Macroscale biomaterials strategies for local immunomo

Nature Reviews Materials 4, 379-397

DOI: 10.1038/s41578-019-0106-3

Citation Report

#	Article	IF	CITATIONS
1	Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chemical Society Reviews, 2019, 48, 5506-5526.	18.7	209
2	Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale, 2020, 12, 413-436.	2.8	49
3	Synthetic 3D scaffolds for cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 1-8.	3.3	6
4	Reactive Oxygen Speciesâ€Scavenging Scaffold with Rapamycin for Treatment of Intervertebral Disk Degeneration. Advanced Healthcare Materials, 2020, 9, e1901186.	3.9	33
5	An implantable blood clot–based immune niche for enhanced cancer vaccination. Science Advances, 2020, 6, .	4.7	66
6	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7.3	50
7	Bioresponsive drug delivery systems for the treatment of inflammatory diseases. Journal of Controlled Release, 2020, 327, 641-666.	4.8	97
8	Cell and tissue engineering in lymph nodes for cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 42-62.	6.6	43
9	Biomaterials as Local Niches for Immunomodulation. Accounts of Chemical Research, 2020, 53, 1749-1760.	7.6	73
10	Choice of Nanovaccine Delivery Mode Has Profound Impacts on the Intralymph Node Spatiotemporal Distribution and Immunotherapy Efficacy. Advanced Science, 2020, 7, 2001108.	5.6	21
11	Immunostimulatory biomaterials to boost tumor immunogenicity. Biomaterials Science, 2020, 8, 5516-5537.	2.6	11
12	Bimetallic Oxide FeWO <i>_X</i> Nanosheets as Multifunctional Cascade Bioreactors for Tumor Microenvironmentâ€Modulation and Enhanced Multimodal Cancer Therapy. Advanced Functional Materials, 2020, 30, 2002753.	7.8	80
13	3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. Tissue Engineering - Part B: Reviews, 2021, 27, 238-252.	2.5	11
14	Engineering of Living Cells with Polyphenolâ€Functionalized Biologically Active Nanocomplexes. Advanced Materials, 2020, 32, e2003492.	11.1	60
15	Tuning the Local Availability of VEGF within Glycosaminoglycanâ€Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis. Advanced Functional Materials, 2020, 30, 2000068.	7.8	27
16	Micro-/Nanotopography on Bioresorbable Zinc Dictates Cytocompatibility, Bone Cell Differentiation, and Macrophage Polarization. Nano Letters, 2020, 20, 4594-4602.	4.5	55
17	Antifibrotic strategies for medical devices. Advanced Drug Delivery Reviews, 2020, 167, 109-120.	6.6	36
18	A biodegradable thermosensitive hydrogel vaccine for cancer immunotherapy. Applied Materials Today, 2020, 19, 100608.	2.3	28

#	Article	IF	CITATIONS
19	Advanced Strategies for Modulation of the Material–Macrophage Interface. Advanced Functional Materials, 2020, 30, 1909331.	7.8	69
20	A three-dimensional hyaluronic acid-based niche enhances the therapeutic efficacy of human natural killer cell-based cancer immunotherapy. Biomaterials, 2020, 247, 119960.	5.7	37
21	Kill two birds with one stone: A novel dual-functional nanobiomaterial platform with a clear translational potential for bone regeneration. Nano Research, 2020, 13, 2311-2312.	5.8	0
22	Recent Advances in the Controlled Release of Growth Factors and Cytokines for Improving Cutaneous Wound Healing. Frontiers in Cell and Developmental Biology, 2020, 8, 638.	1.8	41
23	Advanced biomaterials for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 911-927.	2.8	62
24	Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjugate Chemistry, 2020, 31, 1268-1278.	1.8	66
25	Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. Journal of Controlled Release, 2021, 329, 882-893.	4.8	22
26	Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials, 2021, 268, 120593.	5.7	37
27	Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 2021, 330, 185-217.	4.8	131
28	Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy. RSC Advances, 2021, 11, 10393-10399.	1.7	22
29	Nanosurfacing Ti alloy by weak alkalinity-activated solid-state dewetting (AAD) and its biointerfacial enhancement effect. Materials Horizons, 2021, 8, 912-924.	6.4	7
30	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	15.6	191
31	Gold Nanoparticles and Graphene Oxide Flakes Synergistic Partaking in Cytosolic Bactericidal Augmentation: Role of ROS and NOX2 Activity. Microorganisms, 2021, 9, 101.	1.6	22
32	Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 2021, 33, e2004172.	11.1	141
33	Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 614508.	2.0	13
34	Impact of Excipients on Stability of Polymer Microparticles for Autoimmune Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 609577.	2.0	3
36	Design, synthesis and biological applications of glycopolypeptides. Advanced Drug Delivery Reviews, 2021, 169, 152-167.	6.6	14
37	Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomaterialia, 2021, 123, 1-30.	4.1	72

#	Article	IF	CITATIONS
38	Harnessing molecular recognition for localized drug delivery. Advanced Drug Delivery Reviews, 2021, 170, 238-260.	6.6	15
39	PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. Journal of Controlled Release, 2021, 331, 164-175.	4.8	31
40	Engineering Strategies for Immunomodulatory Cytokine Therapies: Challenges and Clinical Progress. Advanced Therapeutics, 2021, 4, 2100035.	1.6	42
41	Peptide-based supramolecular vaccine systems. Acta Biomaterialia, 2021, 133, 153-167.	4.1	39
42	Recent Advances in Cellular and Molecular Bioengineering for Building and Translation of Biological Systems. Cellular and Molecular Bioengineering, 2021, 14, 293-308.	1.0	2
43	Mesenchymal stromal exosome–functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Science Advances, 2021, 7, .	4.7	66
44	Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases. Matter, 2021, 4, 1528-1554.	5.0	21
45	Translational Applications of Hydrogels. Chemical Reviews, 2021, 121, 11385-11457.	23.0	438
46	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	11.1	60
47	Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. Science Advances, 2021, 7, .	4.7	77
48	Mitigating the foreign body response through †immune-instructive†biomaterials. Journal of Immunology and Regenerative Medicine, 2021, 12, 100040.	0.2	12
49	Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomaterialia, 2021, 126, 31-44.	4.1	27
50	Immunological considerations and challenges for regenerative cellular therapies. Communications Biology, 2021, 4, 798.	2.0	44
51	Design Challenges in Polymeric Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617141.	2.0	82
52	Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends in Molecular Medicine, 2021, 27, 572-587.	3.5	2
53	Toward a Better Regeneration through Implantâ€Mediated Immunomodulation: Harnessing the Immune Responses. Advanced Science, 2021, 8, e2100446.	5.6	71
54	Wound Healing: From Passive to Smart Dressings. Advanced Healthcare Materials, 2021, 10, e2100477.	3.9	264
55	Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials, 2021, 274, 120875.	5.7	38

#	ARTICLE	IF	CITATIONS
56	Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomaterialia, 2021, 129, 148-158.	4.1	45
57	Local Delivery of Pirfenidone by PLA Implants Modifies Foreign Body Reaction and Prevents Fibrosis. Biomedicines, 2021, 9, 853.	1.4	16
58	Cell-Inspired Biomaterials for Modulating Inflammation. Tissue Engineering - Part B: Reviews, 2022, 28, 279-294.	2.5	2
59	Immuneâ€Modulating Mucin Hydrogel Microdroplets for the Encapsulation of Cell and Microtissue. Advanced Functional Materials, 2021, 31, 2105967.	7.8	17
60	Modulating the foreign body response of implants for diabetes treatment. Advanced Drug Delivery Reviews, 2021, 174, 87-113.	6.6	45
61	Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomaterialia, 2021, 133, 168-186.	4.1	71
62	Targeting Neuroimmune Interactions in Diabetic Neuropathy with Nanomedicine. Antioxidants and Redox Signaling, 2022, 36, 122-143.	2.5	5
63	Functional heterogeneity of IFN-γ–licensed mesenchymal stromal cell immunosuppressive capacity on biomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
64	Engineering Therapeutic Strategies in Cancer Immunotherapy via Exogenous Delivery of Toll-like Receptor Agonists. Pharmaceutics, 2021, 13, 1374.	2.0	15
65	The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way. Bioactive Materials, 2022, 11, 206-217.	8.6	24
66	From structure to application: Progress and opportunities in peptide materials development. Current Opinion in Chemical Biology, 2021, 64, 131-144.	2.8	18
67	Release of basic fibroblast growth factor from acoustically-responsive scaffolds promotes therapeutic angiogenesis in the hind limb ischemia model. Journal of Controlled Release, 2021, 338, 773-783.	4.8	24
68	Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering – Do patient characteristics warrant precision engineering?. Advanced Drug Delivery Reviews, 2021, 178, 113960.	6.6	29
69	PLAN B for immunotherapy: Promoting and leveraging anti-tumor B cell immunity. Journal of Controlled Release, 2021, 339, 156-163.	4.8	12
70	Engineered devices for tumor microenvironment immune modulation. , 2022, , 135-154.		0
71	Harnessing Dental Stem Cell Immunoregulation Using Cell-Laden Biomaterials. Journal of Dental Research, 2021, 100, 568-575.	2.5	6
72	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	23.0	306
73	Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials, 2021, 269, 120646.	5.7	19

#	ARTICLE	IF	CITATIONS
74	The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Biomaterials Science, 2021, 9, 8090-8110.	2.6	37
75	Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Advanced Materials, 2022, 34, e2103790.	11.1	81
77	Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Advanced Healthcare Materials, 2022, 11, e2101844.	3.9	12
78	Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials, 2022, 280, 121272.	5.7	68
79	Precision biomaterials in cancer theranostics and modelling. Biomaterials, 2022, 280, 121299.	5.7	26
80	Degradation-resistant implanted biomaterials establish an immunosuppressive microenvironment that induces T cell exhaustion by recruiting myeloid cells. Fundamental Research, 2022, 2, 648-658.	1.6	4
81	Modulation of the Activity of Stem and Progenitor Cells by Immune Cells. Stem Cells Translational Medicine, 2022, 11, 248-258.	1.6	12
82	Citicoline–liposome/polyurethane composite scaffolds regulate the inflammatory response of microglia to promote nerve regeneration. Journal of Materials Science, 2022, 57, 2073-2088.	1.7	3
83	Cryogel vaccines effectively induce immune responses independent of proximity to the draining lymph nodes. Biomaterials, 2022, 281, 121329.	5.7	13
84	On-Demand Local Immunomodulation via Epigenetic Control of Macrophages Using an Inflammation-Responsive Hydrogel for Accelerated Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4931-4945.	4.0	6
85	Immunomodulatory functions of human mesenchymal stromal cells are enhanced when cultured on HEP/COL multilayers supplemented with interferon-gamma. Materials Today Bio, 2022, 13, 100194.	2.6	7
86	Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioactive Materials, 2022, 17, 300-319.	8.6	21
87	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	7.8	9
88	Recent advances in biomaterial-boosted adoptive cell therapy. Chemical Society Reviews, 2022, 51, 1766-1794.	18.7	29
90	Rational design of hydrogels for immunomodulation. International Journal of Energy Production and Management, 2022, 9, .	1.9	29
91	Challenges and opportunities on vegetable oils derived systems for biomedical applications. Materials Science and Engineering C, 2022, 134, 112720.	3.8	15
92	Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomedical Materials (Bristol), 2022, 17, 022006.	1.7	3
93	Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. Small, 2022, 18, e2107305.	5.2	6

#	ARTICLE	IF	CITATIONS
94	Immunomodulation Strategies for the Successful Regeneration of a Tissueâ€Engineered Vascular Graft. Advanced Healthcare Materials, 2022, 11, e2200045.	3.9	21
95	Immunoâ€Modulatory Effects of Microparticles Formulated from Degradable Polystyrene Analogue. Macromolecular Bioscience, 2022, 22, e2100472.	2.1	4
96	An Intelligent Nanovehicle Armed with Multifunctional Navigation for Precise Delivery of Tollâ€Like Receptor 7/8ÂAgonist and Immunogenic Cell Death Amplifiers to Eliminate Solid Tumors and Trigger Durable Antitumor Immunity. Advanced Healthcare Materials, 2022, 11, e2102739.	3.9	18
97	Leveraging biomaterials for enhancing T cell immunotherapy. Journal of Controlled Release, 2022, 344, 272-288.	4.8	14
98	Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. International Journal of Molecular Sciences, 2022, 23, 4074.	1.8	6
99	Immunoengineering strategies to enhance vascularization and tissue regeneration. Advanced Drug Delivery Reviews, 2022, 184, 114233.	6.6	18
100	Identification of inflammatory regulation roles of thalidomide/ruxolitinib in nucleus pulposus and construction of polyelectrolyte nanocomplexes-impregnated injectable hydrogels for synergistic intervertebral disk degeneration treatment. Nano Today, 2022, 44, 101462.	6.2	7
101	Cubic multi-ions-doped Na2TiO3 nanorod-like coatings: Structure-stable, highly efficient platform for ions-exchanged release to immunomodulatory promotion on vascularized bone apposition. Bioactive Materials, 2022, 18, 72-90.	8.6	6
102	Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. Materials Science and Engineering C, 2021, , 112611.	3.8	3
103	Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective. Advanced NanoBiomed Research, 2022, 2, .	1.7	7
104	STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Research, 2022, 15, 6328-6339.	5.8	13
105	M13 phage coated surface elicits an anti-inflammatory response in BALB/c and C57BL/6 peritoneal macrophages. International Immunopharmacology, 2022, 107, 108654.	1.7	5
106	Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	5
107	Modulation of Tissue Microenvironment Following Myocardial Infarction. Advanced NanoBiomed Research, 0, , 2200005.	1.7	2
108	Advanced biomaterials for cancer theranostic. International Journal of Health Sciences, 0, , 8670-8677.	0.0	0
109	Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Science and Technology of Advanced Materials, 2022, 23, 393-412.	2.8	30
110	Sustained delivery approaches to improving adaptive immune responses. Advanced Drug Delivery Reviews, 2022, 187, 114401.	6.6	35
111	Editorial: Metabolic Intervention Based on Functional Biomaterial Strategy to Potentiate Cancer Immunotherapy, Volume I. Frontiers in Pharmacology, 0, 13, .	1.6	0

#	ARTICLE	IF	CITATIONS
112	Clickable Biomaterials for Modulating Neuroinflammation. International Journal of Molecular Sciences, 2022, 23, 8496.	1.8	2
113	Effectiveness of lenalidomide as a topical ointment in mouse models of imiquimod-induced psoriasis. International Journal of Health Sciences, 0, , 5477-5489.	0.0	0
114	Injectable pH-responsive hydrogel for combinatorial chemoimmunotherapy tailored to the tumor microenvironment. Journal of Nanobiotechnology, 2022, 20, .	4.2	14
115	Fabrication of high-strength, flexible, porous collagen-based scaffolds to promote tissue regeneration. Materials Today Bio, 2022, 16, 100376.	2.6	7
116	Localization of drug biodistribution in a 3D-bioengineered subcutaneous neovascularized microenvironment. Materials Today Bio, 2022, 16, 100390.	2.6	4
117	Immunomodulatory hybrid micro-nanofiber scaffolds enhance vascular regeneration. Bioactive Materials, 2023, 21, 464-482.	8.6	12
118	Interplay between Biomaterials and the Immune System: Perspective on Challenges and Opportunities in Regenerative Medicine. SSRN Electronic Journal, 0, , .	0.4	0
119	Modulating neuroinflammation through molecular, cellular and biomaterialâ€based approaches to treat spinal cord injury. Bioengineering and Translational Medicine, 2023, 8, .	3.9	6
120	Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. Advanced NanoBiomed Research, 2022, 2, .	1.7	11
121	Engineering physical microenvironments to study innate immune cell biophysics. APL Bioengineering, 2022, 6, 031504.	3.3	1
122	Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics, 2022, 14, 2244.	2.0	4
123	Using a degradable three-layer sandwich-type coating to prevent titanium implant infection with the combined efficient bactericidal ability and fast immune remodeling property. Acta Biomaterialia, 2022, 154, 650-666.	4.1	6
124	Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomaterialia, 2023, 155, 1-18.	4.1	20
125	Polymeric Microneedle-Based Drug Delivery Platforms for Application in Cancer Therapy. , 2023, , 309-324.		0
126	Injectable decellularized cartilage matrix hydrogel encapsulating urine-derived stem cells for immunomodulatory and cartilage defect regeneration. Npj Regenerative Medicine, 2022, 7, .	2.5	19
127	Bioinspired Strategies for Wound Regeneration. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041240.	2.3	1
128	Emerging immunomodulatory strategies for cell therapeutics. Trends in Biotechnology, 2023, 41, 358-373.	4.9	11
129	Mussel-inspired adhesive hydrogels for local immunomodulation. Materials Chemistry Frontiers, 2023, 7, 846-872.	3.2	7

#	Article	IF	CITATIONS
130	Bioresponsive Immunotherapeutic Materials. Advanced Materials, 0, , .	11.1	11
131	A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion. Nature Nanotechnology, 2023, 18, 390-402.	15.6	18
132	Customizing delivery nano-vehicles for precise brain tumor therapy. Journal of Nanobiotechnology, 2023, 21, .	4.2	12
133	Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Research and Therapy, 2023, 14, .	2.4	2
134	Targeting intracellular and extracellular receptors with nano-to-macroscale biomaterials to activate immune cells. Journal of Controlled Release, 2023, 357, 52-66.	4.8	3
135	Engineered cell-based therapies in ex vivo ready-made CellDex capsules have therapeutic efficacy in solid tumors. Biomedicine and Pharmacotherapy, 2023, 162, 114665.	2.5	2
136	Immunomodulatory natural polysaccharides: An overview of the mechanisms involved. European Polymer Journal, 2023, 188, 111935.	2.6	7
137	Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy. Small Methods, 2023, 7, .	4.6	3
138	Bioorthogonal "Click Chemistry―Bone Cement with Bioinspired Natural Mimicking Microstructures for Bone Repair. ACS Biomaterials Science and Engineering, 2023, 9, 1585-1597.	2.6	3
139	Polysaccharideâ€Based Stimulusâ€Responsive Nanomedicines for Combination Cancer Immunotherapy. Small, 2023, 19, .	5.2	13
140	Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel. Nature Biomedical Engineering, 2023, 7, 928-942.	11.6	13
149	Recent progress of antibacterial hydrogel materials for biomedical applications. Journal of Materials Chemistry C, 2023, 11, 12848-12876.	2.7	0
151	Anti-biofouling strategies for implantable biosensors of continuous glucose monitoring systems. Frontiers of Chemical Science and Engineering, 0, , .	2.3	0
153	loT Application on Home Automation with Smart Meter. Algorithms for Intelligent Systems, 2023, , 521-534.	0.5	0
154	Different Techniques of Genetic Engineering Used for the Development of Novel Biomaterials. Engineering Materials, 2023, , 43-72.	0.3	0
161	Nerve Regeneration., 2023,, 535-577.		0
162	Therapeutic synthetic and natural materials for immunoengineering. Chemical Society Reviews, 2024, 53, 1789-1822.	18.7	0
164	Hydrogel-based nanomedicines for cancer immunotherapy. , 2024, , 139-174.		0

Article IF Citations