Wearable thermoelectrics for personalized thermoregu

Science Advances 5, eaaw0536

DOI: 10.1126/sciadv.aaw0536

Citation Report

#	Article	IF	CITATIONS
1	Liquid Metal Supercooling for Lowâ€Temperature Thermoelectric Wearables. Advanced Functional Materials, 2019, 29, 1906098.	7.8	142
2	Untethered Soft Actuators by Liquid–Vapor Phase Transition: Remote and Programmable Actuation. Advanced Intelligent Systems, 2019, 1, 1900109.	3.3	42
3	Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy, 2019, 188, 116019.	4.5	55
4	Bioinspired Janus Textile with Conical Micropores for Human Body Moisture and Thermal Management. Advanced Materials, 2019, 31, e1904113.	11.1	243
5	High Power Density Body Heat Energy Harvesting. ACS Applied Materials & Interfaces, 2019, 11, 40107-40113.	4.0	54
7	Pyrazine-Flanked Diketopyrrolopyrrole (DPP): A New Polymer Building Block for High-Performance n-Type Organic Thermoelectrics. Journal of the American Chemical Society, 2019, 141, 20215-20221.	6.6	170
8	Simultaneous multi-signal quantification for highly precise serodiagnosis utilizingÂa rationally constructed platform. Nature Communications, 2019, 10, 5361.	5.8	39
9	Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. Journal of Materials Chemistry A, 2020, 8, 2984-2994.	5.2	107
10	Flexible bioelectronics for physiological signals sensing and disease treatment. Journal of Materiomics, 2020, 6, 397-413.	2.8	28
11	Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 205-213.	3.3	131
12	Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Materials and Design, 2020, 188, 108451.	3.3	19
13	Structured Interfaces for Improving the Tensile Strength and Toughness of Stiff/Highly Stretchable Polymer Hybrids. Advanced Materials Technologies, 2020, 5, 2000652.	3.0	4
14	Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy and Buildings, 2020, 226, 110374.	3.1	59
15	Size―and Temperatureâ€Dependent Suppression of Phonon Thermal Conductivity in Carbon Nanotube Thermoelectric Films. Advanced Electronic Materials, 2020, 6, 2000746.	2.6	14
16	Thermal display glove for interacting with virtual reality. Scientific Reports, 2020, 10, 11403.	1.6	27
17	Thermoâ€Haptic Materials and Devices for Wearable Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2007376.	7.8	28
18	High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nature Communications, 2020, 11, 5948.	5.8	169
19	Progress in the Applications of Smart Piezoelectric Materials for Medical Devices. Polymers, 2020, 12, 2754.	2.0	78

	CITATION		
#	Article	IF	CITATIONS
20	Textile Electronics for VR/AR Applications. Advanced Functional Materials, 2021, 31, 2007254.	7.8	50
21	Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nature Communications, 2020, 11, 6101.	5.8	188
22	Multispectral Thermal Management Designs for Net-Zero Energy Buildings. , 2020, 2, 1624-1643.		50
23	Photon-engineered radiative cooling textiles. Science, 2020, 370, 784-785.	6.0	68
24	Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Materials in Medicine, 2020, 1, 92-124.	3.7	85
25	Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems. Advanced Science, 2020, 7, 2001362.	5.6	146
26	Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nature Communications, 2020, 11, 4362.	5.8	37
27	A Flexible Microâ€Thermoelectric Generator Sticker with Trapezoidalâ€Shaped Legs for Large Temperature Gradient and Highâ€Power Density. Advanced Materials Technologies, 2020, 5, 2000486.	3.0	10
28	Emerging Thermoelectric Generators Based on Printed and Flexible Electronics Technology. , 2020, , .		4
29	Enhanced power factor of n-type Bi ₂ Te _{2.8} Se _{0.2} alloys through an efficient one-step sintering strategy for low-grade heat harvesting. Journal of Materials Chemistry A, 2020, 8, 24524-24535.	5.2	7
30	Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Nano Letters, 2020, 20, 4445-4453.	4.5	106
31	Advancing Flexible Thermoelectric Devices with Polymer Composites. Advanced Materials Technologies, 2020, 5, 2000049.	3.0	62
32	Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nature Communications, 2020, 11, 2868.	5.8	285
33	Skin-Interfaced Sensors in Digital Medicine: from Materials to Applications. Matter, 2020, 2, 1414-1445.	5.0	134
34	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	4.5	98
35	A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Advances, 2020, 2, 3244-3251.	2.2	23
36	Smart Textileâ€Based Personal Thermal Comfort Systems: Current Status and Potential Solutions. Advanced Materials Technologies, 2020, 5, 1901155.	3.0	82
37	Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. ACS Applied Materials & Interfaces, 2020, 12, 17921-17928.	4.0	115

#	Article	IF	CITATIONS
38	Flexible and Robust Biomaterial Microstructured Colored Textiles for Personal Thermoregulation. ACS Applied Materials & Interfaces, 2020, 12, 19015-19022.	4.0	97
39	A mechanistic study of the tremor associated with epidural anaesthesia for intrapartum caesarean delivery. International Journal of Obstetric Anesthesia, 2020, 43, 56-64.	0.2	5
40	Nanochannel Templated Iridium Oxide Nanostructures for Wide-Range pH Sensing from Solutions to Human Skin Surface. Analytical Chemistry, 2020, 92, 3844-3851.	3.2	16
41	An Adaptive and Wearable Thermal Camouflage Device. Advanced Functional Materials, 2020, 30, 1909788.	7.8	92
42	Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks. Applied Physics Letters, 2020, 116, .	1.5	8
43	High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Bandâ€Extrema Alignment. Advanced Functional Materials, 2020, 30, 2001200.	7.8	32
44	Advanced Textiles for Personal Thermal Management and Energy. Joule, 2020, 4, 724-742.	11.7	358
45	Thermoelectric textile with fibers coated by copper iodide thin films. Thin Solid Films, 2020, 704, 138026.	0.8	8
46	A review of intensified conditioning of personal micro-environments: Moving closer to the human body. Energy and Built Environment, 2021, 2, 260-270.	2.9	37
47	A new rapid synthesis of thermoelectric Sb2Te3 ingots using selective laser melting 3D printing. Materials Science in Semiconductor Processing, 2021, 123, 105551.	1.9	15
48	Porous organic filler for high efficiency of flexible thermoelectric generator. Nano Energy, 2021, 81, 105604.	8.2	58
49	How Far Are We from Achieving Selfâ€Powered Flexible Health Monitoring Systems: An Energy Perspective. Advanced Energy Materials, 2021, 11, 2002646.	10.2	70
50	Personal thermal management by thermally conductive composites: A review. Composites Communications, 2021, 23, 100595.	3.3	97
51	A Flexible Thermoelectric Generator Worn on the Leg to Harvest Body Heat Energy and to Recognize Motor Activities: A Preliminary Study. IEEE Access, 2021, 9, 20878-20892.	2.6	10
52	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	2.6	40
53	High-Performance Thermoelectric Fabric Based on a Stitched Carbon Nanotube Fiber. ACS Applied Materials & Interfaces, 2021, 13, 6257-6264.	4.0	43
54	Smart textiles for personalized thermoregulation. Chemical Society Reviews, 2021, 50, 9357-9374.	18.7	184
55	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	2.2	18

#	Article	IF	CITATIONS
56	Liquid metal architectures for soft and wearable energy harvesting devices. Multifunctional Materials, 2021, 4, 012001.	2.4	32
57	Theoretical Minimum Thermal Load in Buildings. Joule, 2021, 5, 24-46.	11.7	23
58	Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer. Journal of Materials Chemistry A, 2021, 9, 15696-15703.	5.2	35
60	Electrostatic Actuating Doubleâ€Unit Electrocaloric Cooling Device with High Efficiency. Advanced Energy Materials, 2021, 11, 2003771.	10.2	16
61	Effect of Side Chain Substituent Volume on Thermoelectric Properties of IDT-Based Conjugated Polymers. Molecules, 2021, 26, 963.	1.7	7
62	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021, 33, e2004754.	11.1	201
63	Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 2021, 31, 2007952.	7.8	35
64	PEDOT:PSS-polyethylene oxide composites for stretchable and 3D-Printed thermoelectric devices. Composites Communications, 2021, 23, 100599.	3.3	18
65	High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Science Advances, 2021, 7, .	4.7	189
66	Functional photonic structures for external interaction with flexible/wearable devices. Nano Research, 2021, 14, 2904-2918.	5.8	8
67	Smart Textiles Testing: A Roadmap to Standardized Test Methods for Safety and Quality-Control. , 0, , .		4
68	Smart textiles: A toolkit to fashion the future. Journal of Applied Physics, 2021, 129, .	1.1	34
69	Liquid vaporization actuated soft structures with active cooling and heat loss control. Smart Materials and Structures, 2021, 30, 055007.	1.8	3
70	Recent advances in flexible thermoelectrics. Applied Physics Letters, 2021, 118, .	1.5	16
71	Leafâ€inspired Flexible Thermoelectric Generators with High Temperature Difference Utilization Ratio and Output Power in Ambient Air. Advanced Science, 2021, 8, 2004947.	5.6	55
72	Thermoelectric Materials for Textile Applications. Molecules, 2021, 26, 3154.	1.7	16
73	Review on the operation of wearable sensors through body heat harvesting based on thermoelectric devices. Applied Physics Letters, 2021, 118, .	1.5	29
74	Infrared Camouflage Utilizing Ultrathin Flexible Largeâ€Scale Highâ€Temperatureâ€Tolerant Lambertian Surfaces. Laser and Photonics Reviews, 2021, 15, 2000391.	4.4	23

#	Article	IF	CITATIONS
75	Advanced collagen nanofibers-based functional bio-composites for high-value utilization of leather: A review. Journal of Science: Advanced Materials and Devices, 2021, 6, 153-166.	1.5	12
76	Smart Textiles for Visible and IR Camouflage Application: State-of-the-Art and Microfabrication Path Forward. Micromachines, 2021, 12, 773.	1.4	19
77	Thermoelectric Generator with Series/Parallel Switching Function for Improvement of Extracted Power. , 2021, , .		0
78	Flexible thermoelectric materials and devices: From materials to applications. Materials Today, 2021, 46, 62-108.	8.3	206
79	Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Applied Materials Today, 2021, 23, 101025.	2.3	64
80	High-Performance Bismuth Antimony Telluride Thermoelectric Membrane on Curved and Flexible Supports. ACS Energy Letters, 2021, 6, 2378-2385.	8.8	19
81	Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines, 2021, 12, 869.	1.4	13
82	Recent advances in liquid-metal-based wearable electronics and materials. IScience, 2021, 24, 102698.	1.9	54
83	Nanostructured Inorganic Chalcogenide-Carbon Nanotube Yarn having a High Thermoelectric Power Factor at Low Temperature. ACS Nano, 2021, 15, 13118-13128.	7.3	24
84	A Wavy-Structured Highly Stretchable Thermoelectric Generator with Stable Energy Output and Self-Rescuing Capability. CCS Chemistry, 2021, 3, 2404-2414.	4.6	42
85	Design and Optimization of Flexible Thermoelectric Coolers for Wearable Applications. ECS Journal of Solid State Science and Technology, 2021, 10, 081006.	0.9	7
86	Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nature Communications, 2021, 12, 4658.	5.8	94
87	A Comparative Analysis of Thermoelectric Modules for the Purpose of Ensuring Thermal Comfort in Protective Clothing. Applied Sciences (Switzerland), 2021, 11, 8068.	1.3	3
88	Personal thermal management techniques for thermal comfort and building energy saving. Materials Today Physics, 2021, 20, 100465.	2.9	42
89	Wearable Thermoelectric Materials and Devices for Selfâ€₽owered Electronic Systems. Advanced Materials, 2021, 33, e2102990.	11.1	221
90	High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility. Nano Energy, 2021, 87, 106223.	8.2	47
91	Self-powered skin electronics for energy harvesting and healthcare monitoring. Materials Today Energy, 2021, 21, 100786.	2.5	36
92	Thermoelectric coolers as thermal management systems for medical applications: Design, optimization, and advancement. Nano Energy, 2021, 90, 106572.	8.2	50

#	Article	IF	CITATIONS
93	Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Materials Science and Engineering Reports, 2021, 146, 100639.	14.8	32
94	A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy, 2021, 88, 106260.	8.2	93
95	Role of interfaces in organic–inorganic flexible thermoelectrics. Nano Energy, 2021, 89, 106380.	8.2	30
96	A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy, 2021, 89, 106325.	8.2	74
97	Experimental study on local floor heating mats to improve thermal comfort of workers in cold environments. Building and Environment, 2021, 205, 108227.	3.0	21
98	U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan. Energy, 2022, 238, 121771.	4.5	7
99	Interfacial architecting with anion treatment for enhanced thermoelectric power of flexible ternary polymer nanocomposites. Journal of Materials Chemistry A, 2021, 9, 20544-20552.	5.2	11
100	Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy and Environmental Science, 2021, 14, 729-764.	15.6	143
101	Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Materials Horizons, 2021, 8, 1230-1241.	6.4	39
102	High output direct-current power fabrics based on the air breakdown effect. Energy and Environmental Science, 2021, 14, 2460-2471.	15.6	58
103	Flexible Thermoelectric Films Based on Bi ₂ Te ₃ Nanosheets and Carbon Nanotube Network with High n-Type Performance. ACS Applied Materials & Interfaces, 2021, 13, 5451-5459.	4.0	54
104	Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. Energy and Environmental Science, 2020, 13, 3480-3488.	15.6	57
105	Femtosecond laser rapid fabrication of Janus sweat-permeable fabric for personal cooling. Applied Physics Letters, 2020, 117, .	1.5	36
106	Special Issue on "Human Health Engineering― Applied Sciences (Switzerland), 2020, 10, 564.	1.3	2
107	Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. Applied Physics Reviews, 2021, 8, .	5.5	29
109	Progress in Flexible Electronic Textile for Heating Application: A Critical Review. Materials, 2021, 14, 6540.	1.3	18
110	Advanced Functional Materials for Intelligent Thermoregulation in Personal Protective Equipment. Polymers, 2021, 13, 3711.	2.0	6
111	A Polycationâ€Modified Nanofillers Tailored Polymer Electrolytes Fiber for Versatile Biomechanical Energy Harvesting and Fullâ€Range Personal Healthcare Sensing. Advanced Functional Materials, 2022, 32. 2106731.	7.8	33

	CITATION	CITATION REPORT	
# 112	ARTICLE Flexible <i>n</i> -Type Abundant Chalcopyrite/PEDOT:PSS/Graphene Hybrid Film for Thermoelectric Device Utilizing Low-Grade Heat. ACS Applied Materials & Interfaces, 2021, 13, 51245-51254.	IF 4.0	CITATIONS 24
113	A Systematic Approach for Semiconductor Half-Heusler. Frontiers in Materials, 2021, 8, .	1.2	8
114	Thermoelectrics based on metal oxide nanofibers. , 2022, , 395-424.		2
115	Physical Intuition to Improve Electronic Properties of Thermoelectrics. Frontiers in Physics, 2021, 9, .	1.0	3
116	Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density. Applied Thermal Engineering, 2022, 202, 117818.	3.0	43
117	Seebeck and Nernst effects in topological insulator: The case of strained HgTe. Physica B: Condensed Matter, 2022, 627, 413521.	1.3	0
118	Highâ€performance Stretchable Organic Thermoelectric Generator via Rational Thermal Interface Design for Wearable Electronics. Advanced Energy Materials, 2022, 12, .	10.2	27
119	A General White-Box Strategy for Designing Thermoelectric Cooling System. SSRN Electronic Journal, 0, , .	0.4	1
120	Personal thermal management - A review on strategies, progress, and prospects. International Communications in Heat and Mass Transfer, 2022, 130, 105739.	2.9	45
121	Stretchable thermoelectric generator for wearable power source and temperature detection applications. Energy Conversion and Management, 2022, 253, 115167.	4.4	27
122	Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings. Materials Today Energy, 2022, 24, 100925.	2.5	14
123	Electronic skin as wireless human-machine interfaces for robotic VR. Science Advances, 2022, 8, eabl6700.	4.7	88
124	Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 2022, 51, 485-512.	18.7	39
125	Diradicalâ€Featured Organic Smallâ€Molecule Photothermal Material with Highâ€Spin State in Dimers for Ultraâ€Broadband Solar Energy Harvesting. Advanced Materials, 2022, 34, e2108048.	11.1	37
126	Analysis of Efficiency of Thermoelectric Personal Cooling System Based on Utility Tests. Materials, 2022, 15, 1115.	1.3	4
127	Design of a scalable, flexible, and durable thermoelectric cooling device for soft electronics using Kirigami cut patterns. Flexible and Printed Electronics, 2022, 7, 015002.	1.5	3
128	Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy, 2022, 95, 107002.	8.2	29
129	Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Letters, 2022, 7, 720-735.	8.8	40

#	Article	IF	CITATIONS
130	Ultra-elastic and super-insulating biomass PEBA nanoporous foams achieved by combining in-situ fibrillation with microcellular foaming. Journal of CO2 Utilization, 2022, 57, 101891.	3.3	20
131	Origami-Type Flexible Thermoelectric Generator Fabricated by Self-Folding Using Linkage Mechanism. , 2022, , .		1
132	Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Materials Today Physics, 2022, 22, 100602.	2.9	19
133	Wearable Light Sensors Based on Unique Features of a Natural Biochrome. ACS Sensors, 2022, 7, 523-533.	4.0	10
134	Ultra-Elastic and Super-Insulating Biomass PEBA Nanoporous Foams Achieved by Combining In-Situ Fibrillation with Microcellular Foaming. SSRN Electronic Journal, 0, , .	0.4	0
135	Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy and Environmental Science, 2022, 15, 2374-2385.	15.6	51
136	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
137	Operation of Wearable Thermoelectric Generators Using Dual Sources of Heat and Light. Advanced Science, 2022, 9, e2104915.	5.6	17
138	Wearable Thermoelectric Cooler Based on a Two-Layer Hydrogel/Nickel Foam Heatsink with Two-Axis Flexibility. ACS Applied Materials & Interfaces, 2022, 14, 15317-15323.	4.0	16
139	Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Nano-Micro Letters, 2022, 14, 81.	14.4	47
140	High-performance, flexible thermoelectric generator based on bulk materials. Cell Reports Physical Science, 2022, 3, 100780.	2.8	24
141	A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion. Applied Energy, 2022, 312, 118696.	5.1	16
142	Energy saving thermal adaptive liquid gating system. Innovation(China), 2022, 3, 100231.	5.2	4
143	Fabrication and Cooling Performance Optimization of Stretchable Thermoelectric Cooling Device. ACS Applied Electronic Materials, 2021, 3, 5433-5442.	2.0	9
144	Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. ACS Applied Materials & Interfaces, 2022, 14, 1045-1055.	4.0	15
145	Experimental and Theoretical Investigation of the Effect of Filler Material on the Performance of Flexible and Rigid Thermoelectric Generators. ACS Applied Materials & amp; Interfaces, 2021, 13, 61275-61285.	4.0	14
146	Suppressing thermal conductivity of nano-grained thermoelectric material using acoustically hard nanoparticles. Journal of Applied Physics, 2021, 130, .	1.1	4
147	Structural Optimization of Heat Sink for Thermoelectric Conversion Unit in Personal Comfort System. Energies, 2022, 15, 2781.	1.6	1

#	Article	IF	CITATIONS
148	High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 21224-21231.	4.0	15
149	Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies, 2022, 15, 3375.	1.6	28
150	Highly Integrated, Wearable Carbonâ€Nanotubeâ€Yarnâ€Based Thermoelectric Generators Achieved by Selective Inkjetâ€Printed Chemical Doping. Advanced Energy Materials, 2022, 12, .	10.2	19
151	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
152	Effect of the area of a lithium niobate transducer on the efficiency of ultrasonic atomization driven by resonance vibration. Ultrasonics Sonochemistry, 2022, 86, 106019.	3.8	6
153	Biaxial strain tuned electronic structure, lattice thermal conductivity and thermoelectric properties of Mgl2 monolayer. Materials Science in Semiconductor Processing, 2022, 148, 106791.	1.9	3
154	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	2.8	17
155	Review—Human-Body Powered Biosensing Textiles: Body-Power Generating Wearables Based on Textiles for Human Biomonitoring. Journal of the Electrochemical Society, 2022, 169, 067502.	1.3	2
156	A flexible and smart shape memory alloy composite sheet based on efficient and bidirectional thermal management. International Journal of Smart and Nano Materials, 2022, 13, 315-329.	2.0	2
157	High Thermoelectric Performance of Al ₂ X ₂ Se ₂ (X = Cl, Br, I) Monolayers with Strong Anisotropy in Lattice Thermal Conductivity. ACS Applied Energy Materials, 2022, 5, 7371-7381.	2.5	10
158	A Dynamic Thermal Camouflage Metadevice with Microwave Scattering Reduction. Advanced Science, 2022, 9, .	5.6	17
159	Heat-shedding with photonic structures: radiative cooling and its potential. Journal of Materials Chemistry C, 2022, 10, 9915-9937.	2.7	15
160	A general <scp>White–Box</scp> strategy for designing thermoelectric cooling system. InformaÄnÃ- Materiály, 2022, 4, .	8.5	6
161	A Liquid Metal-Enhanced Wearable Thermoelectric Generator. Bioengineering, 2022, 9, 254.	1.6	1
162	Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices. Materials, 2022, 15, 4315.	1.3	17
163	Tunable Thermoresponsive Flexible Films for Adaptive Temperature Management and Visual Temperature Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 29284-29291.	4.0	11
164	Enhanced Output of Onâ€Body Directâ€Current Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12, .	10.2	23
165	A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy, 2022, 101, 107511.	8.2	57

#	Article	IF	CITATIONS
166	Thermal management and control of wearable devices. IScience, 2022, 25, 104587.	1.9	13
167	Stegosaurus-Inspired Wearable Thermoelectric Generator with Cooling-Enhanced Electrodes for Human Body Heat Harvest. SSRN Electronic Journal, 0, , .	0.4	0
168	Continuous Nanoparticle Patterning Strategy in Layer‧tructured Nanocomposite Fibers. Advanced Functional Materials, 2022, 32, .	7.8	5
169	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	5.8	29
170	Wideâ€ŧemperature range thermoregulating eâ€skin design through a hybrid structure of flexible thermoelectric devices and phase change materials heat sink. EcoMat, 2022, 4, .	6.8	14
171	Ultralight and hyperelastic SiC nanofiber aerogel spring for personal thermal energy regulation. Journal of Advanced Ceramics, 2022, 11, 1235-1248.	8.9	48
172	Novel Biphasically and Reversibly Transparent Phase Change Material to Solve the Thermal Issues in Transparent Electronics. ACS Applied Materials & amp; Interfaces, 2022, 14, 31245-31256.	4.0	11
173	Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics. Communications Materials, 2022, 3, .	2.9	14
174	Comprehensive Insights into Synthesis, Structural Features, and Thermoelectric Properties of High-Performance Inorganic Chalcogenide Nanomaterials for Conversion of Waste Heat to Electricity. ACS Applied Energy Materials, 2022, 5, 7913-7943.	2.5	14
175	Printing Liquid Metal Elastomer Composites for Highâ€Performance Stretchable Thermoelectric Generators. Advanced Energy Materials, 2022, 12, .	10.2	36
176	Smart Textiles for Healthcare and Sustainability. ACS Nano, 2022, 16, 13301-13313.	7.3	61
177	Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nature Communications, 2022, 13, .	5.8	49
178	Realizing a 10°C Cooling Effect in a Flexible Thermoelectric Cooler Using a Vortex Generator. Advanced Materials, 2022, 34, .	11.1	15
179	Thermophysiological aspects of wearable robotics: Challenges and opportunities. Temperature, 2023, 10, 313-325.	1.7	1
180	Topology optimization design of deformable flexible thermoelectric devices for voltage enhancement. Engineering Optimization, 0, , 1-18.	1.5	1
181	Modeling heat transfer in humans for body heat harvesting and personal thermal management. Applied Energy, 2022, 323, 119609.	5.1	8
182	Advances in thermoelectric devices for localized cooling. Chemical Engineering Journal, 2022, 450, 138389.	6.6	34
183	Advances in the design and assembly of flexible thermoelectric device. Progress in Materials Science, 2023, 131, 101003.	16.0	140

#	Article	IF	CITATIONS
184	Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling. Applied Energy, 2022, 326, 119941.	5.1	15
185	Performance Optimization of Thermoelectric Devices and its Dependence on Materials Properties. , 0, 1, .		3
186	Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
187	Graphene oxide composite hydrogels for wearable devices. Carbon Letters, 2022, 32, 1395-1410.	3.3	19
188	Fabrication and simulation study for vertical micro-TEGs based on printed circuit board manufacturing processes. Smart Materials and Structures, 2022, 31, 104003.	1.8	2
189	Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nature Communications, 2022, 13, .	5.8	149
190	Manipulating Single-Walled Carbon Nanotube Arrays for Flexible Photothermoelectric Devices. Jacs Au, 2022, 2, 2269-2276.	3.6	5
191	Radio Frequency Heating of Washable Conductive Textiles for Bacteria and Virus Inactivation. ACS Applied Materials & Interfaces, 2022, 14, 43732-43740.	4.0	7
192	Wireless Human–Machine Interface Based on Artificial Bionic Skin with Damage Reconfiguration and Multisensing Capabilities. ACS Applied Materials & Interfaces, 2022, 14, 47300-47309.	4.0	20
193	Wearable cooling and dehumidifying system for personal protective equipment (PPE). Energy and Buildings, 2022, 276, 112510.	3.1	8
194	Transfer printing technologies for soft electronics. Nanoscale, 2022, 14, 16749-16760.	2.8	9
195	Energy autonomous paper modules and functional circuits. Energy and Environmental Science, 2022, 15, 5069-5081.	15.6	38
196	Thermoelectric Silverâ€Based Chalcogenides. Advanced Science, 2022, 9, .	5.6	29
197	Multi-stage thermoelectric coolers for cooling wearables. Thermal Science and Engineering Progress, 2022, 36, 101511.	1.3	4
198	High-efficiency zinc thermal charging supercapacitors enabled by hierarchical porous carbon electrodes. Journal of Power Sources, 2023, 555, 232386.	4.0	4
199	Wearable Bio-Inspired Pulsating-Flow Cooling for Live Garments Based on a Novel Design of Ferrofluid Micro-Valve. Energies, 2022, 15, 8826.	1.6	0
200	3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials. ACS Applied Materials & Interfaces, 2022, 14, 55028-55038.	4.0	29
201	Wearable Thermoelectric Generator with Cooling-Enhanced Electrode Design for High-Efficient Human Body Heat Harvesting. , 2023, 1, 660-668.		1

#	Article	IF	Citations
202	Understanding the Predominant Potassium-Ion Intercalation Mechanism of Single-Phased Bimetal Oxides by <i>in Situ</i> Magnetometry. Nano Letters, 2022, 22, 10102-10110.	4.5	8
203	Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin. Science Advances, 2022, 8, .	4.7	27
204	Personal Cooling Garments: A Review. Polymers, 2022, 14, 5522.	2.0	6
205	Enhanced <scp>n‶ype</scp> Thermoelectric Performance of Conjugated Polymers Based on an <scp>Indandioneâ€Terminated</scp> Quinoidal Unit through Comonomer Optimization. Chinese Journal of Chemistry, 2023, 41, 776-782.	2.6	7
206	Tellurium/polymers for flexible thermoelectrics: status and challenges. Journal of Materials Chemistry A, 2023, 11, 3771-3788.	5.2	9
207	Performance comparison and analysis of mathematical, ANSYS and neural network model of a thermo electrical generator. Measurement: Sensors, 2023, 26, 100675.	1.3	1
208	Applications of Thermoelectricity in Buildings: From Energy Harvesting to Energy Management. Smart Innovation, Systems and Technologies, 2023, , 152-163.	0.5	0
209	Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Science Advances, 2023, 9, .	4.7	15
210	Observation of Weak Counterion Size Dependence of Thermoelectric Transport in Ion Exchange Doped Conducting Polymers Across a Wide Range of Conductivities. Advanced Energy Materials, 2023, 13, .	10.2	13
211	Mechanical properties of thermoelectric generators. Journal of Materials Science and Technology, 2023, 148, 64-74.	5.6	25
212	Constructing Flexible Film Electrode with Porous Layered Structure by MXene/SWCNTs/PANI Ternary Composite for Efficient Lowâ€Grade Thermal Energy Harvest. Advanced Functional Materials, 2023, 33, .	7.8	17
213	Performance research of portable thermoelectric cooling garment under different working conditions. International Journal of Refrigeration, 2023, 150, 327-337.	1.8	2
214	Lower limit to the lattice thermal conductivity of randomly stacked van der Waals (vdW) thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 148, 115658.	1.3	2
215	A self-healable, recyclable, and flexible thermoelectric device for wearable energy harvesting and personal thermal management. Energy Conversion and Management, 2023, 285, 117017.	4.4	12
216	A wearable textile with superb thermal functionalities and durability towards personal thermal management. Chemical Engineering Journal, 2023, 465, 142829.	6.6	11
217	Flexible and stretchable thermoelectric devices with Ni-EGaIn liquid metal electrodes for cooling and low-grade-body heat harvesting. Journal of Alloys and Compounds, 2023, 945, 169260.	2.8	2
218	Skin-integrated systems for power efficient, programmable thermal sensations across large body areas. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
219	Recent Advances in Thermoregulatory Clothing: Materials, Mechanisms, and Perspectives. ACS Nano, 2023, 17, 1803-1830.	7.3	46

#	ARTICLE	IF	CITATIONS
220	Persistently self-powered wearable thermoelectric generator enabled by phase-change inorganics as the heat sink. Materials Today Physics, 2023, 32, 101011.	2.9	8
221	Wearable Thermoelectric Generators: Materials, Structures, Fabrications, and Applications. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	1
222	Highâ€Performance Stretchable Thermoelectric Generator for Selfâ€Powered Wearable Electronics. Advanced Science, 2023, 10, .	5.6	15
223	Polarization-mediated multi-state infrared system for fine temperature regulation. APL Photonics, 2023, 8, .	3.0	4
224	Multi-factor roadmap for designing wearable micro thermoelectric generators. Energy Conversion and Management, 2023, 280, 116819.	4.4	4
225	Solution-processed flexible n-type S-doped Ag2Se thermoelectric generators for near-ambient-temperature energy harvestâ€. Materials Today Energy, 2023, 33, 101266.	2.5	9
226	Extreme cold protective textiles. , 2023, , 303-354.		0
227	Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles. Advanced Fiber Materials, 2023, 5, 1105-1140.	7.9	7
228	Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Analytical Chemistry, 2023, 95, 5443-5453.	3.2	2
229	Advances in Ag ₂ Se-based thermoelectrics from materials to applications. Energy and Environmental Science, 2023, 16, 1870-1906.	15.6	35
230	Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Science Advances, 2023, 9, .	4.7	21
231	Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nature Communications, 2023, 14, .	5.8	14
239	Personal Thermal Management Materials (PTMMs). , 2023, , 213-243.		0
240	Thermoelectric System for Personal Cooling and Heating. , 2023, , 185-211.		0
241	Wearable Personal Thermal Management Systems (PTMS). , 2023, , 245-263.		1
253	Haptic interface with flexible self-sensing actuators for wireless touch communication. , 2023, , .		0
260	Ultra-Thin, Soft, Radiative Cooling Interfaces for Advanced Thermal Management in Skin Electronics. , 2023, , .		0
261	Flexible thermoelectrics based on 3D interconnected magnetic nanowire networks. , 2023, , .		0

IF

ARTICLE

Trends and emerging opportunities for smart wearables. , 2024, , 511-557.

0

CITATIONS