194.	1.8	2
67	An Overview on Carbon Quantum Dots Optical and Chemical Features. Molecules, 2023, 28, 2772.	1.7	18
68	A direct observation of up-converted room-temperature phosphorescence in an anti-Kasha dopant-matrix system. Nature Communications, 2023, 14, .	5.8	21
70	Introduction to molecular photophysics. , 2023, , 3-49.		0
75	Solvent-regulated fluorimetric differentiation of Al3+ and Zn2+ using a dual functional sensor based on the photo-induced electron transfer and intramolecular proton transfer mechanism. MRS Communications, 2023, 13, 634-640.	0.8	0
78	Photophysics and Photochemistry of Transition Metal Complexes: Complex Emissive and Photoreactivity Scenarios., 2024,, 330-344.		0
90	Molecular design, synthesis, properties, and applications of organic triplet emitters exhibiting blue, green, red and white room-temperature phosphorescence. Journal of Materials Chemistry C, 2024, 12, 2662-2698.	2.7	0

ARTICLE IF CITATIONS

91 Fluorescent Sensors., 2024, , 1-38.